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Abstract: Several pharmacological properties are attributed to ergot alkaloids as a result of their
antibacterial, antiproliferative, and antioxidant effects. Although known for their biomedical applications
(e.g., for the treatment of glaucoma), most ergot alkaloids exhibit high toxicological risk and may even
be lethal to humans and animals. Their pharmacological profile results from the structural similarity
between lysergic acid-derived compounds and noradrenalin, dopamine, and serotonin neurotransmitters.
To reduce their toxicological risk, while increasing their bioavailability, improved delivery systems were
proposed. This review discusses the safety aspects of using ergot alkaloids in ocular pharmacology and
proposes the development of lipid and polymeric nanoparticles for the topical administration of these
drugs to enhance their therapeutic efficacy for the treatment of glaucoma.

Keywords: ergot alkaloids; ocular pharmacology; glaucoma; lipid nanoparticles; polymeric nanoparticles

1. Introduction

Ergot alkaloids are a large group of compounds, comprising more than 40 highly biologically
active molecules [1–3], produced by microfungi belonging to the genus Claviceps and relative
species [4]. Chemically, these molecules share a four-membered ring—ergoline—known to interact with
neurotransmitter receptors. These natural compounds can interact with serotonergic, dopaminergic,
and adrenergic receptors as agonists or antagonists. Their pharmacological profile is attributed to the
similar structure between lysergic acid-derived compounds and these neurotransmitters [4].
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Ergot alkaloids are mycotoxins of high agro-economic interest, which can be present in food and
feed, compromising the health of consumers, both humans and animals [5–12]. Several properties,
such as antibacterial, antiproliferative, and antioxidant activities, are attributed to alkaloids [13,14].
Among the toxic effects of ergot alkaloids, nausea, vomiting, digestive disorders, weight loss, muscle
pain and weakness, numbness, itching, and rapid or slow heartbeat were reported [15,16].

The toxicological profile of ergot alkaloids was the subject of investigation. The ability of ergot
alkaloids to cross the blood–brain barrier (BBB) was studied in vitro by Mulac et al. using primary
porcine brain endothelial cells [17]. The authors identified the active transport of ergometrine as a
substrate for the breast cancer resistance protein (BCRP)/ATP-binding cassette subfamily G member 2
(ABCG2) transporter, demonstrating that ergot alkaloids can cross the BBB in high quantities in only
a few hours. The 8-(S) isomers of ergot alkaloids were found to interfere with the BBB integrity,
demanding the risk assessment of ergot alkaloids in food and feed. The authors found that ergocristinine
can potentially accumulate in brain endothelial cells. Earlier, a study conducted also by Mulac et al.
described the in vivo toxic effects of the six most predominant ergot alkaloids, namely, ergotamine,
ergocornine, ergocryptine, ergocristine, ergosine, and ergometrine, together with their -inine isomeric
forms [18]. The authors evaluated the in vitro cytotoxicity profile of these six alkaloids in the renal
proximal tubule epithelial cells and in normal human astrocytes for comparison with the in vivo data.
While ergometrine as a lysergic acid amide did not show any effect, the peptide ergot alkaloids revealed
a different toxic potential. Among all tested alkaloids, ergocristine presented the highest cytotoxicity,
inducing apoptosis in human kidney cells starting at a concentration of 1 µM in the renal proximal
tubule epithelial cells. The study highlights the effects of ergot alkaloids regarding cytotoxicity and
accumulation in human primary cells. In addition to the well-described receptor effects, the results
also identified apoptosis, which points to the complex mode of action of ergot alkaloids.

Despite the recognized toxic risk for human and animal health, ergot alkaloids are efficiently used
in pharmaceutics, in particular against glaucoma, a serious optic neuropathy with associated high
intraocular pressure (IOP) as the main risk factor [19,20]. The high IOP injures the optic nerve, causing
long-term damage and disruption of communication between the retina and the brain, which can result
in irreversible vision loss [21]. Furthermore, glaucoma is recognized as the second cause of blindness,
in developed countries, and its management requires lowering IOP by enhancing the drainage of fluid
from the eye or decreasing the generation of the fluid. Different classes of drugs can be used to lower
IOP: β-blockers, adrenergic agonists, carbonic anhydrase inhibitors, prostaglandin analogues, miotics,
and hyperosmotic drugs [22–24]. Each of these categories of drugs presents inherent adverse effects,
which leads to the search for more effective and safer alternatives. In this context, scientific research
is focused on herbal bio-actives, such as ergot derivatives, since these molecules are suggested as a
potent group of anti-glaucoma drugs, with a safety profile.

Therapeutically important alkaloids include ergonovine (ergometrine), ergotamine, and ergocristine [3].
Their synthetic derivatives, namely, methylergonovine, methysergide, dihydroergotamine, bromocriptine,
and lysergic acid diethylamide, are also used in therapy [4]. The first evidence of the therapeutic use of
ergot alkaloids dates back to the early 20th century (1926) when ergotamine tartrate was tested for its
potential to reduce IOP [25]. Later, dihydroergocristine, followed by a mixture consisting of equal parts
of three hydrogenated alkaloids of dimethyl pyruvic acid series, was investigated [26]. Several other
natural compounds were proposed to reduce IOP, with ergot alkaloids being the most effective. In this
review, we discuss the preclinical effects of several natural ergot alkaloids as therapeutic agents in
ocular pharmacology and anticipate the advantages of their encapsulation in lipid and polymeric
nanoparticles to improve their topical bioavailability while limiting the well-known toxicological effects.

2. Role of Ergot Alkaloids in Reducing Intraocular Pressure

Glaucoma is characterized by progressive degeneration of the optic nerve head and the retinal
nerve fiber associated with the loss of vision [24]. An important risk factor associated with this disease
is the high IOP, which is why therapy is based on IOP reduction. All ergot alkaloids have in common
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an indole-derived tetracyclic ring structure (ergoline) and, according to their structural features,
the naturally occurring ergots are categorized into three main classes: amide- and peptide-like amide
derivatives of d-lysergic acid, and the clavine alkaloids [27] (Figure 1). The pharmacological profile
of ergot alkaloids is linked to the structural similarity between d-lysergic acid-derived compounds
and neurotransmitters like noradrenaline, dopamine, and serotonin [28]. This structural similarity
anticipates that these neurotransmitters can interact as agonists or antagonists in these receptors,
depending on the substituent attached to the carboxyl group of d-lysergic acid [29].

The first evidence of the intraocular-lowering effect of ergot alkaloids was observed with Hydergine®,
both in rabbits and in humans [30]. This is a sympatholytic drug composed of a combination of equal
parts of three dehydrogenated derivatives of ergot alkaloids: dihydroergocristine, dihydroergocornine,
and dihydroergocryptine methane sulfonates. Moreover, ergoline derivatives with a predominant
dopaminergic activity, such as bromocriptine, lergolide, pergolide, cianergolide, and lisuride, were shown
to decrease IOP in rabbits, monkeys, and humans [31–34]. A United States (US) patent also reported
the production of a formulation comprising bromocriptine as the active ingredient, suitable for ocular
instillation and used as an anti-glaucomic agent [35].
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Bromocriptine, which is marketed as its mesylate salt form, is known for its dopaminergic
action [37,38] and its ability to decrease IOP upon local administration. This effect was firstly described
in rabbit eyes and further supported by the evidence of its efficacy to reduce IOP in humans upon oral
administration. However, the unavailability of a suitable dosage form hampers the therapeutic use
of bromocriptine. Since oral administration of this drug is associated with undesirable side effects,
a topical delivery system would be more appropriate. Bromocriptine poses significant challenges
owing to its insolubility in the aqueous media conventionally utilized for ocular administration.

Given this, Puras et al. investigated the effect of natural ergot alkaloids on IOP and on aqueous
humor dynamics in the rabbit model [39]. In the study, ergocristine, α-ergocriptine, and ergocornine
were found to be effective in decreasing the IOP in a dose-dependent fashion, producing an ocular
antihypertensive effect. The same group later conducted a comparative evaluation of the effect
of these alkaloids on IOP and on aqueous humor dynamics, both in ocular normotensive and in
α-chymotrypsin-induced ocular hypertensive rabbits [40]. The tested molecules decreased both
tonographic outflow facility and aqueous humor inflow, which explains the reduction of the IOP in a
dose-related fashion for both rabbit models. The use of natural ergot alkaloids as therapeutic agents
was reported to require narrowing the specificity of the compounds by chemical modifications, in order
to retain their therapeutic properties while avoiding adverse side effects [41].

Santafé et al. studied the effects of dihydroergocristine, timolol, and pilocarpine on the IOP
and on the pupil diameter in conscious rabbits [42]. The authors showed that the ergo derivative
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dihydroergocristine reduced the IOP more significantly than timolol, and much more than pilocarpine.
The ocular hypotensive effect of dihydroergocristine was accomplished by a great reduction in
aqueous humor formation, while timolol mainly reduced aqueous humor formation and pilocarpine
increased aqueous humor outflow. Dihydroergocristine did not change the pupil diameter, whereas
timolol induced slight mydriasis while pilocarpine provoked myosis. The authors proposed that
dihydroergocristine might block the α-adrenoceptors in the ciliary body, although available data about
pre-treatment with either metoclopramide or domperidone suggest the participation of DA2 dopamine
receptors in the ocular hypotensive effect of ergot derivatives.

Rowell and Larson studied the effect of several ergot alkaloids on the dopaminergic activity [43].
The authors demonstrated that ergocryptine, ergocristine, and bromocriptine induced an elevation in
baseline dopamine with an effective concentration of about 30 µM, whereas ergotamine, ergonovine,
ergovaline, and ergocornine did not show any activity. Ergocryptine affects dopaminergic activity
mainly through interaction with D2-type receptors. The authors showed that the time-course
of the ergocryptine-stimulated release was relatively slow compared to amphetamine, nicotine,
or K+-stimulated [3H] dopamine release. Many receptor antagonists were examined for their ability to
block ergocryptine-stimulated release. The results indicate that various ergot alkaloids can not only
interact with dopaminergic receptors, but also produce dopaminergic effects by increasing the release
of dopamine from central nerve endings. The authors also discussed several mechanisms to account
for the evoked neurotransmitter release.

3. Encapsulation of Ergot Alkaloids for Ocular Administration

There are many scientific reports confirming the anti-glaucoma action of ergot alkaloids; this
property, however, can still be further improved by the encapsulation of these drugs in a suitable
delivery system able to improve the drug’s bioavailability and targeted delivery while reducing the
side-effects. Conventional glaucoma therapy involves the administration of topical eye-drops, which
leads to pre-corneal loss of the drug, accounting for its poor bioavailability and reduced therapeutic
effect. Only 1–5% of the topically administered drug can penetrate the cornea and reach the internal
ocular tissues [44]. This low bioavailability is due to distinct barriers for drug penetration into the eye.
As a result, the pre-corneal drug half-life is approximately one minute [45]. The rapid clearance requires
frequent administration of eye drops to sustain the reduction in IOP, which can trigger sensitivity
reactions, mechanical injury through the misuse of the eye drops, and lack of patient compliance [44,45].
In addition to the lower systemic bioavailability, the currently available marketed formulations with
anti-glaucoma drugs show limited capacity in crossing the blood–retinal barrier. The anterior sphere is
the smallest of the two and is bordered anteriorly by the cornea, whereas the larger posterior sphere
is an opaque fibrous shell encased by the sclera. When considering ocular drug delivery, there is a
substantial number of issues related to the precorneal area of the eye that can have major impact on the
drug’s bioavailability in the expected target issues. Since both lacrimation and blinking profoundly
influence the residence time of liquid ocular drug delivery systems, their comfort on the eye seems
essential [46,47]. Placing the drug delivery system as deeply as possible into the lower cul-de-sac will
assist in patient comfort, as well as increase the residence time. However, liquid delivery systems do
not adhere to the cornea and to the conjunctival surface for sufficient time in order to have an effective
systemic absorption.

The eye is considered an immune privileged organ mainly due to the blood–retinal barriers,
the avascular character of the cornea, the absence of a lymphatic drainage from the anterior chamber,
the presence of soluble immunomodulatory factors in aqueous humor (released from the cells and
tissues surrounding the anterior chamber and secreted by the ciliary body), and the cell-surface
immunomodulatory factors expressed on parenchymal cells [48]. Among these, blood–ocular barriers
play a protective role that prevents the entry of molecules from the systemic circulation into the ocular
compartments. These barriers are classified into the blood–aqueous barrier (BAB) and the blood–retina
barrier (BRB), located in the anterior and posterior segments of the eye, respectively. The treatment of
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diseases involving structures of the posterior segment of the eye (such as choroid, vitreous humor,
and retina) is one of the main bottlenecks in pharmaceutical technology [49]. Figure 2 illustrates the
different administration routes for drug delivery to the eye.

Drug delivery to the posterior segment remains a challenge due to the nature of the blood–ocular
barrier, requiring improved approaches to overcome the many barriers for the delivery of therapeutic
drug concentrations to intraocular tissues. The success of the pharmacological therapy of diseases
of the posterior eye segment depends on the efficiency of the drug to reach the intended site of
action, i.e., target tissue, contact time, and disease itself [50]. To overcome the limitations encountered
with classical drug delivery systems, novel ocular delivery systems, such as lipid and polymeric
nanoparticles, are proposed to enhance the therapeutic efficacy of the anti-glaucoma drugs.
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The corneal epithelium provides maximum resistance to drug penetration. As shown in Figure 3,
it comprises tightly adherent cells, through which the drug molecules can penetrate via two ways: either
partitioning through the cells (intracellular), with predominance for lipophilic drugs, or bypassing
between the cells (paracellular), predominantly for hydrophilic and/or small-molecular-weight drugs.
Moreover, the lipophilic nature of the epithelial cells can block the passage of about 90% of hydrophilic
drugs and about 10% of lipophilic drugs [51]. The stroma is an aqueous environment that limits
the diffusion rate of highly lipophilic molecules. Bowman’s layer and Descemet’s membrane do not
provide resistance for drug penetration, and the endothelium may play a small role in rate-limiting
lipophilic compounds [51].Biomolecules 2020, 10, 980 6 of 21 
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3.1. Lipid Nanoparticles

Nanosized particles were explored for the entrapment of drugs as a novel strategy to increase their
targetability, bioavailability, and therapeutic effect, as well as the range of molecules to be clinically
used [52]. Since their introduction as drug delivery systems, solid lipid nanoparticles (SLNs) and
nanostructured lipid carriers (NLCs) were explored for use in the most diverse administration routes
(Figure 4). Among them, these lipid systems represent an interesting approach for the ocular route,
due to their ability to improve the corneal penetration of drugs [48,52–56]. SLNs and NLCs are delivery
systems that combine the advantages of liposomes and emulsions (biocompatibility and possibility to
scale-up) with the advantages of polymeric nanoparticles (protection of the drug and modulation of
the release profile) [57]. These versatile lipid carriers exhibit improved drug loading and permeation
characteristics, followed by acceptable safety profile [58–61], which are reasons that allow their use for
ocular delivery. Moreover, the possibility to be produced under sterilized conditions and/or being
sterilized by autoclaving [62] further enhances their interest for ocular administration of drug [63].
The mucoadhesive properties of lipid nanoparticles are an additional advantage to improve their
intimate contact with the ocular mucosa. The prolonging of the corneal contact time of the loaded drug
can further be enhanced by developing cationic nanoparticles [64–67], increasing the bioavailability
and reducing undesirable effects [68–72].
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nanostructured lipid carriers (NLCs) and solid lipid nanoparticles (SLNs)).

By definition, SLNs are composed of a solid lipid, with a melting point above 40 ◦C, dispersed
in an aqueous surfactant solution, and falling within the nanometric size range [72,73]. NLCs are
based on a blend of solid and liquid lipids composing a lipid matrix which also melts above 40 ◦C.
Morphologically, SLNs are characterized by imperfections in the lipid crystal, which contributes to
increasing the loading capacity, mainly for lipophilic drugs. The solubility of the drug in the lipid
materials are the governing factor for their selection, with the purpose of increasing the loading
capacity and encapsulation efficiency of drugs into SLNs/NLCs, improving the drug bioavailability
and reducing adverse side effects as less concentration is needed to exhibit the desired therapeutic
effect [74,75].

The recent scientific literature substantiates the suitability of these nanoparticles for the ocular
delivery of different drugs. To understand the distinctive features of SLNs/NLCs, Table 1 provides a
summary of different classes of drugs loaded in lipid nanoparticles for the treatment of ocular disorders.
Although there is a consistent lack of studies in the literature concerning the encapsulation of ergot
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alkaloids in lipid nanoparticles, an overview in the available literature in lipid nanoparticles could
anticipate their benefits as an improved and safer alternative for glaucoma therapy via ocular route.

Taking into account the anatomical and morphological characteristics of the corneal barrier
(Figure 2), some properties of the colloidal systems are important parameters to be considered to
the development of formulations for ocular delivery. The human eye can tolerate particles of about
10 µm; however, particles containing an average diameter between 50 and 400 nm are more suitable
for ocular instillation. The sub-micrometer size allows mucoadhesion and crossing of the eye barriers,
enabling efficient drug delivery to the target site [72,76,77]. Furthermore, the appropriate average
size and the polydispersion of the particles avoid corneal irritation [78]. Furthermore, positively
charged nanoparticles present better penetration through the cornea due to the electrostatic interaction
established with mucin, a negatively charged protein present in the epithelial cells of the cornea.
These interactions increase the pre-corneal residence time of the ophthalmic formulation and offer
enhanced drug penetration and absorption [54,67]. Table 2 depicts the composition, mean particle
size, polydispersity index, and zeta potential of examples of cationic lipid nanoparticles loading
ophthalmic drugs.

Table 1. Composition, mean particle size, polydispersity index and zeta potential of lipid nanoparticles
(SLNs and NLCs) loading ophthalmic drugs for ocular administration. (NA, not available).

Encapsulated
Drug

Lipid System
Composition

Average Particle
Size (nm)

Polydispersity
Index

Zeta Potential
(mV) References

Brimonidine
NLC: Glyceryl

monostearate, castor oil,
and Poloxamer® 188

152.0 0.230 −44.20 [79]

Curcumin
NLC: Compritol® ATO 888,
Gelucire® 50/13, olive oil,

and Poloxamer® 188
66.8 0.170 NA [80]

Etoposide
SLN: Gelucire 44/14,

Compritol® ATO 888,
and Tween® 80

239.4 0.261 NA [14]

Flurbiprofen NLC: stearic acid, castor oil,
and Tween® 80 288.0 0.245 −29.00 [53]

Isoniazid
SLN: Compritol® ATO 888,

stearic acid, Tween® 80,
and soy lecithin

149.2 0.150 −0.35 [81]

Natamycin SLN: Precirol® ATO 5 and
Pluronic® F68

84.0 0.224 26.70 [82]

Propranolol
NLC: Compritol® ATO 888,

oleic acid, Tween® 80,
Span® 80, and Transcutol P

385.0 to 880.0 0.220 to 0.560 NA [83]

Quercetin

NLC: Compritol® ATO 888,
medium-chaintriglyceride,

Cremophor EL,
and soy lecithin

75.5 0.180 NA [84]

Sunitinib
SLN: Stearic acid, sodium

taurodeoxycholate,
and phosphatidylcholine

140.0 0.200 NA [85]

Triamcinolone
acetonide

SLN: Glyceryl
monostearate, Compritol®

ATO 888, Tween® 80,
and Pluronic® F68

200.0 to 350.0 0.300 to 0.450 −52.31 to −64.35 [86]

Voriconazole

SLN: Witepsol® W35,
Compritol® ATO 888,

stearic acid, Tween® 80,
and l-α-phosphatidylcholine

182.0 0.269 NA [87]
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Cationic lipid nanoparticles offer the potential to enhance biocompatibility of drugs when instilled
topically for ophthalmic purposes. Introduction of positive charge on the surface of nanoparticles
promotes electrostatic interactions between the anionic ocular mucosa and cationic nanoparticles,
thereby reducing the contact angle with cornea. As a result, a considerable elongation in residence time
and uptake of drug moieties is observed [72]. Therefore, cationic lipid nanoparticles may prove highly
promising vehicles for ophthalmic delivery of drug, particularly for poorly water-soluble moieties [88].
Table 2 lists recent studies reporting the development of cationic lipid nanoparticle for ocular delivery.

The selection of ophthalmically acceptable excipients plays a vital role in successful design
of functional and stable lipid nanoparticles. There is currently increased interest in promoting a
positive charge onto lipid nanoparticles by coating them with a cationic moiety, e.g., chitosan [89],
l-arginine [90], and/or other cationic lipids (cetyl trimethyl ammonium bromide and stearylamine) [91].
Stearylamine is a lipid with surface-modifying property that is commonly used to produce positively
charged lipid nanoparticles. Studies reported stearylamine as a well-tolerated and safe cationic lipid
after repeated topical ocular administration in rabbits [92]. Cationic materials are able to enhance
bioadhesion of lipid nanoparticles to corneal tissues, resulting in their prolonged retention in the eyes.

Biodegradability is another characteristic feature required for ophthalmic nanoparticles to limit their
accumulation in the eyes, especially in chronic eye disorders [93]. Octadecyl quaternized carboxymethyl
chitosan is a cationic material possessing appreciable biodegradability and biocompatibility, and it is devoid
of toxicity. This cationic material was reported suitable for prolonging drug effectiveness, minimizing
drug associated side effects, improving drug absorption, and enhancing bioavailability [94–96].

The major concern in using cationic lipid nanoparticles is the toxicity associated with surfactants
and other cationic molecules [64,65]. It is well documented that non-ionic surfactants are comparatively
less toxic than the ionic ones [97,98]. However, cationic surfactants produce higher toxicity.
Among cationic surfactants, CTAB (cetyl trimethyl ammonium bromide) and DDAB (dimethyl
dioctadecyl ammonium bromide) are commonly reported for fabrication of cationic lipid nanoparticles
for various applications [99]. Silva et al. evidenced CTAB as highly toxic in comparison with DDAB,
used at the same concentration [100].

Table 2. Composition, mean particle size, polydispersity index, and zeta potential of cationic lipid
nanoparticles loading ophthalmic drugs for ocular administration. (NA, not available).

Encapsulated
Drug Cationic Lipid Nanoparticles Average Particle

Size (nm)
Polydispersity

Index
Zeta Potential

(mV) References

Epigallocatechin
gallate

Solid lipid nanoparticles
(SLN): Ascorbic acid,

Poloxamer 188, Softisan® S75,
CTAB (cetyl

trimethylammonium
bromide), DDAB (dimethyl

dioctadecyl
ammonium bromide)

149.0 and 143.0 0.240 and 0.160 20.80 and 25.70 [67]

Palmatine

Lipid emulsion: Egg lecithin,
oleic acid, α- tocopherol,

soybean oil, DOTAP
(1,2-dioleoyl-3-

trimethylammonium-propane)

192.4 0.281 45.00 [88]

NA

Nanoemulsion: Stearylamine,
sesame oil, soybean oil, castor
oil, Cremophor®EL, Tween 60,

Tween 80, glycerol,
Pluronic® F68

81.0 to 96.0 0.110 to 0.251 −2.00 to 27.00 [104]
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Table 2. Cont.

Encapsulated
Drug Cationic Lipid Nanoparticles Average Particle

Size (nm)
Polydispersity

Index
Zeta Potential

(mV) References

Curcumin

Nanostructured lipid carriers
(NLC): Glycerinmonostearate,

Tween 80, stearic acid,
tristearin, Comritol® 888 ATO,

Miglyol® 812

158.1 0.290 36.50 [93]

Besifloxacin
hydrochloride

Nanostructured lipid carriers
(NLC): Compritol 888 ATO,
Gelucire 50/13, Labrafac PG,

CTAB (cetyl
trimethylammonium bromide)

173.6 0.188 16.60 [105]

NA

Solid lipid nanoparticles
(SLN): Glycerol, Softisan S100,

Lipoid S75, soybean
phosphatidylcholine

134.0 and 135.0 0.179 and 0.196 28.20 [100]

Ciprofloxacin
hydrochloride

Solid lipid nanoparticles
(SLN): Tween 80, Softisan 100,
TEA (trimethylamine), DDAB

(dimethyl dioctadecyl
ammonium bromide)

270.0 to 350.0 0.250 to 0.340 −42.00 to 51.00 [106]

NA

Solid lipid nanoparticles
(SLN): Glycerol, Softisan S100,

Lipoid S75, soybean
phosphatidylcholine

164.5 to 268.5 0.155 to 0.192 −1.00 to −2.00 [66]

Puearin and
Scutellarin

Solid lipid nanoparticles
(SLN): F-127, Gelucire® 44/14,

Tween 80, cholesterol,
quaternized carboxymethyl

chitosan, lecithin

181.0 0.224 23.80 [95]

Epigallocatechin
gallate

Solid lipid nanoparticles
(SLN): Glycerol, Softisan S100,

Lipoid S75, ascorbic acid,
Poloxamer 188, DDAB
(dimethyl dioctadecyl
ammonium bromide)

143.7 0.160 25.70 [107]

NA

Solid lipid nanoparticles
(SLN): Precirol ATO 5, Brij 76,

CTAB (cetyl
trimethylammonium

bromide), DDAB (dimethyl
dioctadecyl

ammonium bromide)

185.0 to 244.0 0.350 16.00 to 55.00 [108]

Triamcinolone
acetonide

Nanostructured lipid carriers
(NLC): Transcutol® P,

Capmul MCM C10
(Glycerylmonocaprate),

Captex 200 P, lecithin, Tween
80, stearylamine, ethanol

199.0 0.326 35.80 [91]

Surfactants are employed to disperse the lipid matrix in water via reduction of surface tension
and energy, preventing aggregation of lipid nanoparticles [101]. Surfactants are amphiphilic molecules
comprising hydrophilic and hydrophobic portions in their composition. On the basis of the presence
and absence of charged groups present in the head region, these molecules are characterized as being
ionic and non-ionic, respectively [101,102]. Ionic surfactants are further categorized as (i) anionic
(negatively charged), (ii) cationic (positively charged), or (iii) amphoteric (possess both negative and
positive charge), depending on the charge in their head group [103]. Among these, the property of
amphoteric surfactants is pH-based and shows a positive charge with low pH and negative charge with
high pH, with no charge at intermediate pH. This information is particularly important for selection of
surfactants used in the design and fabrication of lipid nanoparticles [100].
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Since surface characteristics of lipid nanoparticles have decisive role in their interaction with
biological membranes, the type and concentration of surfactants should be taken into account during
their selection. Depending on the surface charge, a molecular structure has a certain degree of
lipophilicity. As a result, different surfactants may interact variably with cell membranes, displaying
variable degrees of cytotoxicity. Moreover, surface properties of lipid nanoparticles also play a key role
in their in vitro and in vivo performance [100].

3.2. Polymeric Nanoparticles

Polymeric nanoparticles currently represent one of the most widely used strategies to enhance
drug absorption through biological membranes [109]. Other benefits of such systems include increased
bioavailability, excellent mechanical stability, and high drug payload [110]. Furthermore, the ability
of these nanoparticles to improve ocular bioavailability of a topically delivered drug moiety makes
them an appropriate drug delivery tool for ocular therapeutics. Polymeric nanoparticles also protect
the encapsulated drug from the enzymes present in tears, allowing their prolonged and controlled
release [111–113]. These nanoparticles also show the capacity to deliver the drug into deeper tissues [114].
It forms a depot, from which the drug is slowly delivered to the affected region over a period of
time, reducing the frequency of administration, and facilitating drug targeting [115]. These particles
generally range from 100–500 nm in size [109]. Morphologically, polymeric nanoparticles are classified
into two distinct categories, namely, nanospheres if the polymeric core is based on a continuous
network, and nanocapsules if the core is liquid or semisolid in which the drug is solubilized surrounded
by a polymeric shell that controls the release of the drug. Figure 5 shows a schematic representation of
both types.Biomolecules 2020, 10, 980 11 of 21 
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In comparison with classical ophthalmic formulations, polymeric nanoparticles improve
bioavailability without blurring the vision [116]. Owing to their appropriate particle size,
polymeric nanoparticles are reported to show low or no irritation, a desirable feature of ophthalmic
formulations (particles having size greater than 10 µm may result in patient discomfort) [117,118].
The nanoparticles could be internalized by the corneal cells and form a reservoir from which the drug
could be released over time [119]. In addition to the particle size, lipophilicity, and surface charge,
ocular bioavailability of polymeric nanoparticles relies mostly on the bioadhesion competence of
the polymers. Without this characteristic feature, nanoparticles are eliminated from the eyes as
quickly as an aqueous phase [120].

Among polymeric nanoparticles, nanospheres are composed of a vesicular architecture, with a
polymer surrounding a liquid (hydrophilic or lipophilic) core (Figure 4, right). In such nanostructures,
the drug moiety can either be dissolved inside or entrapped or adsorbed on the surface of particles [121].
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Semi-synthetic and synthetic polymers like poly lactic acid (PLA), poly glycolic acid (PGA),
and poly lactic acid-co-glycolic acid (PLGA) are widely employed as components of delivery
vehicles for ocular administration [19,53,57,78,122–124]. However, nanotechnologists are mostly
interested in hydrophilic polymers of natural sources because of their accomplished characteristics
of affordability, biocompatibility, little or no toxicity, easy availability, and non-irritant profile.
In addition to mucoadhesion, hydrophilic polymers swell and form a gel-like layer on the nanoparticle
surface, which reduces fluid entry into the polymer core, resulting in sustained drug release [125].
Numerous natural polymers, such as guar gum, alginate, and chitosan, were explored as ocular
nano delivery agents [126–128]. Chitosan is another natural polymer which is cationic in nature,
biodegradable, strongly bioadhesive, and of low toxicity, and it contributes to increasing drug
absorption [129]. Nanoparticle fabrications with some of these hydrophilic polymers, however, require
the use of cross-linking agents, such as glutaraldehyde, which may pose toxicological risks when
applied to living cells [130].

The latest scientific research advocates polymeric nanoparticles for ocular delivery of numerous
drug moieties (Table 3). There is, however, not yet any scientific literature reporting the loading of
ergot alkaloids into polymeric nanoparticles, while their merits nevertheless promulgate them as a
propitious alternative for the topical management of glaucoma.

Polymeric nanoparticles dispersed in a thermosensitive gel were reported to be superior to
commercial eye drops [46]. Olopatadine hydrochloride, a histamine H1 receptor antagonist with an
effect on human conjunctival mast cells used in eye allergies, was loaded into in situ gel polymeric
formulations to reduce the need for frequent application. Such in situ formulations generally allow
gelation at corneal temperature [51], thus avoiding the burst release of the loaded drug in the initial
hours of administration. As a result, higher drug concentration in deeper regions of eye (aqueous
humor) may take place [52,131]. This system was sequentially employed to increase the bioavailability
of hydrophobic drugs, particularly corticosteroids for ocular disorders [115]. The presence of a gel on
the ocular surface may, however, cause loss of visual field; the rheological behavior must, therefore,
be critically evaluated in order to improve ocular residence time and reduce blink resistance and
blurred vision. It was reported that a viscosity of ca. 12–15 mPa·s is ideal for ophthalmic gels [47].

Recently, core–shell lipid–polymeric nanoparticles, combining the features of both polymeric
and lipid nanoparticles, were also the focus of intensive research. Lipid–polymeric nanoparticles
are composed of a lipid core and phospholipid shell [132]. The polymer core contributes to a
stable architecture, with internal entrapment of hydrophobic/hydrophilic drug, and the phospholipid
outer shell provides an improved drug embedding feature and biocompatibility. As a result, these
nanoparticles hold great promise for topical drug administration onto the eye.

Table 3. Composition, mean particle size, polydispersity index, and zeta potential of polymeric
nanoparticles loading ophthalmic drugs for ocular administration.

Encapsulated
Drug

Polymeric Nanoparticle
Composition

Average Particle
Size (nm)

Polydispersity
Index

Zeta Potential
(mV) References

Acetazolamide

Nanocapsule suspensions:
Ethyl cellulose, Eudragit®

RS100, Tween 80, Span 60,
medium-chain
triglycerides

106.0 to 229.0 0.076 to 0.195 −16.20 to 17.30 [109]

Dirithromycin Nanoparticles: Kollidon®

SR, methanol
329.6 and 522.2 0.425 and 0.539 −19.50 and −25.50 [134]

Fluorometholone

Nanoparticles:
Polylactic-co-glycolic acid
(PLGA), Poloxamer 188,

acetone

150.8 0.082 −27.90 [135]

Gatifloxacin
Nanoparticles: Eudragit®

RL and RS, acetone,
Tween- 80

68.0 and 410.0 0.408 and 0.280 24.45 and 33.30 [118]
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Table 3. Cont.

Encapsulated
Drug

Polymeric Nanoparticle
Composition

Average Particle
Size (nm)

Polydispersity
Index

Zeta Potential
(mV) References

Moxifloxacin

Hyaluronic-acid-modified
lipid–polymer hybrid

nanoparticles
(HA-LCS-NPs):
Carbodiimide
hydrochloride,

N-hydroxysuccinimide,
DPPE (dipalmitoyl

phosphatidylethanolamine),
hyaluronic acid

214.0 0.394 −16.59 [110]

Melatonin

Aqueous core
nanocapsules: Polyactic
acid, Tween 80, Span 80,
Brij® 98, caprylic/capric
triglyceride, CTAB (cetyl

trimethyl ammonium
bromide), DDAB

(dimethyl dioctadecyl
ammonium bromide)

193.0 to 218.0 0.16 to 0.22 −36.1 to 31.4 [133]

Brinzolamide

Nanoparticles:
Poly(lactic-co-glycolic)
acid (PLGA), acetone,

polyvinyl alcohol, soybean
phosphatidylcholine,

cholesterol

151.0 NA −7.53 [136]

Delonix galacto
mannan

Nanoparticles: Delonix
polymer, sodium

hydroxide, Tween 80, Span
80, ethanol

215.0 to 360.0 0.140 to 0.225 −68.80 to −31.80 [130]

Fluocinolone
acetonide

Nanoparticles: PLGA,
poloxamer, acetonitrile 34.0 to 178.0 0.16 to 0.52 −1.43 to 5.25 [137]

Flurbiprofen
Nanoparticles: Poly

ε-caprolactone, Poloxamer
188, acetone

170.6 and 192.5 0.087 and 0.139 −15.50 and −12.00 [115]

Dexamethasone

Nanoparticles: Ethyl
cellulose, Eudragit® RS,

ethyl acetate,
polyvinyl alcohol

64.0 to 172.0 0.058 to 0.218 −36.00 to 44.00 [111]

5-Fluorouracil

Nanoparticles: Sulfobutyl
chitosan, polymer solution,

1,4-butane sulfone,
phosphate buffer pH 7.4

294.3 to 390.6 0.2 to 0.4 −3.50 to +9.50 [119]

Vancomycin

Nanoparticles: Poly
lactic-co-glycolic acid

(PLGA), polycaprolactone,
Span 80, acetonitrile,

methylene dichloride,
liquid paraffin

155.0 to 8444.0 0.222 to 0.893 −43.15 to 51.55 [120]

Pilocarpine
hydrochloride

Nanoparticles: Eudragit®

RS100, Gelucire® 44/14,
Tween 80, benzalkonium
chloride, octadecylamine

73.0 to 3179.0 0.29 to 1 −2.97 to 85.00 [116]

Moxifloxacin
hydrochloride

Nanoparticles: Eudragit®

RS100, methanol
247.1 to 392.4 0.23 to 0.68 53.90 to 80.40 [138]

Timolol
maleate

Nanoparticles: Flax seed
gum, acetic acid 254.5 0.345 −20.30 [139]

The surface charge of nanoparticles has an important role in adhesion and penetration of these
nanostructures through the skin and mucus membranes. The corneal epithelium is negatively charged
(under normal physiological conditions); thus, positively charged polymeric nanoparticles easily
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adhere to it. This helps in enhancing the residence time and increasing the drug concentration in the
eye. Several polymers with different polarity, solubility, biodegradability, biocompatibility, swelling,
and electrical charge can be employed for the crafting of polymeric nanoparticles [111].

The literature documents the growing interest of research community in cationic polymeric
nanoparticles for the ocular delivery of a variety of compounds. One of the attractive features of
cationic nanoparticles is the potential to modulate their surface for tuning the morphological and
physicochemical attributes, in terms of surface charge, size, and shape, which affect their therapeutic
utility to a large extent. Surface modification employing cationic polymers was proposed as a useful
strategy to enhance nanoparticle stability and their interaction with biological membranes. For the
design of this type of nanoparticle, the selection of the appropriate polymer, preferably biodegradable
and biocompatible, assumes great significance [133].

4. Conclusions

The increased IOP in glaucoma can lead to irreversible damage of the ocular nerves. Natural ergot
alkaloids were found to reduce the IOP mainly by a significant reduction in the aqueous humor inflow.
Based on their remarkable intraocular pressure-lowering effect, these compounds could have a role
in anti-glaucoma therapy. Despite the little literature available on ergot alkaloid delivery research,
the encapsulation of these natural compounds in nanoparticles could contribute to a safer and more
efficient alternative for the treatment of glaucoma via the ocular route. Among lipid nanoparticles, SLNs
and NLCs are solid at room and body temperature, which contributes to modulating the release profile of
the loaded drug. Furthermore, these nanoparticles demonstrated efficiency to enhance the bioavailability
of many drugs, and the physiological composition of the raw materials offers reduced toxicity and high
ocular tolerance. Polymeric nanoparticles also offer the opportunity to modulate the release profile of the
loaded drugs. The use of cationic nanoparticles (lipid, polymeric) was exploited to improve the residence
time of the particles in the eye, attributed to the electrostatic interaction with the anionic ocular mucosa.
Considering the present status of natural ergot alkaloid and nanoparticle research, further clinical aspects
would need to be assessed in the field of ocular administration, a very promising research field definitely
worth of being explored.
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