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Abstract

Background: Advancements in statistical methods and sequencing technology have led to numerous novel discoveries in
human genetics in the past two decades. Among phenotypes of interest, most attention has been given to studying
genetic associations with continuous or binary traits. Efficient statistical methods have been proposed and are available for
both types of traits under different study designs. However, for multinomial categorical traits in related samples, there is a
lack of efficient statistical methods and software.

Results:We propose an efficient score test to analyze a multinomial trait in family samples, in the context of genome-wide
association/sequencing studies. An alternative Wald statistic is also proposed. We also extend the methodology to be
applicable to ordinal traits. We performed extensive simulation studies to evaluate the type-I error of the score test, Wald test
compared to the multinomial logistic regression for unrelated samples, under different allele frequency and study designs.
We also evaluate the power of these methods. Results show that both the score and Wald tests have a well-controlled type-I
error rate, but the multinomial logistic regression has an inflated type-I error rate when applied to family samples. We
illustrated the application of the score test with an application to the Framingham Heart Study to uncover genetic variants
associated with diabesity, a multi-category phenotype.

Conclusion: Both proposed tests have correct type-I error rate and similar power. However, because the Wald statistics rely
on computer-intensive estimation, it is less efficient than the score test in terms of applications to large-scale genetic
association studies. We provide computer implementation for both multinomial and ordinal traits.

Keywords: EGEE, Score test, Wald test, Framingham heart study, Family samples, Categorical, Multinomial, Ordinal, GWAS,
Sequencing

Background
Genetic association tests for continuous or binary phe-
notypes have uncovered many susceptibility genes or
variants related to diseases. Various methods and effi-
cient software have been developed and used for con-
tinuous and binary traits. For family samples, due to the
correlation between relatives and violation of the inde-
pendence assumption of ordinary linear regression, some
alternative approaches were proposed. For example,
Therneau and colleagues developed an R package
(coxme) implementing linear mixed effects model to

evaluate the association between a genetic variant and a
continuous trait or survival outcome accounting for cor-
relation present in family samples. Similar extensions to
account for familial correlation using mixed effects
models have been proposed for gene-based association
tests [1]. The progress in family sample designs has been
restricted mostly to quantitative traits or binary traits.
However, methods are needed to study categorical traits
with more than two categories in family samples. For ex-
ample, the phenotype diabesity has been defined as a
four-category (diabetes & obesity, diabetes but no obes-
ity, obesity but no diabetes and no diabetes & no obes-
ity) variable constructed jointly from type 2 diabetes and
obesity. Currently, approaches for genetic association
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analysis of such multinomial traits are limited. Zhang
and colleagues [2] proposed a proportional odds logistic
model which allows for the inclusion of covariates. How-
ever, it has a few limitations. First, this approach is re-
stricted to nuclear families and cannot handle complex
family structures. Second, no software implementation
has been made publicly available. Diao and Lin [3] pro-
posed a general framework for linkage and association
tests for ordinal traits. Their method utilized adaptive
Gaussian quadrature to approximate the maximum log-
likelihood and a likelihood ratio test was proposed to
test the hypothesis of no association between a genetic
variant and an ordinal trait of interest. Again, this ap-
proach also has not been widely used due to lack of
computer-efficient software and the fact that the likeli-
hood ratio test is computationally intensive. Another
possible option is to use the SAS generalized linear
mixed models (GLMM) procedure, which can incorpor-
ate a kinship matrix. However, in real applications, the
current implementation of the GLMM cannot handle
extended families due to the computational burden.
More recently, Wang and colleagues [4] proposed a
Bayesian framework incorporating kinship matrix as a
random effect, which however can not be applied to
large-scale genetic study because of lack of computa-
tional efficiency. Bi and colleagues [5] proposed a
computer-efficient framework (POLMM), specifically for
ordinal traits. Because it doesn’t allow for a user-
provided kinship matrix, such as the one estimated from
pedigree or using a typical genetic software, this will be
a limitation for family-based cohort studies with known
relationships. Our proposed method is complementary
to these two approaches as it can be applied to family
samples without available genome-wide data to compute
a GRM, and without the proportional odds assumption.
In this paper, we propose a computationally efficient
score test based on extended generalized estimating
equations (EGEE) for large-scale genetics studies of
multi-category phenotypes accounting for familial cor-
relation. We evaluate our approach using simulations
and apply it to a genome-wide scan to identify genetic
variants associated with diabesity, a four-category
phenotype, with the healthy referent category being no
diabetes and no obesity and the unhealthiest category,
“diabese” (diabetes and obesity), having a prevalence of
at least 25% in several countries [6].

Results
Type-I error
The results of family-based and unrelated samples are
summarized in Table 1-2 respectively. Both the score
and Wald tests have well-controlled type-I error rates
across all MAF scenarios except for rare variants. This
conclusion applies to both family-based and unrelated

designs. The multinomial logistic regression, which ig-
nores familial correlation, returns an inflated type-I error
rate in the presence of related individuals, although its
type-I error rate for unrelated study design is well-
controlled. In the application to ordinal trait (Table 3),
robust score test preserves the type-I error in all MAF
scenarios although the simulated phenotype distribution
is highly unbalanced. The Wald test is only very slightly
inflated for very rare variants when evaluated at 0.0001.
We have also generated QQ-plots (Additional File 3) for
the robust score test and the simplified score test for re-
sults from all MAF scenarios for both multinomial and
ordinal traits when applied to family-based samples. The
QQ-plots are consistent with the empirical type-I error
summarized in the tables below.

Power evaluation
The results of family-based and unrelated samples are
summarized in Tables 4 and 5, respectively. Because we
have concluded that multinomial logistic regression
leads to inflated type-I error rates, the power rate of
multinomial logistic regression is not evaluated for
family-based samples (Table 4). The score and Wald
tests have approximately the same power rate for each
scenario (MAF, study design). The logistic regression
using LRT has approximately the same power as the
other two approaches in unrelated samples.

Data analysis
Low-frequency (MAF < 0.01) and poorly imputed vari-
ants (imputation ratio < 0.3) have been excluded to avoid
spurious results. All results are presented in the Manhat-
tan plot (Fig. 1., and Manhattan plots for diabetes, obes-
ity in Additional File 3) and QQ-plot (Fig. 2.). The
variants that have reached a genome-wide significance
threshold of 5 × 10−8 or a suggestive threshold of 4 ×
10−7 (calculated as 1/number of tests = 1/2542166) are
summarized in Table 6. All variants in Table 6 are lo-
cated within the CYP3A43, AP3B1 and LOC105370246
genes. AP3B1 is known to have variants associated with
fasting insulin and HOMA-IR in African Americans
without diabetes [7]. The direct association between
LOC105370246 and dibestes or obesity is not known in
literature. CYP3A43 gene encodes a member of the
cytochrome P450 superfamily of liver enzymes. Al-
though the direct relationship between CYP3A43 and
diabetes/obesity was not well known, some variants lo-
cated in CYP3A4 have been identified in previous stud-
ies to be associated with relevant metabolism traits. For
instance, one study in 2011 [8] indicated diabetes is as-
sociated with a significant decrease in hepatic CYP3A4
enzymatic activity and protein level. Several studies have
demonstrated nonalcoholic fatty liver disease and dia-
betes are associated with decreased expression of the
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protein encoded by this gene in human livers [9, 10].
Two variants on CYP3A43 were identified to be associ-
ated with Ticagrelor levels in individuals with acute cor-
onary syndromes treated with ticagrelor [11] and serum
metabolite measurement [12] respectively. Because this
gene might have clinical value for treating chronic meta-
bolic diseases such as nonalcoholic fatty liver disease
[13], future research efforts targeting this gene area are
worthwhile. Additional information about this region
might be discovered with targeted sequencing.
For target validation purpose, we have performed two

additional GWAS of diabetes and obesity respectively
using our approach (Manhattan plots in Additional File
3). The plots confirm that all signals are observed from
the combined phenotype and not driven by a single bin-
ary trait (diabetes or obesity).
We apply our ordinal approach to the secondary out-

come (“ordinal” diabesity) and compare to results ob-
tained from POLMM, an approach for ordinal trait. We
observe that the results are similar with small differences
(Fig. 3. and 4). Compared to results obtained from the
multinomial trait (Fig. 1.), the ordinal trait highlights
one region near DAB1 on Chromosome 1 and one re-
gion near LOC107986327 on Chromosome 4 of

potential interest in the search for genes associated with
“ordinal” diabesity.

Discussion
The proposed score test offers advantages over the Wald
test and the multinomial logistic regression in the fol-
lowing aspects. First, it is more computationally efficient,
especially for large-scale genetic studies such as GWAS,
or sequencing studies because the iterative Fisher’s scor-
ing algorithm is only applied once under the null hy-
pothesis while the iterative algorithm is implemented for
each variant when computing the Wald test statistic.
Therefore, for a large-scale genetic study, the Wald test
will be less computationally efficient than the score test.
We have summarized the computing time for the score
and Wald tests in Table 7 for different sample sizes as
implemented in R functions using a 3-category multi-
nomial phenotype on a i7-8565u processor with 16GB
RAM. Second, the simulation studies show that the
type-I error of both the score and Wald tests is well con-
trolled for most scenarios. In contrast, the multinomial
logistic regression results in a very inflated type-I error
rate for family-based design when the familial correl-
ation is ignored, and therefore it is not recommended

Table 1 Simulation results of type-I error for family-based samples

MAF Robust Score test Wald test Logistic regression
(LRT)

α = 0.01 α = 0.001 α = 0.0001 α = 0.01 α = 0.001 α = 0.0001 α = 0.01 α = 0.001 α = 0.0001

0.01 0.014 0.0020 0.0003 0.012 0.0024 0.00058 0.023 0.0023 0.0006

0.02 0.013 0.0020 0.0003 0.010 0.0011 0.0003 0.021 0.0027 0.0004

0.03 0.012 0.0017 0.0002 0.009 0.0012 0.0002 0.022 0.0025 0.0004

0.04 0.011 0.0014 0.0002 0.007 0.0010 0.0002 0.022 0.0025 0.0006

0.05 0.011 0.0013 0.0002 0.011 0.0008 0.0002 0.021 0.0026 0.0002

0.1 0.011 0.0010 0.0001 0.009 0.0008 0.0001 0.021 0.0024 0.0003

0.2 0.010 0.0010 0.0001 0.010 0.0010 0.0001 0.019 0.0033 0.0004

0.3 0.010 0.0010 0.0001 0.011 0.0013 0.0001 0.021 0.0033 0.0011

Table 2 Simulation results of type-I error for unrelated samples

MAF Score test Wald test Logistic regression
(LRT)

α = 0.01 α = 0.001 α = 0.01 α = 0.001 α = 0.01 α = 0.001

0.01 0.011 0.0010 0.008 0.0006 0.011 0.0011

0.02 0.010 0.0016 0.010 0.0016 0.012 0.0014

0.03 0.012 0.0012 0.011 0.0010 0.011 0.0014

0.04 0.011 0.0010 0.010 0.0010 0.011 0.0010

0.05 0.010 0.0010 0.006 0.0004 0.010 0.0005

0.1 0.010 0.0010 0.010 0.0008 0.010 0.0010

0.2 0.010 0.0010 0.009 0.0004 0.010 0.0010

0.3 0.009 0.0011 0.009 0.0006 0.010 0.0010
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for family-based studies. When the phenotypes are ex-
tremely unbalanced, e.g. the allocation ratio of the 4 cat-
egories is approximately 2.5:1:10:23, both score and
Wald tests can result in slightly inflated type-I error for
rare variants in the simulation studies. This conclusion
has been noted in most approaches [5]. However, when
the phenotype distribution is more balanced, the tests
return valid type-I error rates for all MAF scenarios, as
demonstrated in the QQ-plot of the FHS data analysis
(Fig. 2.). We have observed that the type-I error of or-
dinal traits is very robust to an unbalanced distribution
of the phenotype for all MAF scenarios (Table 3), as in-
dicated by the calculated type-I error rate obtained from
500,000 simulations by treating the simulated phenotype
as an ordinal trait. Lastly, the score test has approxi-
mately the same power as the Wald test, under the sce-
narios we evaluated.

Table 3 Simulation results of type-I error for family-based samples for ordinal traits

MAF Robust Score test Wald test

α = 0.01 α = 0.001 α = 0.0001 α = 0.01 α = 0.001 α = 0.0001

0.01 0.010 0.0008 0.00009 0.012 0.0013 0.00019

0.02 0.009 0.0008 0.00008 0.011 0.0011 0.00013

0.03 0.010 0.0010 0.00009 0.011 0.0012 0.00012

0.04 0.009 0.0009 0.00008 0.010 0.0011 0.00011

0.05 0.010 0.0009 0.00010 0.011 0.0011 0.00014

0.1 0.010 0.0010 0.00009 0.010 0.0011 0.00009

0.2 0.010 0.0009 0.00009 0.010 0.0010 0.00012

0.3 0.009 0.0009 0.00010 0.010 0.0010 0.00012

Table 4 Power results for family-based samples

MAF α=0.01 α=0.001 α = 5 × 10−8

0.01 score 97.2 score 92.4 score 42.5

Wald 96.7 Wald 90.2 Wald 29.8

0.02 score 96.5 score 89.1 score 33.0

Wald 96.6 Wald 86.4 Wald 24.4

0.03 score 95.5 score 87.5 score 25.6

Wald 95.1 Wald 84.6 Wald 20.5

0.04 score 94.9 score 85.4 score 23.4

Wald 94.6 Wald 82.4 Wald 17.7

0.05 score 94.3 score 83.6 Score 20.9

Wald 93.5 Wald 81.2 Wald 15.8

0.1 score 93.0 score 78.6 score 13.8

Wald 94.3 Wald 79.6 Wald 11.6

0.2 score 89.4 score 71.7 score 7.6

Wald 91.1 Wald 74.3 Wald 8.0

0.3 score 87.4 score 68.2 score 6.4

Wald 89.0 Wald 71.0 Wald 6.5

Table 5 Power results for unrelated samples

MAF α=0.01 α=0.001 α = 5 × 10−8

0.01 score 95.0 score 85.8 score 26.5

Wald 94.1 Wald 82.8 Wald 15.6

Logistic (LRT) 92.9 Logistic
(LRT)

79.6 Logistic
(LRT)

11.4

0.02 score 93.3 score 82.3 score 20.0

Wald 92.8 Wald 80.6 Wald 14.6

Logistic
(LRT)

91.6 Logistic
(LRT)

77.4 Logistic
(LRT)

10.6

0.03 score 92.7 score 81.1 score 15.9

Wald 92.4 Wald 79.5 Wald 12.7

Logistic
(LRT)

91.2 Logistic
(LRT)

76.8 Logistic
(LRT)

9.5

0.04 score 92.4 score 79.2 score 14.1

Wald 92.0 Wald 78.2 Wald 11.3

Logistic
(LRT)

90.8 Logistic
(LRT)

75.4 Logistic
(LRT)

8.6

0.05 score 92.0 score 77.9 score 13.1

Wald 91.9 Wald 77.3 Wald 10.9

Logistic
(LRT)

90.9 Logistic
(LRT)

74.7 Logistic
(LRT)

8.2

0.1 score 91.3 score 75.7 score 10.4

Wald 91.0 Wald 74.9 Wald 9.5

Logistic
(LRT)

90.3 Logistic
(LRT)

73.2 Logistic
(LRT)

7.8

0.2 score 89.9 score 73.2 score 8.1

Wald 89.7 Wald 73.0 Wald 7.5

Logistic
(LRT)

89.3 Logistic
(LRT)

71.9 Logistic
(LRT)

6.8

0.3 score 89.2 score 72.2 score 7.0

Wald 89.3 Wald 71.8 Wald 6.5

Logistic
(LRT)

89.0 Logistic
(LRT)

71.5 Logistic
(LRT)

6.3
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It is worth noting that the EGEE are simply reduced to
the score equations of generalized linear models for a
multinomial variable when applied to unrelated samples.
Because the same iteratively reweighted least square
method is employed under this particular circumstance,
the parameter estimates are identical to those obtained
using a generalized linear model function for multinomial

variables. This equivalence enhances the applicability of
this approach to a general population, regardless of the
underlying study design.
The score test can be readily extended to ordinal traits

(i.e. categorical traits for which the values are ordered.) in
family samples. Due to the nature of the ordinal regression
model, fewer regression parameters are estimated. Because

Fig. 1 Manhattan plot of diabesity using the FHS data and Hapmap imputed genotypes

Fig. 2 QQ-plot of diabesity using the FHS data and Hapmap imputed genotypes
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applications to ordinal traits are a special case of the gen-
eral framework proposed with reduced complexity, the
validity of simulation results should hold when applied to
ordinal traits. When K = 2, i.e. an ordinal trait with only
two categories, the estimates will be the same when using
either multinomial or ordinal function, i.e. estimates of a
binary logistic regression accounting for familial
correlation.
Our proposed approaches have enabled the identifica-

tion of a few loci associated with diabesity. As discussed,
none of the signals were driven solely by one of the two
binary traits (diabetes or obesity). Targeted sequencing
might reveal more information, by providing a more
comprehensive overview of rare and low-frequency vari-
ants in that specific regions. We also provide a compari-
son of our ordinal approach to POLMM for an ordinal
trait and found that both approaches have revealed simi-
lar regions of association.

Conclusions
Score tests should be considered for large-scale genetic
association testing due to their computational advantage.
Because the Wald test also has valid type-I error rates
and its computational efficiency is comparable to the

score test (Table 7), if computing resources allow, the
Wald test can also be applied for large-scale genetic
studies. As illustrated using Framingham heart study
data, the proposed score test has enabled the identifica-
tion of several loci associated with diabesity. One of the
drawbacks of the score test is the lack of effect estimates.
When only a handful of associated variants are identified
from a genetic association study, the effect size and stat-
istical significance of each variant can be estimated using
the Wald test. In addition to the multinomial applica-
tion, we have also provided a computer implementation
for ordinal traits in Additional File 2. Although we pre-
sented association results from additively coded genetic
variants, the application and implementation are not re-
stricted to SNPs, but also applicable to a genetic risk
score, weighted-sum gene test [14], and other genetic
summary measures.

Methods
Assuming that there are N independent families (i = 1,

…, N), with ni individuals in family i and a total of n

¼ PN
i¼1ni subjects, the basic model for a K-category

(multinomial) trait, with the Kth level chosen as the ref-
erence level, is written as,

Table 6 Top SNPs and the closest genes

Chr Lead SNP p-value bp
(GRCh38)

Loci
(closest gene)

5 rs16875172 1.17*10^(− 7) to 5.34*10^(− 7) 5:77422013–5:77559950 AP3B1

7 rs528144 2.99*10^(− 7) to 5.56*10^(− 6) 7:99257162–7:99918674 CYP3A43

13 rs1925751 7.34*10^(−7) to 5.97*10^(− 6) 13:66763957–13: 66795551 LOC105370246

Fig. 3 Manhattan plot of “ordinal” diabesity using the FHS data and Hapmap imputed genotypes (proposed ordinal approach)
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g Y ij ¼ kjX ij;Gij
� � ¼ αk þ βkGij þ XT

ij γk k

¼ 1;…; K‐1ð Þ

The n × 1 response variable Y has K unordered levels,
i.e. k = 1, …, K, resulting in (K-1) equations; G is the
genotype vector of size n × 1; X is the n × q covariates
matrix; α = (α1,…, αk,…, αK − 1)

T is the intercept vector
for the (K-1) equations; β = (β1,…, βk,…, βK − 1)

T is the
effect size vector of the genotype in the (K-1) equations;
and γ = (γ1,…, γk,…, γK − 1) are the parameters of the co-
variates X, for the (K-1) equations with a dimension of
q × 1 for each γk. Although there are a variety of choices
for the link function g, here we demonstrate with the ca-
nonical link function, the general logit, i.e.

gðY i j ¼ kjX i j;Gi jÞ ¼ log
PðY i j ¼ kjX i j;Gi jÞ
PðY i j ¼ K jX i j;Gi jÞ :

Extended generalized estimating equations (EGEE)
We adopt the idea of EGEE previously proposed [15, 16]
to approximate the likelihood using quasi-likelihood, to
handle correlated observations. The variance of the re-
sponse variable Yij, is defined using (K-1) indicator vari-
ables as follows: zij = [I(Yij = 1),…, I(Yij = (K − 1))] ’. The
expected value of zij is E[zij] = [P(Yij = 1),…, P(Yij = (K −
1))]′ and the variance of zij can be derived as:

var zij
� � ¼ var I Y ij ¼ 1

� �� �
… cov I Y ij ¼ 1

� �
; I Y ij ¼ K−1ð Þ� �� �

⋮ ⋱ ⋮
cov IðY ij ¼ K−1ð Þ� �

; I Y ij ¼ 1
� �Þ … var I Y ij ¼ K−1ð Þ� �� �

0
@

1
A

¼
P Y ij ¼ 1
� �

1−P Y ij ¼ 1
� �� �

… −P Y ij ¼ 1
� �

P Y ij ¼ K−1ð Þ� �
⋮ ⋱ ⋮

−P Y ij ¼ K−1ð Þ� �
P Y ij ¼ 1
� �

… P Y ij ¼ K−1ð Þ� �
1−P Y ij ¼ K−1ð Þ� �� �

0
@

1
A

Let R = rJ where J is a matrix of ones with a dimension
of (K-1) by (K-1), and r is an unknown correlation par-
ameter to be estimated with value between −1 and 1.
The implementation of the approach provided in Add-
itional File 1 can also accommodate two-parameter R

Fig. 5 All possible family structures

Fig. 4 Manhattan plot of “ordinal” diabesity using the FHS data and Hapmap imputed genotypes (POLMM approach)
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with diagonal elements set to r1 and all off-diagonal ele-
ments set to r2. The matrix R is used to model the cor-
relation between any two individuals in the same family
along with the use of relationship matrix, such that Ri =
Φi⨂ R ( Φi is the relationship matrix of the i-th family
defined as twice the kinship matrix), similar to how the
familial correlation was handled in previous publications
[17, 18]. Vi, the overall variance matrix of zi. for the i-th
independent family is constructed as sd(zi.)Risd(zi.) with
the variance of each subject var(zij) (j = 1, …, ni), as de-
rived above,
where

sdðzi:Þ ¼
sdðzi1Þ 0 0

0 ⋱ 0

0 0 sdðziniÞ

0
B@

1
CA

and

sdðzi jÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðIðY i j ¼ 1ÞÞ

q
0 0

0 ⋱ 0

0 0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðIðY i j ¼ K−1ÞÞ

q
0
BBB@

1
CCCA∀ j ¼ 1;…; ni:

The following score equations of EGEE [15, 16, 19] are
used to estimate the regression parameters θ = (α1, β1, γ1,
…, αK − 1, βK − 1, γK − 1) and the correlation parameter r.

U ¼
XN

i¼1
Ui θ; rð Þ ¼

XN

i¼1

D
0
i 0

0 F
0
i

� �
V −1

i 0
0 I

� �
yi−μi
si−σ i

� �
¼ 0

where the ni(K − 1) × (2 + q)(K − 1) matrix Di is stacked
vertically from Dij (j = 1, …, ni) and defined as

Dij ¼ ∂E½zij�
∂θ

0 ¼ ð∂PðY ij¼1Þ
∂θ ;…;

∂PðY ij¼K−1Þ
∂θ Þ

0
; Fi is the vector-

ized ∂V−1
i

∂r with a dimension of n2i ðK−1Þ2 by 1, I is an

identity matrix with a size of n2i ðK−1Þ2 and σi is the vec-
torized version of Vi. Similarly, si is vectorized version
derived from the following:

ei1
⋮

eini

0
@

1
A e0i1 … e0ini

� �

where eij ¼ e1ij … eK−1
ij

� �0
(j = 1, …, ni) and ekij (k = 1,

…, (K-1)) is defined as =I(Yij = k) − P(Yij = k). Therefore,
E[si] = σi. Fisher’s scoring algorithm is used to update
both θ and r from m-th iteration to (m + 1)-th iteration,
written as

θ mþ1ð Þ

r mþ1ð Þ

� �
¼ θ mð Þ

r mð Þ

� �

þU� θ mð Þ; r mð Þ
� �−1XN

i¼1
Ui θ mð Þ; r mð Þ

� �
where

U� θ mð Þ; r mð Þ
� �

¼ −E D
XN

i¼1
Ui θ mð Þ; r mð Þ

� �h i
¼

XN
i¼1

D
0
iV

−1
i Di 0

F
0
i
∂σ i

∂θ
0 F

0
i
∂σ i

∂r

0
@

1
A
						
θ¼θ mð Þ; r¼r mð Þ;

and D stands for the first-order derivative with respect
to (θ, r), until the pre-specified convergence criterion is
met. Estimates of multinomial logistic regression and
r = 0 or 0.5 usually work well in terms of starting values.
Note the score equations will be reduced to the follow-

ing GEE form [20] when applied to N unrelated samples.
The coefficients estimation will follow the same itera-
tively reweighted least square method of generalized lin-
ear model [21] for multinomial outcome until a pre-
specified convergence criterion is met.

U ¼
XN

i¼1
Ui θð Þ ¼

XN

i¼1
D

0
iV

−1
i yi−μið Þ ¼ 0

Robust score test
To determine if a genetic variant is associated with a
multi-category phenotype, the following null hypothesis

is tested H0 : β = 0. We first define the score vectors Uð1Þ

¼
Uγ1
⋮
⋮

UγK−1

0
B@

1
CA , Uð2Þ ¼ Uβ¼

Uβ1
⋮

UβK−1

0
@

1
A , U(3) =Ur. The

score statistic is proposed as follows:

s ¼ A θ̂0; r̂0
� �

Umain θ̂0; r̂0
� �� �0


A θ̂0; r̂0
� �

XN

i¼1
Umain

i θ̂0; r̂0
� �

Umain
i θ̂0; r̂0

� �0h i
A θ̂0; r̂0
� �0

g
−1

A θ̂0; r̂0
� �

Umain θ̂0; r̂0
� �

Where θ̂0; r̂0 are parameter estimates under H0 : β = 0.

Umainðθ; rÞ ¼ U ð1Þ

U ð2Þ

� �
¼ PN

i¼1U
main
i ðθ; rÞ , A(θ, r) =

(−U∗
21U

∗
11

−1, I) with subscript 2 denoting rows/col-
umns that correspond to β, subscript 1 denoting rows/
columns that correspond to γ1, …,γK − 1, and I is an
identity matrix of size (K-1).
The score statistic follows a χ2K−1 asymptotically ac-

cording to the derivation for bivariate association testing
in family samples [17, 22]. One of the major advantages
is its robustness to incorrect variance specification. If the
variance Vi (i = 1, … N) is pre-specified correctly, then
var(Umain(θ, r)) will equal to U∗ restricted to β, γ1, …,γK
− 1, and the score statistic will be simplified to

Table 7 Computing time of robust score and Wald tests on a
i7-8565u processor with 16GB RAM

Sample size Robust score test Wald test

5000 (182 families) 3.09 s (initial) + 1.17 s per SNP 3.44 s per SNP

10,000 (364 families) 4.47 (initial) + 2.45 s per SNP 6.92 s per SNP

20,000 (728 families) 5.47 (initial) + 5.25 s per SNP 10.95 s per SNP
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s ¼ ðUð2Þðθ̂0; r̂0ÞÞTfV ð2Þðθ̂0; r̂0Þg−1Uð2Þðθ̂0; r̂0Þ:

where V ð2Þ¼I22−I2ð−2ÞI−1ð−2Þð−2ÞIð−2Þ2 (The subscript 2 de-
notes the (K-1) row/columns corresponding to β1, …,

β(K − 1); “-“denotes excluding these rows/columns) and I

¼PN
i¼1D

0
iV

−1
i Di.

Wald test
The Wald test is an alternative test with lower computa-
tional efficiency when applied to a large-scale genetic
study. The Wald test statistic is proposed as follows:

w ¼ β̂1 … β̂ K−1ð Þ
� �

V β̂1 … β̂ K−1ð Þ
� �−1

β̂1 … β̂ K−1ð Þ
� �0

This test statistic follows a χ2K−1 asymptotically. The

parameters θ̂; r̂ are obtained from the score equations
with no constraints (i.e. H0 ∪Ha) until the pre-specified
convergence criterion is met.

The full variance matrix of all parameters V ðθ̂; r̂ Þ is

derived as V ðθ̂; r̂ Þ ¼ U�ðθ̂; r̂Þ−1
XN

i¼1
Uiðθ̂; r̂ÞUiðθ̂; r̂Þ0

ðU�ðθ̂; r̂Þ
0
Þ
−1
. V β̂1 … β̂ðK−1Þ

� �
is extracted from V ðθ̂

; r̂ Þ, a sandwich-type variance estimator [19], with rows

and columns corresponding to β̂1 … β̂ðK−1Þ
� �

.

Ordinal traits
Under the same framework, using the statistical theory
of ordinal regression, the above score and Wald tests
can be easily extended to test the association of a genetic
variant with an ordinal trait for a family-based design.
More specifically, because P(Yij = k) can be derived from
P(Yij = k) = P(Yij ≤ k) − P(Yij ≤ k − 1) using proportional
cumulative logit models, then the same EGEE equations
are used for parameter estimation. However, the dimen-
sions of EGEE equations are reduced and mathematical
formulas of the matrix elements are derived differently
due to the use of proportional cumulative logit models.
A computer implementation for both multinomial and
ordinal phenotypes is provided in Additional File 1-2.

Simulations
We conduct type-I error and power simulation studies
to evaluate the validity of our score test in assessing the
association between single-nucleotide variants (SNVs)
with different minor allele frequencies (MAF) and a cat-
egorical trait with four categories (“multinomial” trait),
and compare the score test to the Wald test and the
multinomial logistic regression which does not account
for related samples. We then conduct simulations to as-
sess the power of all three approaches.

Type-I error
We compare the type-I error rate of the robust score
test to the Wald test as well as multinomial logistic re-
gression (without accounting for related samples) in
both family-based and unrelated designs. We simulate a
4-category trait under the null hypothesis that there is
no genetic association with the trait, i.e. H0 : β1 =
… = β3 = 0. Eight SNV scenarios with MAF ranging from
0.01 to 0.3 are explored. For each SNV scenario and
sample design, 500,000 replicates are simulated and the
type-I error rate is defined as the proportion of simula-
tions significant at the threshold of 0.01, 0.001, and
0.0001. For family-based samples, we also have con-
ducted simulations to evaluate the type-I error of robust
score and Wald test when applied to ordinal traits, based
on 500, 000 replicates for each MAF scenario.
Family-based samples: In each replicate, a total of

1000 independent 3-generation families with 2 grandpar-
ents who have one son and one daughter (Fig. 5.) are
simulated. The number of grandchildren (3rd-gener-
ation) is randomly determined from a discrete uniform
distribution ranging from 1 to 4. Within each of the
1000 families, we simulate additively coded genotypes (0,
1, or 2 minor alleles) of the grandparents under Hardy-
Weinberg equilibrium, and the 2nd and 3rd generations’
genotypes are then simulated using random allele drop-
ping. Two covariates (age and sex) are simulated. The
sex of the 3rd-generation is randomly assigned, and the
covariate of age is simulated in the following way [17]:
we start by simulating the age of female offspring (2nd
generation) from a continuous uniform distribution ran-
ging from 25 to 50. Her spouse’s age is set to be within
5-year of her age. The male offspring’s ages (2nd gener-
ation) are set to be within 5 years of the sister with at
least a 1-year gap to exclude twins. Then we simulate
the age of the grandparents (1st generation). The grand-
mother is assumed to be 20 to 45 years older than both
offspring (2nd generation), and the grandfather’s age is
set to be within 5-year of the grandmother’s age and he
must be at least 20 years older than his older offspring.
Finally, we simulate the age of the 3rd generation, in
such a way that everyone in the 3rd generation is as-
sumed to be 20 to 45 years younger than the mother
(2nd generation) and at least 20 years younger than the
father (2nd generation). Two continuous traits are simu-
lated from age and sex, based on the following two equa-
tions, i.e. age and sex explains around 3 and 0.002% of
the total variance of the latent variable u1 versus 0.8 and
0.01% of the latent variable u2:

u1 ¼ 5:6þ 0:025ageþ 0:5sexþ ε1;

u2 ¼ 30þ 0:04ageþ 0:2sexþ ε2;

where
ε1
ε2

� �
∼Nð0;Σa⨂Φþ Σe⨂IÞ , the additive covari-
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ance matrix is Σa ¼ 4 6
6 36

� �
and the environmental

covariance matrix is Σe ¼ 4 6
6 36

� �
. Φ is the relation-

ship matrix which is a kinship matrix multiplied by 2.
We transform u1, u2 to two binary traits using a

threshold model with a disease prevalence of 10 and
35%, assuming a disease with a moderate prevalence
such as type 2 diabetes (T2D) and a high prevalence
such as obesity. The multinomial trait is then defined by
these two binary traits as follows: diabetes & obesity,
diabetes but no obesity, obesity but no diabetes and no
diabetes & no obesity, in adults.
Unrelated samples: In each replicate, we simulate a

total of 5000 independent subjects with ages ranging
from 18 to 90. A total of 5000 independent additively-
coded genotypes are simulated. The sex is randomly
assigned (1 =male; 2 = female). We then simulate two
continuous traits influenced by age and sex only, based
on the following two equations, so that age and sex ex-
plain around 3.2 and 0.8% of the total variance of u1 ver-
sus 0.94 and 0.01% of u2 respectively:

u1 ¼ 5:6þ 0:025ageþ 0:5sexþ ε1;

u2 ¼ 30þ 0:04ageþ 0:2sexþ ε2;

where
ε1
ε2

� �
∼Nð0;ΣT⨂IÞ with ΣT ¼ 8 12

12 72

� �
. We

transform u1, u2 as described in the family design
section.
We evaluate the type-I error of the proposed score test

and Wald test, and then compare them to the multi-
nomial logistic regression assuming independence
among observations (using likelihood ratio test (LRT)).

Power evaluation
We compare the power of the score to the Wald test
and multinomial logistic regression under the same allele
scenarios and with the same family/unrelated structure
as described above. In addition to the effects of age and
sex, we also include an additively coded genetic variant g
which explains approximately 0.5% of the variance of
each continuous trait, i.e.

u1 ¼ 5:6þ 0:025ageþ 0:5sexþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4� 0:01
2MAF 1−MAFð Þ

s
g

þ ε1;

u2 ¼ 30þ 0:04ageþ 0:2sexþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

36� 0:01
2MAF 1−MAFð Þ

s
g

þ ε2;

With this phenotype generation model, both traits are
simulated under the alternative hypothesis that there is

an association between the trait and the genetic variant.
For each MAF scenario, a total of 5000 replicates are
generated. The power rate is then evaluated for 3 differ-
ent significance thresholds including the commonly used
GWAS threshold for each method.

Framingham heart study
The motivation for developing this efficient score test is
to make the application to a large-scale genetic study
computationally feasible, especially after the cost of
whole-genome sequencing has been greatly reduced in
recent years.
We apply the robust score test to the Framingham

Heart Study (FHS) [17, 23]. A total of 7564 partici-
pants from 1315 families are analyzed, after excluding
observations with missing values in body mass index
(BMI), age, sex, the first 10 principal components
(PC) s or T2D status. The primary outcome is diabe-
sity with four categories as defined above. Diabesity is
considered a modern epidemic and the largest in hu-
man history [24]. However, there are very few papers
available regarding genetic association studies on this
trait. We analyze the association between diabesity
and genotypes from the Framingham SNP Health As-
sociation Resource (SHARe) project sponsored by the
National Heart, Lung and Blood Institute (NHLBI),
adjusting for age, sex, and the first 10 PCs. Genotypes
from Affymetrix 550 K genotyping arrays (Affymetrix,
Santa Clara, CA, USA), supplemented by the Affyme-
trix MIPS array, are available on 8481 participants
after exclusion for low call rate (< 97%), heterozygos-
ity rate outside of 5 SDs from the mean or excess
Mendelian errors (> 1000). Additional SNVs are im-
puted with the software MACH (Markov Chain-based
haplotyper) using the HapMap 2 reference haplotypes
[25]. To help understand the GWAS results of diabe-
sity and given the fact that diabesity is jointly con-
structed from obesity and diabetes, we perform two
additional family-based logistic regression analyses
using our approach to study the association of dia-
betes and genotypes, and the association of obesity
and genotypes respectively. A secondary outcome
treats the diabesity as an ordinal variable with 4 levels
of increasing severity. We apply both our ordinal ap-
proach and POLMM with derived sparse GRM matrix
to the secondary outcome and compare the results.

Abbreviations
GLMM: Generalized linear mixed model; EGEE: Extended generalized
estimating equations; SNV: Single-nucleotide variant; MAF: Minor allele
frequency; T2D: Type-2 diabetes; FHS: Framingham heart study; BMI: Body
mass index; SHARe: SNP Health Association Resource; NHLBI: National Heart,
Lung and Blood Institute; MACH: Markov Chain-based haplotyper;
POLMM: Proportional Odds Logistic Mixed Model
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