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Abstract: Studies show that more consumers are using natural health products in the modern world.
We have noticed a growing demand in markets and the professional community for mouthwashes
that contain natural compounds. The objective of this study was to assess the chemical character-
ization and microbiological potential of the essential oil Piper arboreum (EOPa) to provide data to
enable the development of a low-cost mouthwash. The evaluation of the antibacterial and bacterial
resistance modulating activity was performed by the microdilution method to determine the mini-
mum inhibitory concentration. The chemical components were characterized by gas chromatography
coupled with mass spectrometry, which identified 20 chemical constituents, with caryophyllene oxide
being one of the major compounds. The EOPa showed an MIC ≥ 1024 µg/mL for all bacterial strains
used in the tests. When evaluating the modulating activity of EOPa combined with chlorhexidine,
mouthwash and antibiotics against the bacterial resistance, the oil limited synergistic activity between
the MIC of the products tested in combination (37% to 87.5%). Therefore, we recommend expanding
the tests with greater variation in the EOPa concentration and the products used, as well as toxi-
city assessments and in vivo testing, with the purpose of the development of a possible low-cost
mouthwash base that is accessible to the most vulnerable populations.

Keywords: antibacterial activity; bacterial infection; resistance modulation; oral health; oral hygiene

1. Introduction

Several scientific studies have confirmed the biological activities of essential oils, such
as antidiabetic action [1], antioxidant [2], anxiolytic [3], sedative [4], anti-inflammatory [5],
hepatoprotective [6], antitumor [7], gastroprotective [8], and hypolipidemic [9]. The an-
tibacterial and antibiotic resistance modulating activities using natural products of plant
origin have been repeated in studies on several parts of plants: leaf extract [10], leaf oil [11],
extract from leaves and stem [12], oil from aerial parts [13] and oil from leaves, stem and
roots [14].
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Essential oils are complex mixtures extracted from plants that have several biological
properties related to their survival and defense [15], however, the chemical constitution
of these products varies according to the plant’s genotype [16], geographic origin [17],
conditions, environment, season in the year [18], extraction method and conservation [19].

The Piperaceae family comprises 1100 plant species distributed in 12 genera, which
includes the genus Piper with outstanding ethnobotanical and ethnopharmacological rel-
evance is widely distributed in subtropical regions and known for its aromatic herbs.
Popularly known as “pau-de-angola”, “jaborandi”, and “chili pepper”, the Piper arboreum
species is related to several biological activities such as antifungal, trypanocidal, antibacte-
rial and antioxidant [20,21]. The literature shows that the compounds bicyclogermacrene,
E-caryophyllene, caryophyllene oxide and spathulenol are the most commonly found in
the Piper arboreum species and can be extracted from dry leaves, fresh leaves and the stem
of the plant [22].

The oral microbiota is composed of a wide variety of microorganisms, including
several species of bacteria, fungi, viruses and protozoa, which can often act as beneficial
agents, preventing the colonization of the oral cavities by pathogenic microorganisms [23].

Staphylococcus aureus is a Gram-positive bacterium, that is a constituent of the natural
microbiota of the skin and nasal mucosa and is considered an opportunistic pathogen
that is frequently associated with infections acquired in community and hospital environ-
ments [24–27]. Streptococcus mutans, one of the several etiological factors of tooth decay, is
capable of colonizing the oral cavity and forming a bacterial biofilm. Additional properties
that allow S. mutans to colonize the oral cavity include the ability to survive in an acidic
environment and the specific interaction with other microorganisms that colonize this
ecosystem [28–31].

Mechanical disruption of the biofilm with brushing and interdental brushing is cur-
rently the best prevention method to prevent and reduce gingival inflammation. This
mechanical action is insufficient without the use of chemical products such as denti-
frices [31,32].

Chemical agents such as triclosan, sodium lauryl sulfate (SLS) and propylparaben, as
well as allergens such as methylisothiazolinone, methylchloroisothiazolinone and chlorhex-
idine are commonly added to toothpastes to enhance their antibacterial action. These
products may pose a risk to human health. Some of these substances have undesirable side
effects, such as changes in taste and stains on teeth, and doubts persist about the harmful
impacts on endocrine function, notably on fertility. Some manufacturers have moved away
from SLS, chlorhexidine and triclosan and have introduced other less irritating surfactants
such as nonionic polyethylene glycol ethers of stearic acid [33–37].

The antimicrobial agents present in toothpaste cannot effectively penetrate areas of
difficult access in the oral cavity, resulting in the accumulation of bacteria that inhabit the
biofilm in the interdental spaces [38,39]. In this sense, mouthwashes for daily use are a
complement to brushing to improve oral health [40–42].

Given the arguments presented, the research aimed to assess the chemical character-
ization and microbiological potential of the essential oil of Piper arboreum and provide
data to enable the development of a low-cost mouthwash formulation aimed at vulnera-
ble communities.

2. Results

After GC-FID and GC-MS analysis of the essential oil sample of Piper arboreum (EOPa),
20 chemical constituents were identified corresponding to 67.53% of the total composition
of the sample, as shown in Table 1. In this chemical analysis, caryophyllene oxide (No. 18)
was a major compound (30.50%), followed by myristicin (No. 14), spathulenol (No. 17),
E-caryophyllene (No. 5) and humulene Epoxide II (No. 19), with 7%, 6.20%, 5.10% and
5.10%, respectively.
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Table 1. Chemical composition of the essential oil of Piper arboreum (EOPa).

No. Constituents RT (min)
GC-MS (EOPa) IAexp IAlit EOPa [%]

1 Linalool 11.34 1097 1095 0.50
2 δ-Elemene 21.19 1331 1335 1.00
3 α-Copaene 22.86 1372 1374 2.00
4 β-Elemene 23.44 1386 1389 0.93
5 E-Caryophyllene 24.65 1417 1389 5.10
6 α-Humulene 26.08 1452 1452 0.96
7 Germacrene D 27.13 1478 1484 1.20
8 β-Selinene 27.44 1486 1484 1.52
9 γ-Amorphene 27.72 1492 1495 0.60

10 α-Muurolene 27.86 1495 1495 0.50
11 α-Bulnesene 27.97 1498 1500 0.55
12 δ-Amorphene - 1515 1509 -
13 trans-Calamenene - 1517 1511 -
14 Myristicin 28.71 1518 1517 7.00
15 Elemol 29.81 1549 1548 2.00
16 E-Nerolidol - 1556 1561 -
17 Spathulenol 30.88 1577 1577 6.20
18 Caryophyllene oxide 31.08 1582 1582 30.50
19 Humulene Epoxide II 32.08 1608 1608 5.10
20 1,10-Di-epi-Cubenol 32.34 1613 1618 1.87

Identified total 67.53
IAexp: Experimental arithmetic retention index; IAlit: Literature arithmetic retention index [43]; tr: dashes (<0.1%);
1: identified only by GC-MS.

When evaluating the antibacterial potential of the essential oil of Piper arboreum (EOPa),
with the determination of the minimum inhibitory concentration (MIC), the EOPa presented
MIC ≥ 1024 µg/mL for all bacterial strains used in the tests.

The results regarding the modulating activity of bacterial resistance are organized and
demonstrated in Figures 1–5, thus facilitating the understanding of the combination of
EOPa with chlorhexidine, mouthwash, ampicillin, gentamicin and penicillin G.
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When EOPa was combined with chlorhexidine, the MIC of chlorhexidine showed
a reduction of 50% against the bacterial strains S. aureus SA10 and E. coli EC06, and a
reduction of the MIC of chlorhexidine by 75.1% against S. mutans ATCC00446, indicating a
synergistic effect in the EOPa-chlorhexidine combination, as shown in Figure 1.

Figure 2 shows the result of combining EOPa with mouthwash. The mouthwash
presented a 50% reduction in the MIC against the bacterial strains S. mutans ATCC00446,
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E. coli ATCC25922, and E. coli EC06, while against the bacterial strain S. aureus SA10, the
reduction in the MIC of the mouthwash was 37%, indicating a synergistic effect of the
reported combination.

Figure 3 shows the result of the combination of EOPa with ampicillin. As shown, there
was a 50% reduction in the MIC of ampicillin against the bacterial strains S. aureus SA10,
S. mutans ATCC00446, E. coli CC25922 and E. coli EC06, indicating a remarkable synergistic
effect of EOPa combined with ampicillin.

When the combination of EOPa and gentamicin was tested, a 68.5% reduction in the
MIC of gentamicin against only the bacterial strain S. aureus SA10 was observed, indicating
a synergistic effect of the combination, as shown in Figure 4.

Figure 5 represents the results of the combination of EOPa with penicillin G. A reduc-
tion of 87.5% and 75% in the MIC of penicillin G was observed against the bacterial strains
S. aureus SA10 and S. mutans ATCC00446, respectively, indicating a synergistic effect on the
given combination.

3. Discussion

In recent years, research and investigations to identify and develop new medicines
derived from natural products have intensified. Studies have reported that drugs from
225 natural sources were in the development stage, and of these, about 80% were extracted
from plants [44,45]. The search for medicines and genes from nature has been promoted as
a non-destructive use of habitats that promotes human health as well as supports economic
development and conservation [46].

Caryophyllene oxide and the sesquiterpenes derived therefrom: spathulenol, E-caryo-
phyllene and humulene epoxide II are found in samples of essential oils from different
vegetables and have shown the ability to modulate several pharmacological activities and
amplify its effect. Among these activities are antiproliferative, anti-inflammatory and
antibacterial [47,48].

The substance myristicin was first identified in the seed of nutmeg (Myristica fragrans)
and was described by French colonies in the mid-18th century on the Maluku Islands. In
addition to the high concentration in this seed, myristicin can also be found in cinnamon,
parsley, some types of pepper and other spices native to Asia. Nutmeg has been used since
ancient times to treat anxiety, stomach cramps, nausea and diarrhea. In addition, it has been
described as a food preservative, as it has antimicrobial activities as well as the following
related activities: antioxidant, anti-inflammatory, analgesic, antiproliferative, insecticide
and larvicide. However, when used in very high amounts, myristicin can have toxic effects,
leading to liver degeneration and mental confusion, as it is toxic to the central nervous
system [49].

The results of this study indicated that EOPa has no clinically relevant antibacterial
activity. However, other studies have shown that although a product or natural substance
does not have antibacterial potential, it can be a modulator of bacterial resistance when
combined with antibiotics, thus improving its effect [50].

EOPa, when combined with antibiotics, chlorhexidine and mouthwash, separately,
showed a reduction in the MIC of all products tested, indicating possible synergistic
modulatory activity. In this way, the oil showed significant results when combined with
other substances but did not show relevant results when tested in isolation. This may have
occurred because the oil is a complex mixture of several compounds in variable amounts,
allowing the oil to act on different targets [51].

Various chemical compounds (synthetic or natural) have direct antibacterial activity
against many species and/or can expand the activity of an antibiotic, reverse the natural
resistance of bacteria to a specific antibacterial substance, and cause inhibition of antibiotic
efflux proteins across the plasma membrane and/or plasmid deletion. The potentiation
of antibiotic activity or reversal of antibiotic resistance allows the classification of these
compounds as antibiotic activity modifiers [52,53].
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The potential modulator of antibacterial activity can be explained by a strategy
known as “herbal-shotgun” or “multiple targets with multiple effects” due to the fact
that natural products of plant origin have a chemically diversified constitution and can act
on lipopolysaccharides (LPS) and efflux pumps to reduce vulnerability to antimicrobial
drugs [54].

4. Materials and Methods
4.1. Bacterial Strains

The microorganisms used in the tests were provided by the Laboratory of Microbi-
ology and Molecular Biology—LMBM, University Regional of Cariri—URCA, under the
coordination of Prof. Dr. Henrique Douglas Melo Coutinho. Standard strains of bacteria
Staphylococcus aureus (ATCC25923 and resistant SA10), Escherichia coli (ATCC25922 and
resistant EC06) and Streptococcus mutans ATCC00446 were used.

4.2. Preparation and Standardization of Bacterial Inoculum

Bacteria cultures were kept at 4 ◦C in heart infusion agar—HIA. Before testing, the
strains were transferred to the HIA medium and incubated at 35 ◦C for 24 h. The active
bacterial strains were inoculated in brain heart infusion—BHI at the concentration recom-
mended by the manufacturer and incubated under the same conditions mentioned above.
The suspensions with bacterial growth were diluted in BHI at a concentration of 10% until
105 cells/mL was obtained [55].

4.3. Antibiotics and Mouthwash Solutions

Chlorhexidine gluconate, gentamicin, ampicillin and penicillin G were purchased from
Sigma Chemical Corporation, St. Louis, MO, USA. Commercial mouthwash (composition:
water, glycerin, propylene glycol, sorbitol, tetrapotassium pyrophosphate, polysorbate 20,
tetrasodium pyrophosphate, zinc citrate, PVM/MA copolymer, benzyl alcohol, sodium
fluoride [225 ppm fluorine/0.05%], sodium saccharin, acid blue 3 [CI 42051]) was purchased
from a drugstore. All substances were dissolved in sterile water before use.

4.4. Botanical Materials and Extraction of Essential Oils

Leaves from Piper arboreum Aubl. (P.ar.), were collected in the spring of 2019 at Bom
Jesus Biological Reserve (S 25 o 13.644′/W 48 o 34.985′), municipality of Guaraqueçaba, PR,
Brazil. Voucher specimens were deposited at the Herbarium of the Municipal Botanical
Museum—MBM, in Curitiba, PR, Brazil, under the number 396412 (P.ar.). The plant material
was collected under the authorization of the System of Authorization and Information
on Biodiversity—SISBIO number 49770-2. Additionally, information about the species
was registered in the National System of Management of Genetic Heritage and Associated
Traditional Knowledge (SISGEN) under number A216E5A.

The leaves were dried under shadow at room temperature and submitted to hydrodis-
tillation using a modified Clevenger apparatus [56] at the Laboratory of Chemistry and
Biology of the Federal of Paraná University, Coastal Sector. The oils were separated from
the hydrolates using bidistilled dichloromethane, dried with anhydrous magnesium sulfate,
filtered, concentrated in a rotary evaporator, transferred to a 5 mL vial and stored in a
refrigerator. The percentage of the extracting yield was determined by the ratio of oil mass
and plant material mass used (w/w).

The GC-FID and GC-MS analysis of the essential oil of the Piper arboreum sample
(EOPa) were performed using a Shimadzu 14B GC fitted with a capillary column (DB5
Supelco, 30 m× 0.25 mm i.d. × 0.25 µm film thickness) and a Perkin-Elmer Clarus 680 fitted
with a capillary column (DB5 Perkin Elmer, 30 m × 0.25 mm i.d. × 0.25 µm film thickness)
coupled to a Perkin-Elmer Clarus 600T, respectively.

In the GC-FID, the following analytical conditions were used: injector and detector
were operating at 250 ◦C and 280 ◦C, respectively. The carrier gas was helium at a flow rate
of 1 mL min–1, sample injection of 0.4 µL in the split mode (1:20). The oven temperature
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was programmed from 60 ◦C (0 min) to 240 ◦C at a 3 ◦C min−1 gradient, and held at this
temperature for 2 min, resulting in a total length of analysis of 62 min. The GC-MS was
performed using the following analytical conditions: sample injection (1.0 µL), carrier
gas helium at a flow rate of 1 mL min–1, split mode (1:20), injector temperature 220 ◦C,
ion source at 250 ◦C and line transfer at 240 ◦C. The mass selective detector was set at
70 eV and mass range of 40–400 amu. The oven temperature was programmed from
60 ◦C (0 min) to 246 ◦C at a 3 ◦C min–1 gradient, resulting in a total length of analysis of
62 min. The identification of components was made by the computer library search based
on the matching of MS spectra, comparison with literature data [43] and experimental
arithmetic indices (AI) [57], which were calculated using a homologous series of linear
alkanes analyzed under the same GC-flame ionization detector (FID) conditions previously
described. The component quantification was based on their GC peaks areas without
correcting for response factors.

4.5. Antibacterial Tests
4.5.1. Determination of Minimum Inhibitory Concentration (MIC) In Vitro by Direct Contact

The assays for the determination of the MIC of the essential oil of Piper arboreum
(EOPa) [1024 µg/mL], antibiotics (ampicillin, gentamicin, penicillin G) [1000 µg/mL],
chlorhexidine (CLX) [0.06%], and commercial mouthwash [100%] were performed using
the broth microdilution method, with concentrations ranging from [Cinitial/2] to [Cinitial/11].
The bacterial suspensions were diluted 1:10 in BHI broth to obtain a final concentration
of 105 cells/mL [58]. Test product samples were prepared in doubled concentration,
where the initial concentrations were: EOPa [1024 µg/mL], antibiotics [1000 µg/mL],
chlorhexidine (CLX) [0.06%], and commercial mouthwash (EN) [100%] in relation to the
initial concentration and volumes of 100 µL were serially diluted 1:1 in 10% BHI broth. In
each well with 100 µL of the culture medium, a sample of bacterial suspension was diluted
1:10. Negative controls with the BHI broth, positive controls (BHI broth + inoculum) and
inhibition controls using the tested products were included in the assays. The filled plates
were incubated at 35 ◦C for 24 h [55]. To evidence the MIC of the samples, an indicator
solution of sodium resazurin (Sigma) in sterile distilled water at a concentration of 0.01%
(w/v) was used. After incubation, 20 µL of the indicator solution was added to each well
and the plates were incubated for 1 h at room temperature. The change from blue to pink
due to the reduction of resazurin indicates bacterial growth [59], helping to visualize the
MIC, defined as the lowest concentration capable of inhibiting microbial growth. The
presence of bacterial growth was evidenced by the unaltered blue color.

4.5.2. Modulating Activity of In Vitro Antibiotic Action by Direct Contact

To evaluate the essential oil of Piper arboreum (EOPa) as a modulator of the antibacterial
action of antibiotics (ampicillin, gentamicin, penicillin G) [1000 µg/mL], chlorhexidine
(CLX) [0.06%] and commercial mouthwash (EN) 100%, the MICs were evaluated in the
presence and absence of EOPa in sterile 96-well microplates.

EOPa was mixed in 10% BHI broth at sub-inhibitory concentrations (CIM/8). An-
tibiotic solutions were prepared with sterile distilled water in doubled concentration
(1000 µg/mL) in relation to the defined initial concentration and volumes of 100 µL were
serially diluted 1:1 in 10% BHI broth. In each well with 100 µL of the culture medium
contains the diluted bacterial suspension (1:10). The same controls used in the MIC evalua-
tion for the test products were used (Sato et al. 2004, modified). The filled plates will be
incubated at 35 ◦C for 24 h and the reading was evidenced by the use of sodium resazurin
as mentioned above.

4.5.3. Statistical Analysis of Microbiological Tests

The MIC results obtained in triplicate in the bacterial resistance modulation tests were
tabulated in a spreadsheet using Microsoft Excel 2010 software, and applying the geometric
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mean formula and deviation calculation, obtaining parametric data and submission to
statistical analysis and significance test.

For statistical analysis, data expressed as geometric mean ± standard error of the
mean (SEM) were subjected to analysis of variance (ANOVA), followed by the Bonferroni
significance test. A significant difference was considered when p < 0.001. The Prisma 5 for
Windows Version 5.02 (GraphPad Software, San Diego, CA, USA) Software was used.

5. Conclusions

In view of the results presented, the chemical composition of the essential oil obtained
from the leaves of Piper arboreum contains substances belonging to chemical classes with
proven biological activity. While the antibacterial activity of EOPa did not show clinically
relevant results, however when EOPa was combined with chlorhexidine, mouthwash and
antibiotics (ampicillin, gentamicin and penicillin G) to assess their influence on bacterial
resistance, the oil showed significant synergistic activity, reducing the MIC of the products
tested from 37% to 87.5%.

Although, we recommend expanding the tests with greater variation of the EOPa
concentration combinations and the products used. In addition, we recommend a toxicity
assessment and in vivo tests, with the objective of developing a possible formulation of a
low-cost mouthwash that is accessible to the population more vulnerable.
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