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Abstract: Ionizing radiation-induced bystander effects (RIBE) encompass a number of effects with
potential for a plethora of damages in adjacent non-irradiated tissue. The cascade of molecular
events is initiated in response to the exposure to ionizing radiation (IR), something that may occur
during diagnostic or therapeutic medical applications. In order to better investigate these complex
response mechanisms, we employed a unified framework integrating statistical microarray analysis,
signal normalization, and translational bioinformatics functional analysis techniques. This approach
was applied to several microarray datasets from Gene Expression Omnibus (GEO) related to RIBE.
The analysis produced lists of differentially expressed genes, contrasting bystander and irradiated
samples versus sham-irradiated controls. Furthermore, comparative molecular analysis through
BioInfoMiner, which integrates advanced statistical enrichment and prioritization methodologies,
revealed discrete biological processes, at the cellular level. For example, the negative regulation of
growth, cellular response to Zn2+-Cd2+, and Wnt and NIK/NF-kappaB signaling, thus refining the
description of the phenotypic landscape of RIBE. Our results provide a more solid understanding of
RIBE cell-specific response patterns, especially in the case of high-LET radiations, like α-particles
and carbon-ions.

Keywords: bioinformatics; ionizing radiation; microarrays; radiation-induced bystander
effects; transcriptomics

1. Introduction

Over the past years, novel approaches in radiation biology and therapy have emphasized the
importance of the study of systemic phenomena that represent non-targeted [1] radiation-induced
bystander effects (RIBE) [2].

In detail, ionizing radiation (IR) damages the cellular genome directly or indirectly through
the generation of reactive oxygen and nitrogen species (ROS/RNS) [3,4]. Undoubtedly, it has been
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demonstrated in various in-vitro and in-vivo studies that targeted irradiation of cytoplasm with
α-particles IR induces mutations in the genome of the irradiated cells [5]. In this phenomenon,
non-irradiated cells, adjacent to the irradiated cells, namely bystander cells, manifest stress responses
as a result of signals derived from adjacent directly irradiated cells [6]. In addition, it has been
illustrated that RIBE are linked to distinct molecular mechanisms, such as cell growth [7], micronuclei
formation [8], cell cycle delay [7,9], and repair [5], along with the transformation of non-irradiated
cells [10], inflammation, and DNA damage [5]. Recently, various “omics”-technologies (microarrays,
Next Generation Sequencing (NGS)) have generated numerous transcriptomic datasets for the
interrogation of the systemic character of the above phenomena.

Exploiting this fact, we analyzed various publicly available microarray datasets retrieved from
Gene Expression Omnibus (GEO) [11,12], which is a repository that archives, annotates, and freely
shares high-throughput functional genomics data submitted by the international research community.
Our aim was to reveal the crucial molecular pathways, consistently involved in RIBE biology,
responsible for different phenotypic features. We screened for common and different biological
processes characterizing directly irradiated and bystander cells for low- and high-LET radiations, like
α-particles and carbons. In particular, utilizing the BioInfoMiner [13] interpretation web platform,
we were able not only to identify overrepresented functional terms, but also to pinpoint subsets of
genes with pivotal roles in RIBE. BioInfoMiner is used here to perform functional enrichment analyses
and gene prioritization for lists of differentially expressed genes, derived from statistical tests applied
to the data of the examined microarray datasets. Through exploitation of the topological structure
of the ontological trees it analyzes, BioInfoMiner automatically corrects these graphs for semantic
inconsistencies they may include and derives a subset of the input genes, with pivotal genes, ranked
according to their functional association with multiple, distinct, cellular processes. These genes, termed
"linker genes", represent critical players in various distinct biological processes, enabling a systemic
perspective of the disease under investigation Moreover, we demonstrated that the modularity of
the RIBE systemic response elicits differentiated biological responses according to the particular type
of radiation, while operating through conserved biological circuits, which exert their effect through
common differentially expressed genes, such as IL1A, IL1B, NFKBIZ, SAT1, and TNFAIP3, in the
majority of the datasets.

2. Results

2.1. Statistical Inference and Differential Expression

In order to decipher any differential expression patterns induced by RIBE, we applied a generic,
proprietary computational workflow to each dataset separately (see Materials and Methods). The main
statistical comparisons of interest concerned bystander vs. control and irradiated vs. control samples.
Firstly, the differential expression results of all datasets are illustrated in Table 1.

Table 1. Numbers of differentially expressed genes (DE) resulting from statistical testing using False
Discovery Rate (FDR) < 0.05 and |log2 Fold Change| > 0.5. Numbers in parentheses define the time
that had passed after the irradiation for the isolation of the RNA from cells.

Dataset GSE12435 GSE18760 GSE21059 GSE55869 GSE32091 GSE25772 GSE8993

Type of
Radiation α-particles γ-rays carbon-ions

DE Bystander
vs. Control 53 (4 h) 424 (0.5 h) 1254

(ANOVA-time-series) 0 0 0 1003 (2 h)
796 (6 h)

DE Irradiated
vs. Control 76 (4 h) 481 (0.5 h) 2399

(ANOVA-time-series) 47 (4 h)
3 (4 h)
0 (8 h)

0 (26 h)

271 (4 h)
223 (8 h)

1977 (26 h)

1502 (2 h)
1897 (6 h)

DE Common 39 339 1169 - - - 264 (2 h)
324 (6 h)
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Briefly, in four out of seven datasets, differentially expressed (DE) genes were identified from the
comparison of Bystander vs. Control samples, whereas the Irradiated vs. Control comparison resulted
in plenty of DE genes for all datasets. However, the analysis of three specific datasets (GSE55869,
GSE32091, GSE25772), in which cancer and immortalized cell lines were used, did not result in any DE
genes regarding the comparison of bystander vs. control samples. Moreover, the highest expression
alteration results, regarding the aforementioned comparison, were identified in the dataset with
carbon-ion irradiation. In addition, the GSE12435, GSE18760, and GSE21059 datasets share significant
similarities with respect to their experimental protocol despite the fact that the same cell type, type
of particles, dose of radiation, and experimental procedure were followed in those three datasets.
An important difference regarding all datasets has to do with the various time points that have been
used for the RNA extraction after irradiation. Thus, we compared the resulting DE gene lists of the
comparisons of bystander vs. control samples, in order to investigate whether there are common genes
with the same differential expression direction at identical time points. Firstly, we compared the DE
gene lists as depicted in the Venn diagram of Figure 1, which resulted in 26 common DE genes shared
by all three datasets (Figure S2), regarding the comparison of bystander vs. control samples.
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Figure 1. Venn diagram of DE genes lists regarding the GSE12435, GSE18760, and GSE21059 datasets for
the comparisons of bystander vs. control samples. The comparison resulted in 26 common DE genes.

Furthermore, by comparing the expression values across the same time points of the
aforementioned datasets, we found that the majority of DE genes had similar values. The common DE
genes are represented in Table 2.

Table 2. The expression alterations of the 26 common DE genes. Values represent expression fold
changes of bystander vs. control cells, on a Log2 scale. Values with bold and bold/italics illustrate
similarity between the same time points of different datasets.

Common DE Genes Fold Change in Expression

Datasets GSE18760 GSE12435 GSE21059

Time Points 0.5 h 4 h 0.5 h 1 h 2 h 4 h 6 h 24 h

MT1B 2.421 1.905 2.456 0.898 1.122 1.927 1.244 1.185
MT1E 2.574 2.165 2.620 0.964 1.143 2.178 1.209 1.114
MT1H 2.380 2.001 2.424 0.982 1.076 2.028 1.186 1.205
MT1X 2.528 2.002 2.480 1.013 1.048 2.033 1.173 1.196
MT2A 1.690 1.450 1.704 0.678 0.790 1.455 0.885 0.975
PTGS2 2.615 2.401 2.769 0.842 1.036 2.259 2.616 0.323
CXCL5 1.589 2.063 1.975 0.383 0.133 1.772 2.335 1.154
MMP3 2.582 1.932 2.690 1.143 0.963 1.901 3.335 2.023
MT1L 2.364 1.931 2.404 0.898 1.014 1.958 1.192 1.280
ARC 2.102 1.904 2.778 0.603 −0.374 1.289 1.244 0.163
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Table 2. Cont.

Common DE Genes Fold Change in Expression

Datasets GSE18760 GSE12435 GSE21059

TSLP 0.618 1.407 0.703 0.628 0.466 1.354 0.829 1.043
CXCL1 1.518 1.420 1.508 0.673 0.761 1.453 1.160 0.836
GPR68 0.824 1.709 0.893 0.690 0.810 1.707 2.082 1.441
MMP1 2.154 1.648 2.187 1.078 0.941 1.662 2.827 1.366

MMP10 1.098 1.666 1.262 0.726 0.699 1.549 1.663 0.892
KYNU 1.963 1.806 2.121 1.220 0.876 1.622 1.385 1.332

SLC16A6 1.723 1.709 1.888 0.796 0.839 1.579 2.431 1.493
SLC7A11 1.445 1.259 1.522 1.076 0.946 1.224 0.887 1.033
NAMPT 1.393 1.486 1.426 0.659 0.524 1.571 0.736 0.639

HSD11B1 1.509 1.500 1.620 0.718 0.607 1.442 1.491 1.074
LAMB3 1.548 1.443 1.702 0.644 0.564 1.383 1.580 1.153

PLA2G4A 1.115 1.199 1.229 0.665 0.468 1.138 0.881 0.724
C8orf4 1.277 1.486 1.353 0.734 0.586 1.432 0.780 1.036
EPHA4 −0.881 −1.109 −0.893 −0.937 −0.727 −0.704 −0.628 −0.947

ADGRG1 1.022 0.873 1.086 0.540 0.131 0.841 0.548 1.123
CCK 1.048 1.065 1.208 0.570 0.273 0.995 0.869 0.867

2.2. Functional Enrichment Analysis

In order to highlight common molecular mechanisms evoked by RIBE, we exploited the functional
enrichment results from three different biomedical ontologies (Gene Ontology (GO)) [14,15], Reactome
pathways [16,17], and Mouse Genome Informatics (MGI) [18–20]), as derived by the BioInfoMiner
(BIM) [13] interpretation web platform, yielding overlapping semantic terms above a certain level,
across transcriptomic datasets. More specifically, we identified biological processes that were found to
be significantly overrepresented in at least three out of six DE lists, concerning Bystander and Irradiated
samples vs. controls with α-particles IR and two out of four with carbon-ion IR (Tables 3 and 4).

Firstly, as illustrated in Table 3 for GO and in the Supplementary material for MGI (Table S1)
and Reactome (Table S5), common functional terms were derived with the aid of BIM concerning
the microarray datasets with α-particles IR. Many of the observed terms are related to the response
to metal ions, the inflammation response, and protein misfolding-related processes. Additionally,
GO terms related to the regulation of the Wnt signalling pathway and to non-canonical NF-kappaB
activation, have been detected.

Table 3. Common Gene Ontology (GO) terms resulting from functional enrichment analysis for
bystander vs. control and irradiated vs. control comparisons of datasets with α-particles irradiation.
Enrichment scores are given as a fraction value.

Gene Ontology

Datasets/Enrichments

GSE12435 GSE18760 GSE21059

Bystander
4 h

Irradiated
4 h

Bystander
0.5 h

Irradiated
0.5 h

Bystander
Time-Series

Irradiated
Time-Series

Cellular Response to
zinc ion 5/18 6/18 9/18 9/18 10/18 11/18

Response to Zinc Ion 5/53 6/53 11/53 12/53 14/53 16/53
Cellular Response to

Cadmium Ion 3/15 4/15 6/15 6/15 7/15 8/15

Cellular Response to
Metal Ion 5/126 8/126 15/126 16/126 23/126 29/126

Response to
Inorganic Substance 10/428 12/428 33/428 34/428 54/428 -

Cellular Response to
Inorganic Substance 6/146 9/146 16/146 17/146 25/146 -

Response to Metal Ion 8/298 11/298 26/298 27/298 41/298 -
Protein Folding - - - 17/211 34/211 54/211
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Table 3. Cont.

Gene Ontology

Datasets/Enrichments

GSE12435 GSE18760 GSE21059

Bystander
4 h

Irradiated
4 h

Bystander
0.5 h

Irradiated
0.5 h

Bystander
Time-Series

Irradiated
Time-Series

Cytokine-Mediated
Signalling Pathway 8/440 - 31/440 32/440 - -

Regulation of NF-kappaB
Import into Nucleus 3/44 - 7/44 7/44 - -

Positive Regulation of
Reactive Oxygen Species

Biosynthetic Process
3/46 - 7/46 7/46 - -

Cytokine-mediated
Signalling Pathway 8/440 - 31/440 32/440 - -

Regulation of Anatomical
Structure Morphogenesis - - 57/934 56/934 105/934 163/934

Extracellular Matrix
Disassembly 4/73 - - - 15/73 21/73

Embryonic Skeletal System
Development - - - - 10/43 14/43

Regulation of Protein
Modification Process - - 79/1616 - 155/1616 279/1616

Response to
Unfolded Protein - - 7/45 8/45 10/45 15/45

Wnt Signalling Pathway,
Planar Cell Polarity

Pathway
- - 11/99 11/99 17/99 26/99

Similarly, as is illustrated for GO (Table 4) and in the supplementary material (Table S2) for
MGI and Reactome (Table S6), common functional terms through BIM were observed for different
time-points in the case of carbon-ion IR. Among the obtained terms, there are pathways linked to the
negative regulation of metabolic processes, cell migration, and motility. Interestingly, a number of
functional terms specific to either α-particles or carbon-ion datasets were also derived.

Table 4. Common Gene Ontology terms resulting from functional enrichment analysis for bystander
vs. control and irradiated vs. control comparisons of dataset GSE8993 with carbon-ion irradiation.
Enrichment scores are given as a fraction value.

Gene Ontology

Dataset/Enrichments

GSE8993

Bystander 2 h Irradiated 2 h Bystander 6 h Irradiated 6 h

Negative Regulation of
Nucleobase-containing

Compound Metabolic Process
112/1310 - 84/1310 188/1310

Negative Regulation of Cellular
Biosynthetic Process 117/1394 - 88/1394 196/1394

Negative Regulation of
Nitrogen Compound

Metabolic Process
119/1425 - 90/1425 202/1425

Negative Regulation of RNA
Metabolic Process 99/1178 - 79/1178 170/1178

Regulation of Cell Migration 62/662 91/662 - 113/662
Regulation of Epithelial

Cell Migration 20/165 27/165 - 34/165

Negative Regulation of
Cell Migration - 34/206 19/206 39/206

Negative Regulation of Cellular
Component Movement - 39/247 22/247 44/247

Negative Regulation of
Cell Motility - - 20/218 39/218
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Next, we aimed to extract the instrumental, functional processes emerging from the comparisons
of bystander vs. control and irradiated vs. control samples, respectively, in order to delineate the
molecular landscape of RIBE and host response upon direct irradiation. BioInfoMiner functional
enrichment analysis was performed using, as the input, significant DE gene lists from the datasets
GSE12435 and GSE18760 for the α-particles IR and GSE8993 for the carbon-ion IR, respectively.
In addition to the enrichment analysis, we performed gene prioritization regarding the datasets
GSE12435 and GSE18760 for the α-particles IR and GSE8993 for the carbon-ion IR.

By combining DE gene lists derived from either bystander vs. control or irradiated vs. control
comparisons for each of the aforementioned datasets, we derived the respective unique DE gene
lists. Then, we fused them in four consensus gene lists: two for α-particles and two for carbon-ions,
respectively. Finally, we performed comparative enrichment analysis on these gene lists as shown in
Tables 5 and 6 (respectively for MGI Tables S3 and S4 and for Reactome Tables S7 and S8).

In addition, common as well as distinct biological processes and molecular pathways between
directly irradiated and bystander cell responses + samples control were derived, in order to gain an
overview of RIBE. In the case of α-particles IR, common biological processes for both bystander and
irradiated cells included the response to metal ions, unfolded protein response, and activation of the
Wnt signalling pathway. On the contrary, distinct biological mechanisms included cell chemotaxis,
migration, the inflammatory response, and the response to wounding, which were only found in
bystander DE genes, whereas biological processes such as the DNA damage response, regulation of
the mitotic cell cycle, and the apoptotic process were only detected in irradiated ones (Table 5).

Table 5. Evaluation of differences in Gene Ontology terms resulting from functional enrichment
analysis of datasets GSE12435 and GSE18760 from unique DE genes between comparisons of bystander
vs. control and irradiated vs. control samples.

Unique Gene Ontology Terms α-Particles IR (GSE12435, GSE18760)

Bystander Irradiated

positive regulation of vasoconstriction DNA damage response, signal transduction by p53 class mediator
resulting in cell cycle arrest

polyamine catabolic process activation of cysteine-type endopeptidase activity involved in
apoptotic signalling pathway

cell chemotaxis extrinsic apoptotic signalling pathway via death domain receptors
regulation of response to external stimulus negative regulation of G1/S transition of mitotic cell cycle

cell migration regulation of apoptotic process
inflammatory response nucleic acid phosphodiester bond hydrolysis

regulation of defence response to virus by host activation of MAPKKK activity
regulation of response to wounding atrioventricular valve morphogenesis

positive regulation of leukocyte migration atrial septum development
positive regulation of cell-matrix adhesion embryo development

Similarly, common mechanisms have been found in the case of carbon-ion IR between
bystander-irradiated cells with the most prevalent ones being, the regulation of cell migration, the
RNA metabolic process, and the biosynthetic process. Unique biological processes of bystander cells
are related to the regulation of the release of cytochrome from mitochondria, the regulation of oxidative
phosphorylation and excretion, and the response to oxygen levels. Lastly, cell cycle arrest, and the
regulation of cell migration, the p38MAPK cascade, mTOR signalling, and the extrinsic apoptotic
signalling pathway were unique molecular processes observed in irradiated cells with carbon ion IR
(Table 6).

Finally, from all the resulting DE gene lists of the datasets GSE18760, GSE12435, GSE21059,
and GSE8993 for the bystander vs. control comparisons, 11 genes were common in at least three out
of four datasets. These genes are presented in Table 7. Some of them were also derived from BIM
as pivotal linker genes, cross-regulating diverse cellular processes. These genes can be identified
as key-players underlying the functional pattern of bystander effects. Genes like IL1A and IL1B
encode cytokines, which induce inflammatory and immune responses [21–23]. CXCL8 and CXCL2
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are genes encoding secreted proteins of the chemokine superfamily mediators of the inflammatory
response [24,25]. FGF2 is a growth factor implicated in various biological processes such as wound
healing, tumour growth, and angiogenesis [26,27]. PTGS2 is a Prostaglandin-endoperoxide synthase
involved in inflammation and mitogenesis [28,29]. TNFAIP3 is involved in immune and inflammatory
responses mediated by cytokines [30,31]. Lastly, NFKBIZ is known to play a crucial role in the
modulation of inflammatory responses [32,33].

Table 6. Evaluation of differences in Gene Ontology terms resulting from functional enrichment
analysis of datasets GSE8993 from unique DE genes between comparisons of bystander vs. control and
irradiated vs. control samples.

Unique Gene Ontology Terms Carbon-Ion IR (GSE8993)

Bystander Enrichment Irradiated Enrichment

positive regulation of mitochondrial outer
membrane permeabilization involved in

apoptotic signalling pathway
9/35 positive regulation of protein binding 24/75

positive regulation of protein
homooligomerization 4/8 cell cycle arrest 34/148

negative regulation of intracellular protein
transport 13/84

cellular component disassembly
involved in execution phase

of apoptosis
10/25

positive regulation of release of
cytochrome c from mitochondria 7/28 cellular response to transforming

growth factor β stimulus 16/53

regulation of oxidative phosphorylation 5/15 regulation of cell migration 123/662

regulation of steroid hormone secretion 5/19 response to transforming growth
factor β 17/59

mitochondrial membrane organization 12/90 regulation of p38MAPK cascade 10/26
cellular response to oxygen levels 14/111 regulation of TOR signalling 19/70

regulation of excretion 6/25 positive regulation of extrinsic
apoptotic signalling pathway 15/52

multicellular organismal response to stress 9/59 regulation of cell-matrix adhesion 22/91

Table 7. Common DE genes resulting from all comparisons of bystander vs. control samples of the
analyzed datasets. Expression values are presented as log2FC and values with * indicating genes
suggested as linker genes by the GO functional enrichment analysis of BioInfoMiner.

Common Genes

Bystander

α-Particles Carbon Ion

GSE18760 GSE12435 GSE21059 GSE8993
0.5 h 4 h 2 h 6 h 2 h 6 h

IL1A 0.81 * 1.53 * 0.34 0.76 −1.27 −0.5 *
IL1B 1.62 * 1.85 * 0.36 1.74 −1.23 * −0.54 *

NFKBIZ 1.32 1.44 0.51 0.85 −1.41 −0.53
SAT1 1.16 0.91 * - 0.4 0.52 0.54

TNFAIP3 1.22 * 1.58 * - 0.22 −1.35 −0.52
CXCL2 2.42 * 2.64 0.64 1.14 −0.92 -
G0S2 1.96 2.15 0.57 1.02 −0.73 -
MT1E 2.57 2.16 1.1 1.2 −0.5 -
PTGS2 2.61 * 2.4 * 1.03 * 2.61 * −0.73* -
CXCL8 3.53 * - 1.3 3.6 −1.36 −0.69
FGF2 1.29 1.31 - - - −0.53 *

2.3. Rank Aggregation of Linker Genes

In order to identify putative instrumental gene signatures of RIBE, we performed gene
prioritization using BIM with different vocabularies (GO, Reactome Pathways and MGI), regardless of
the time point or IR type. From the three resulting prioritized gene lists s for each bystander vs. control
dataset comparison (GSE12435, GSE18760, GSE21059, and GSE8993 for 2 h and for 6 h) we performed
rank aggregation, a method suitable for the optimal sorting of composite gene lists, (see Materials and
Methods Section 4.2), which resulted in the following 28 ranked genes (Table 8):
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Table 8. Top ranked linker DE genes resulting from rank aggregation of each linker gene list vocabulary.

Ranked Linker DE Genes

GO MGI Reactome Pathways

IL6 PTGS2 PSMD6
ZC3H12A BMP4 PSMA2

PTGS2 IL6 PSMA3
BCL2 LEPR PSMD14
BMP4 IL1B PSMC1
THBS1 NFE2L2 PSMC2
IL1A AHR PSMC6
IL1B MECP2 IL1B

TNFAIP3 SGPL1 FGF2
ICAM1

G0S2
PSMD12

MT2A
LOXL2
MAFA

In the next heat map (Figure 2), the relative log2FC of each of the pivotal genes is shown,
comprising the RIBE signature set from the above table in each comparison.Cancers 2017, 9, 160 9 of 20 
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Figure 2. Heat map of the RIBE gene signature regarding the GSE12435*, GSE18760*, GSE21059*,
and GSE8993+ datasets for the comparisons of bystander vs. control samples (GSEs with an asterisk
highlight α-particles IR whereas the one marked with the plus symbol underlines carbon-ion IR).
The relative Log2FC samples are represented in a ternary color format with red signifying: upregulation,
blue: down regulation, and white: no alteration of gene expression regarding the controls.
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3. Discussion

In the current study, the application of an integrative workflow to seven RIBE-related
microarray datasets deposited in GEO (GSE55869 [34], GSE32091 [35], GSE21059 [36], GSE25772 [37],
GSE18760 [38], GSE12435 [39], GSE8993 [40]), led to interesting findings regarding the underlying
molecular mechanisms.

Through rigorous standardized normalization and statistical selection, functional enrichment
analysis, and gene prioritization based on functional mapping to various gene annotation vocabularies
(GO, MGI, Reactome), we managed to overcome confounding factors and discrepancies resulting from
major differences in the experimental design (various irradiation doses, several cell lines, and diverse
types of IR). Ultimately, we identified specific conserved molecular pathways and mechanisms
concerning the responses of bystander human cells to IR.

More specifically, the highlighted molecular mechanisms include processes instrumental
for the manifestation and modulation of the inflammatory response, aberrant wound healing,
and tumorigenicity, like the activation of NF-kappaB in B cells, G1/S DNA Damage Check points,
the activation of matrix metalloproteinases, the stabilization of p53, Wnt signalling, extracellular matrix
organization, the regulation of apoptosis, and non-canonical NF-kB signalling (Figure S3).

Regarding now, the GSE55869 dataset (H1299 cell line, non-small cell lung carcinoma, irradiated
with α-particles), differential expression was observed only in the case of the comparison between
irradiated vs. control samples (Figure S1). As expected, based on the subsequent functional enrichment
analysis, this small subset is mainly linked to biological processes implicated in cell growth and
proliferation (mitotic cell cycle process, cell division, chromosome segregation, and sister chromatid
cohesion). Moreover, the vast majority of genes that were annotated to the above biological mechanisms
were down-regulated, something which supports the direct cytostatic effect of IR in cancer cell lines [41].
The difference in the extent of the response observed is probably attributed to the priming through
epigenetic reprogramming that cancer cells have undergone during their carcinogenic evolution,
which renders them resistant to IR exposure. Their immortalization, a result of the aberrant activation of
DDR, is largely facilitated by the inflammatory signaling mechanism, which is constitutively integrated
as a key module for the carcinogenic transformation. The fact that in the case of bystander cancer cells,
no significant genes arise through the comparison, should be seen rather than a small, sample-size issue,
as a finding, which seems to preclude the availability of further, distinct inflammatory mechanisms,
than those already observed. As the scope in this study is mostly to dissect the fundamental molecular
mechanisms of the cell response to IR, and not emphasize the applied therapeutic aspect of treating
cells with IR, the utilization of healthy stem cells, namely fibroblasts, with an intact inflammatory
response mechanism, enables the detailed observation of a broader profile of molecular actions than
those observed in cell models with aberrant response mechanisms.

Another important observation concerns the distinct biological profile of the RIBE response,
regarding the different modes of IR (particles used for the irradiation of the cells). In particular,
our results suggest different molecular mechanisms of host response to irradiation with α-particles
than to irradiation with carbon-ion, with the difference being type-, but also possibly, dose-related.
As shown in Table 8, many genes, albeit found as DE in both conditions, presented a different
direction of gene expression alteration (upregulated in α-particles and down-regulated in carbon-ions).
This opposite effect is further supported by the results of the functional enrichment analysis. In the
case of α-particles, biological processes implicated in the inflammatory response, wound healing,
cell proliferation, and cell migration were enriched, whereas in carbon-ion mechanisms, such as the
regulation of cell death, the response to TNF, hypoxia, heat, and interleukins take the lead. The above
findings apparently indicate that bystander cells responding to the irradiation of cells with α-particles
are able to mobilize mostly survival functions, coping efficiently with the stress they undergo, unlike
bystander cells responding to carbon-ion IR, which mostly converge to apoptotic death.

Moreover, the gene prioritization approach performed above enabled the inference of a small
number of candidate genes that might play a pivotal role in the manifestation of RIBE. In particular,



Cancers 2017, 9, 160 10 of 18

eleven DE genes were identified as common from the five “bystander” DE gene lists. From these genes,
two cytokines (IL1A, IL1B) and the cyclooxygenase-2 (PTGS2) were identified as linker genes through
BioInfoMiner, participating in a broad spectrum of diverse cellular processes, in the majority of the
datasets. These specific genes have also been reported in previous studies to be associated with the
progression of RIBE, mainly through the orchestration of immune and inflammatory responses and
crosstalk [37–39]. In parallel, the rest of the common genes such as SAT1, TNFAIP3, CXCL2, and FGF2,
were characterized as linker genes in at least one dataset. The latter are involved in immunoregulatory
processes, polyamine metabolism [42–44], the inhibition of NF-kappa B [30], proliferation, and wound
healing [45].

In parallel, we further explored the validity of one of the aforementioned derived DE gene lists,
particularly the one formed from the union of bystander comparisons from the GSE18760, GSE12435,
and GSE8993 datasets, with a reference literature-mined gene list regarding RIBE, proposed by the
study of Nikitaki et al. [46]. From this comparison, 22 from the 74 genes were identified as common,
mostly including interleukins, chemokines, and genes associated with apoptosis (Figure 3).
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Figure 3. Venn diagram comparing a gene list associated with bystander effects derived from literature
mining from the study of Nikitaki et al. [46] and a union of DE genes resulting from the statistical
analysis of the GSE18760, GSE12435, and GSE8993 datasets for the comparisons of bystander vs. control
samples. The comparison resulted in 22 common genes.

Finally, in order to derive a more compact and robust gene signature holistically describing
RIBE, we performed functional enrichment analysis and gene prioritization exploiting different
hierarchical biological vocabularies (GO, MGI, Reactome), with the aim to identify linker genes
for diverse scopes in cellular physiology. Starting from the results of BIM gene prioritization for
different vocabularies and using them as an input for the R package RankAggreg, a final subset of
28 pivotal genes was derived, representing candidate key-players for RIBE. The robustness of our
methodology in this step is not solely limited to the gene expression, but through the utilization of
different biological vocabularies, to the topological properties of the semantic networks delineated,
describing the functional involvement of each gene, thus robustly promoting genes with a high
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regulatory impact in diverse cellular processes, representing functional proxies of their mode of
operation. This is further illustrated in Table 9.

Table 9. Top 5 Ranked Linker Genes resulting from ranked aggregation from Linker gene lists for
bystander vs. control comparisons of datasets GSE18760, GSE12435, and GSE8993. Top enriched
clusters are illustrated for each Linker gene.

Top 5 Ranked
Linker Genes

GO
Enriched Clusters

Top 5 Ranked
Linker Genes

MGI
Enriched Clusters

Top 5 Ranked
Linker Genes

Reactome
Enriched Clusters

IL6

inflammatory response,
cytokine-mediated

signaling pathway, cellular
response to

oxidative stress

PTGS2
abnormal wound healing,

increased IgA level,
abnormal IgG3 level

PSMD6

Hedgehog “on” state,
Degradation of

beta-catenin by the
destruction complex,

Beta-catenin independent
WNT signaling, PCP/CE
pathway, Regulation of
activated PAK-2p34 by
proteasome mediated
degradation, CLEC7A
(Dectin-1) signaling,

Metabolism of polyamines

ZC3H12A

negative regulation of cell
death, cellular response to

oxidative stress,
inflammatory response,

regulation of
apoptotic process

BMP4 increased apoptosis PSMA2

PTGS2

cellular response to
oxidative stress, cellular

response to metal ion,
cellular response to fluid
shear stress, regulation of

apoptotic process

IL6

increased IgA level,
abnormal

interferon-gamma
secretion, abnormal

circulating interleukin
level

PSMA3

BCL2

negative regulation of
extrinsic apoptotic
signaling pathway,

response to hypoxia

LEPR

increased apoptosis,
abnormal

interferon-gamma
secretion, abnormal

circulating interleukin
level

PSMD14

BMP4

system development,
positive regulation of cell

migration, positive
regulation of protein
modification process

IL1B

abnormal wound healing,
abnormal macrophage
physiology, decreased
interleukin-6 secretion

PSMC1

In this direction, both GO and MGI -ranked gene lists pinpoint common genes, including IL1-B,
IL-1A, IL6, and PTGS2, with strongly established, immunoregulatory and inflammatory effects. On
the other hand, there are also some significantly altered genes traced due to the use of MGI, such as
MECP2, which is implicated in DNA methylation [47], as well as SGPL1 and GOS2 genes, mainly
related to lipid metabolism [48,49]. Moreover, the Reactome pathway database yields the most distinct
biological subset of linker genes, in comparison to GO and MGI, highlighting genes participating in
the composition of the proteasome complex/component (PSMD6, PSMA2, PSMC1, etc.). Interestingly,
it has been demonstrated in previous published studies that the proteasome has a primary role in the
regulation of responses to IR [50,51], oxidative stress [52,53], and the regulation of apoptosis [54,55].
Overall, the final consensus signature comprises genes assuring the cross-talk among a diverse
spectrum of distinct biological processes, which altogether could be considered as hallmarks of RIBE.

4. Materials and Methods

4.1. Data Acquisition

Raw data comprised various microarray datasets, obtained from the public repository Gene
Expression Omnibus. Specific microarray datasets were selected from the public repository GEO,
using the term “radiation bystander effect”. From the total 10 results with human cell lines, seven
microarray datasets related to RIBE (GSE55869 [34], GSE32091 [35], GSE21059 [36], GSE25772 [37],
GSE18760 [38], GSE12435 [39], GSE8993 [40]) have been used for the analysis. The remaining three
datasets have been excluded for reasons of inconsistency between files of sample and data relationship
format and the different purpose of the experiment. Details and experimental design information of
each dataset are illustrated in the following table (Table 10).
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Table 10. Information about microarray datasets used in the bioinformatic analysis.

GEO Accession
Number GSE18760 GSE12435 GSE21059 GSE55869 GSE32091 GSE25772 GSE8993

Type of Radiation α-particles γ-rays carbon-ion

Time of Extraction of
Total RNA after
Irradiation (h)

0.5 4 0.5, 1, 2, 4, 6, 24 4 4, 8, 26 2, 6

Irradiation Dose
(Gy) 0.5 1 0.1 2 1.3, 0.13, 0.013

Cell Line IMR-90 primary lung fibroblasts
H1299

non-small cell
lung carcinoma

F11-hTERT immortalized
foreskin fibroblasts

AG01522D
primary normal
human diploid
skin fibroblasts

In GSE12435, GSE18760, and GSE21059, α-particles were used for the irradiation of the cells
with a 0.5 Gray irradiation dose in the IMR-90 primary lung fibroblasts cell line. For the microarray
experiment, the Agilent-014850 whole human genome microarray 4x44K, GPL6480 platform was used.

In GSE12435, the total RNA was isolated after four hours from the irradiation of the cells.
The dataset contains four control (sham-irradiated) biological replicates, four irradiated biological
replicates, and four bystander biological replicates.

In GSE18760, the total RNA was isolated after 30 min from the irradiation of the cells. The dataset
contains four control (sham-irradiated) biological replicates, four irradiated biological replicates,
and four bystander biological replicates.

In GSE21059, the total RNA was isolated at several time points (30 min, and 1, 2, 4, 6, and
24 h) from the irradiation of the cells. The dataset contains four control (sham-irradiated) biological
replicates per time-point (26 samples), four irradiated biological replicates per time-point (26 samples),
and four bystander biological replicates per time point (26 samples).

In GSE55869, α-particles were used for the irradiation of the cells with a 1 Gray irradiation dose in
the H1299 non-small cell lung carcinoma cell line. For the microarray experiment, the Agilent-026652,
Whole Genome, Human Microarray 4x44K v2, GPL13497 platform was used (Agilent Technologies,
St. Clara, CA, USA). The total RNA was isolated after four hours from the irradiation of the
cells. The dataset contains five control (non-sham-irradiated) biological replicates, five irradiated
biological replicates, five controls of irradiated biological replicates, five bystander biological replicates,
five controls of bystander biological replicates, and the same samples with shRAD9 cells. For this
study, the samples of shRAD9 have been excluded.

In GSE3201, α-particles were used for the irradiation of the cells with a 0.1 Gray irradiation
dose in the F11-hTERT immortalized foreskin fibroblasts cell line. For the microarray experiment, the
Illumina HumanWG-6 v3.0 expression bead chip, GPL6884 platform was used (Illumina, San Diego,
CA, USA). The total RNA was isolated after 4, 8, and 26 h from the irradiation of the cells. The dataset
contains four control (sham-irradiated) biological replicates per time-point (12 samples), four irradiated
biological replicates per time-point (12 samples), and four bystander biological replicates per time-point
(12 samples).

In GSE25772, γ-rays were used for the irradiation of the cells with a dose of 2 Gy in the F11-hTERT
immortalized foreskin fibroblasts cell line. For the microarray experiment, the Illumina HumanWG-6
v3.0 expression bead chip, GPL6884 platform was used. The total RNA was isolated after 4, 8, and 26 h
from the irradiation of the cells. The dataset contains four control (sham-irradiated) biological replicates
per time-point (12 samples), four irradiated biological replicates per time-point (12 samples), and four
bystander biological replicates per time-point (12 samples).

In GSE8993, carbon-ions were used for the broad irradiation of the cells with 1.3, 0.13, and
0.013 Gy, and for micro-irradiation of the cells, with 0.12 Gy in the AG01522D primary normal
human diploid skin fibroblasts cell line. For the microarray experiment, Agilent-014850 whole human
genome microarray 4x44K, GPL6480 platform was used. The total RNA was isolated after 2 and
6 h from the irradiation of the cells. The dataset contains control (non-sham-irradiated) technical
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replicates for (micro-beam) bystander and (broad-beam) irradiated samples (four samples), two control
(sham-irradiated) technical replicates for (micro-beam) bystander and (broad-beam) irradiated per
time-point samples (eight samples), two bystander technical replicates per time-point, per irradiation
dose (12 samples), and two irradiated technical replicates per time-point, per irradiation dose
(12 samples).

Additionally, different experimental approaches were performed concerning the manifestation of
the RIBE. In particular, three different experimental designs had been applied:

• Regarding the datasets GSE12435, GSE18760, GSE55869, GSE3201, and GSE21059, a method of
the inner-outer dish was used, with the outer dish having a 6-micron Mylar strip base for the
formation of the irradiated cells and the inner dish having one of 38-micron Mylar strips (which
shields the cell from the IR) for the formation of the bystander cells [35,39].

• Regarding the dataset GSE25772, another experimental design was used, with the transference of
conditioned medium from the irradiated cells to the “bystander” cells [37].

• Lastly, in the dataset GSE8993, micro beam and broad beam irradiation was used so as to form
bystander and irradiated cells, respectively [40].

4.2. Computational Pipeline and Data Analysis

For each dataset, raw data were acquired using the Bioconductor package GEOquery [56] and
a pre-processing workflow for complete microarray analysis was implemented with R [R version
3.3.2 (31 October 2016)]/Bioconductor software [57,58] (Figure 4). For background correction [59]
and quantile normalization [60], the limma [61–63] R package was used for both Agilent and
Illumina platforms. Next, a non-specific intensity filtering procedure was applied, in order to remove
low-expressed probesets in each dataset, based on probeset intensity distributions. In Illumina platform
datasets, we used a further filtering step, based on a re-annotation pipeline regarding Illumina probe
sequences quality information from the R package illuminaHumanv3.db [64]. The filtering procedure
is described in detail in the limma user’s guide (Section 17.4) [65]. In parallel, exploratory analysis
methodologies, such as unsupervised clustering, were applied to assess any quality problems and
also to inspect putative batch effects regarding the experimental design. Finally, to measure the global
expression alteration patterns between either bystander versus control or irradiated versus control
samples, the moderated t-test (from limma R package) was applied, while batch/study information
variable was included as a covariate factor in the linear model. For all statistical comparisons (except
the ANOVA tests in some specific cases), we used the same double cutoff to obtain the DE gene lists:
an absolute value of log2 fold change greater than 0.5 and an adjusted p-value less than 0.05 (FDR) [66].

The molecular pathway and functional analysis was performed using BioInfoMiner [13,67],
which exploits several vocabularies with a hierarchical structure, such as Gene Ontology, Reactome
Pathways, and MGI and HPO phenotype ontologies, in order to provide a multi-faceted, functional,
gene-level description of the phenotypes studied. The analysis comprises the ranking and prioritization
of enriched biological processes and genes.

We used BioInfoMiner as the basic tool in order to identify overrepresented functional terms,
as well as to highlight subsets of genes with pivotal roles in orchestrating RIBE. Briefly, BioInfoMiner
derives a subset of the input genes, in which the genes are ranked according to their functional
association with multiple, distinct cellular processes. These subsets of genes, termed “linker genes”,
are implicated as central actors in various distinct biological processes, thus providing a holistic view
of the disease under investigation. The methodology is described in Koutsandreas et al. [67].
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In order to derive a gene signature characterizing RIBE, we combined different subsets of linker
genes, derived from the application of the methodology with different vocabularies, namely GO [14,15],
Reactome [16,17], and MGI [18–20]. Firstly, we performed functional enrichment analysis and gene
prioritization for every gene list of the aforementioned bystander comparisons, resulting in five linker
gene lists for GO: five for Reactome and five for MGI vocabularies. Secondly, we performed rank
aggregation of the linker gene ordered lists with the package R RankAggreg [68] for each vocabulary,
resulting in three ranked linker gene lists. Finally, the union of these three gene lists resulted in
28 unique linker genes. The Venny [69] web tool was used for the illustration of Venn diagrams.
For KEGG [70] pathway enrichment analysis we used Enrichr [71,72] and for the illustration of the
derived enriched pathways we used Pathview [73,74] (supplementary material).

5. Conclusions

Through the implementation of a robust integrative bioinformatics analysis of transcriptomic data
regarding the molecular investigation of RIBE, a consensus signature of 28 linker genes was derived
(including IL1-B, IL-1A, IL6, and PTGS2 with a pivotal role), which are associated with multiple and
diverse underlying biological mechanisms. Interestingly, reverse gene expression was observed for a
specific subset of DE genes, common in both α-particles and carbon-ion IR comparisons regarding
RIBE, a finding that potentially suggests an alternate biological response mechanism adjustable to
different modes of radiation. This is further supported by the functional enrichment results of the
comparative analysis, highlighting distinct biological processes, such as induction of the inflammatory
response, cell growth, and healing in bystander cells of α-particles IR experiments, whereas the positive
regulation of apoptotic cell death is mainly affected in the case of carbon-ion IR. Overall, our results
provide a detailed account for the molecular mechanisms implicated in RIBE, with potential interest
in cancer therapeutics research. In this direction, our derived RIBE signature of candidate genes
could be further investigated in other independent cancer transcriptomic datasets, in order to examine
potentially interesting association patterns with cell survival and response to irradiation.

Supplementary Materials: The following are available online at www.mdpi.com/2072-6694/9/12/160/s1,
Figure S1: Gene-Bar plot of the 16 GO terms from the comparison irradiated vs. control in the NSCLC dataset,
Figure S2: Illustrative Heatmap of the 26 common DE genes, Figure S3: Illustrative example of NF-kappaB
signaling pathway, Table S1: Common Mouse Genome Informatics (MGI) terms of α-particles IR, Table S2:
Common MGI terms of carbon-ion IR, Table S3: Evaluation of differences in MGI terms of GSE12435 and
GSE18760 datasets, Table S4: Evaluation of differences in MGI terms of GSE8993 dataset, Table S5: Common
Reactome pathways terms of α-particles IR, TableS6: Common Reactome pathways terms of carbon-ion IR,
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Table S7: Evaluation of differences in Reactome pathways terms of GSE12435 and GSE18760 datasets, Table S8:
Evaluation of differences in Reactome pathways terms of dataset GSE8993.

Acknowledgments: Alexandros G. Georgakilas, Constantinos E. Vorgias, and Constantinos Yeles acknowledge
support from the DAAD Grant “DNA Damage and Repair and Their Relevance to Carcinogenesis” (No 57339330).
Efstathios-Iason Vlachavas, Eleftherios Pilalis, and Aristotelis Chatziioannou acknowledge support from the
EuroNanoMed-II (7th Joint Call 2016) INNOCENT Grant “Innovative Nano-pharmaceuticals: Targeting Breast
Cancer Stem Cells by a Novel Combination of Epigenetic and Anticancer Drugs with Gene Therapy”.

Author Contributions: Aristotelis Chatziioannou, Alexandros G. Georgakilas and Constantinos E. Vorgias
conceived the study. Aristotelis Chatziioannou designed and supervised the in-silico; Constantinos
Yeles, Efstathios-Iason Vlachavas and Eleftherios Pilalis analyzed the data; Aristotelis Chatziioannou,
Olga Papadodima and Alexandros G. Georgakilas participated in the interpretation of the results.
Constantinos Yeles, Aristotelis Chatziioannou, Olga Papadodima, Eleftherios Pilalis, Alexandros G. Georgakilas
and Constantinos E. Vorgias wrote the paper. All authors proofread the manuscript. Aristotelis Chatziioannou
supervised the whole project.

Conflicts of Interest: All authors declare no conflict of interest. The founding sponsors had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the
decision to publish the results.

References

1. Desouky, O.; Ding, N.; Zhou, G. Targeted and non-targeted effects of ionizing radiation. J. Radiat. Res.
Appl. Sci. 2015, 8, 247–254. [CrossRef]

2. Bray, F.N.; Simmons, B.J.; Wolfson, A.H.; Nouri, K. Acute and Chronic Cutaneous Reactions to Ionizing
Radiation Therapy. Dermatol. Ther. (Heidelb). 2016, 6, 185–206. [CrossRef] [PubMed]

3. Yamamori, T.; Yasui, H.; Yamazumi, M.; Wada, Y.; Nakamura, Y.; Nakamura, H.; Inanami, O. Ionizing
radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of
mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle
checkpoint. Free Radic. Biol. Med. 2012, 53, 260–270. [CrossRef] [PubMed]

4. Azzam, E.I.; Jay-Gerin, J.P.; Pain, D. Ionizing radiation-induced metabolic oxidative stress and prolonged
cell injury. Cancer Lett. 2012, 327, 48–60. [CrossRef] [PubMed]

5. Wu, L.-J.; Randers-Pehrson, G.; Xu, A.; Waldren, C.A.; Geard, C.R.; Yu, Z.; Hei, T.K. Targeted cytoplasmic
irradiation with alpha particles induces mutations in mammalian cells. Proc. Natl. Acad. Sci. USA 1999, 96,
4959–4964. [CrossRef] [PubMed]

6. Nagasawa, H.; Little, J.B. Induction of sister chromatid exchanges by extremely low doses of α-particles.
Cancer Res. 1992, 52, 6394–6396. [PubMed]

7. Kaminaga, K.; Noguchi, M.; Narita, A.; Hattori, Y.; Usami, N.; Yokoya, A. Cell cycle tracking for irradiated
and unirradiated bystander cells in a single colony with exposure to a soft X-ray microbeam. Int. J. Radiat. Biol.
2016, 92, 739–744. [CrossRef] [PubMed]

8. Huo, L.; Nagasawa, H.; Little, J.B. HPRT mutants induced in bystander cells by very low fluences of alpha
particles result primarily from point mutations. Radiat. Res. 2001, 156, 521–525. [CrossRef]

9. Fournier, C.; Becker, D.; Winter, M.; Barberet, P.; Heiss, M.; Fischer, B.; Topsch, J.; Taucher-Scholz, G. Cell
cycle-related bystander responses are not increased with LET after heavy-ion irradiation. Radiat. Res. 2007,
167, 194–206. [CrossRef] [PubMed]

10. Buonanno, M.; de Toledo, S.M.; Azzam, E.I. Increased frequency of spontaneous neoplastic transformation
in progeny of bystander cells from cultures exposed to densely ionizing radiation. PLoS ONE 2011, 6, e21540.
[CrossRef] [PubMed]

11. Barrett, T.; Wilhite, S.E.; Ledoux, P.; Evangelista, C.; Kim, I.F.; Tomashevsky, M.; Marshall, K.A.;
Phillippy, K.H.; Sherman, P.M.; Holko, M.; et al. NCBI GEO: Archive for functional genomics data
sets—Update. Nucleic Acids Res. 2013, 41. [CrossRef] [PubMed]

12. Edgar, R.; Michael, D.; Alex, E.L. Gene Expression Omnibus: NCBI gene expression and hybridization array
data repository. Nucleic Acids Res. 2002, 30, 207–210. [CrossRef] [PubMed]

13. Pilalis, E.; Valavanis, I.; Chatziioannou, A. Weblet Importer. Available online: https://bioinfominer.com/
login (accessed on 10 October 2017).

http://dx.doi.org/10.1016/j.jrras.2015.03.003
http://dx.doi.org/10.1007/s13555-016-0120-y
http://www.ncbi.nlm.nih.gov/pubmed/27250839
http://dx.doi.org/10.1016/j.freeradbiomed.2012.04.033
http://www.ncbi.nlm.nih.gov/pubmed/22580337
http://dx.doi.org/10.1016/j.canlet.2011.12.012
http://www.ncbi.nlm.nih.gov/pubmed/22182453
http://dx.doi.org/10.1073/pnas.96.9.4959
http://www.ncbi.nlm.nih.gov/pubmed/10220401
http://www.ncbi.nlm.nih.gov/pubmed/1423287
http://dx.doi.org/10.1080/09553002.2016.1206237
http://www.ncbi.nlm.nih.gov/pubmed/27537347
http://dx.doi.org/10.1667/0033-7587(2001)156[0521:HMIIBC]2.0.CO;2
http://dx.doi.org/10.1667/RR0760.1
http://www.ncbi.nlm.nih.gov/pubmed/17390727
http://dx.doi.org/10.1371/journal.pone.0021540
http://www.ncbi.nlm.nih.gov/pubmed/21738697
http://dx.doi.org/10.1093/nar/gks1193
http://www.ncbi.nlm.nih.gov/pubmed/23193258
http://dx.doi.org/10.1093/nar/30.1.207
http://www.ncbi.nlm.nih.gov/pubmed/11752295
https://bioinfominer.com/login
https://bioinfominer.com/login


Cancers 2017, 9, 160 16 of 18

14. Blake, J.A.; Christie, K.R.; Dolan, M.E.; Drabkin, H.J.; Hill, D.P.; Ni, L.; Sitnikov, D.; Burgess, S.; Buza, T.;
Gresham, C.; et al. Gene ontology consortium: Going forward. Nucleic Acids Res. 2015, 43, D1049–D1056.
[CrossRef]

15. Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.;
Dwight, S.S.; Eppig, J.T.; et al. Gene Ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29.
[CrossRef] [PubMed]

16. Croft, D.; Mundo, A.; Haw, R.; Milacic, M. The Reactome pathway knowledgebase. Nucleic Acids 2014, 42,
D472–D477. [CrossRef] [PubMed]

17. Fabregat, A.; Sidiropoulos, K.; Garapati, P.; Gillespie, M.; Hausmann, K.; Haw, R.; Jassal, B.; Jupe, S.;
Korninger, F.; McKay, S.; et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2016, 44, D481–D487.
[CrossRef] [PubMed]

18. Blake, J.A.; Eppig, J.T.; Kadin, J.A.; Richardson, J.E.; Smith, C.L.; Bult, C.J.; Anagnostopoulos, A.;
Baldarelli, R.M.; Beal, J.S.; Bello, S.M.; et al. Mouse Genome Database (MGD)-2017: Community knowledge
resource for the laboratory mouse. Nucleic Acids Res. 2017, 45, D723–D729. [CrossRef] [PubMed]

19. Bult, C.J.; Krupke, D.M.; Begley, D.A.; Richardson, J.E.; Neuhauser, S.B.; Sundberg, J.P.; Eppig, J.T. Mouse
Tumor Biology (MTB): A database of mouse models for human cancer. Nucleic Acids Res. 2015, 43, D818–D824.
[CrossRef] [PubMed]

20. Finger, J.H.; Smith, C.M.; Hayamizu, T.F.; McCright, I.J.; Eppig, J.T.; Kadin, J.A.; Richardson, J.E.; Ringwald, M.
The mouse Gene Expression Database (GXD): 2011 update. Nucleic Acids Res. 2011, 39, D835–D841. [CrossRef]
[PubMed]

21. Piccioli, P.; Rubartelli, A. The secretion of IL-1β and options for release. Semin. Immunol. 2013, 25, 425–429.
[CrossRef] [PubMed]

22. Van Damme, J.; De Ley, M.; Opdenakker, G.; Billiau, A.; De Sommer, P. Homogeneous interferon-inducing
22K factor is related to endogenous pyrogen and interleukin-1. Nature 1985, 314, 266–268. [CrossRef]
[PubMed]

23. Andrei, C.; Margiocco, P.; Poggi, A.; Lotti, L.V.; Torrisi, M.R.; Rubartelli, A. Phospholipases C and A2 control
lysosome-mediated IL-1 β secretion: Implications for inflammatory processes. Proc. Natl. Acad. Sci. USA
2004, 101, 9745–9750. [CrossRef] [PubMed]

24. Rouault, C.; Pellegrinelli, V.; Schilch, R.; Cotillard, A.; Poitou, C.; Tordjman, J.; Sell, H.; Clément, K.;
Lacasa, D. Roles of chemokine ligand-2 (CXCL2) and neutrophils in influencing endothelial cell function
and inflammation of human adipose tissue. Endocrinology 2013, 154, 1069–1079. [CrossRef] [PubMed]

25. de Oliveira, S.; Reyes-Aldasoro, C.C.; Candel, S.; Renshaw, S.A.; Mulero, V.; Calado, A. Cxcl8 (IL-8) Mediates
Neutrophil Recruitment and Behavior in the Zebrafish Inflammatory Response. J. Immunol. 2013, 190,
4349–4359. [CrossRef] [PubMed]

26. Mori, S.; Tran, V.; Nishikawa, K.; Kaneda, T.; Hamada, Y.; Kawaguchi, N.; Fujita, M.; Takada, Y.K.;
Matsuura, N.; Zhao, M.; Takada, Y. A Dominant-Negative FGF1 Mutant (the R50E Mutant) Suppresses
Tumorigenesis and Angiogenesis. PLoS ONE 2013, 8, e57927. [CrossRef] [PubMed]

27. Decker, C.G.; Wang, Y.; Paluck, S.J.; Shen, L.; Loo, J.A.; Levine, A.J.; Miller, L.S.; Maynard, H.D. Fibroblast
growth factor 2 dimer with superagonist in vitro activity improves granulation tissue formation during
wound healing. Biomaterials 2016, 81, 157–168. [CrossRef] [PubMed]

28. Kim, S.F. Inducible Nitric Oxide Synthase Binds, S-Nitrosylates, and Activates Cyclooxygenase-2. Science
2005, 310, 1966–1970. [CrossRef] [PubMed]

29. Goodman, J.E.; Bowman, E.D.; Chanock, S.J.; Alberg, A.J.; Harris, C.C. Arachidonate lipoxygenase (ALOX)
and cyclooxygenase (COX) polymorphisms and colon cancer risk. Carcinogenesis 2004, 25, 2467–2472.
[CrossRef] [PubMed]

30. Düwel, M.; Welteke, V.; Oeckinghaus, A.; Baens, M.; Kloo, B.; Ferch, U.; Darnay, B.G.; Ruland, J.; Marynen, P.;
Krappmann, D. A20 Negatively Regulates T Cell Receptor Signaling to NF-κB by Cleaving Malt1 Ubiquitin
Chains. J. Immunol. 2009, 182, 7718–7728. [CrossRef] [PubMed]

31. Opipari, A.W.; Boguski, M.S.; Dixit, V.M. The A20 cDNA induced by tumor necrosis factor alpha encodes a
novel type of zinc finger protein. J. Biol. Chem. 1990, 265, 14705–14708. [PubMed]

32. Eto, A.; Muta, T.; Yamazaki, S.; Takeshige, K. Essential roles for NF-κB and a Toll/IL-1 receptor
domain-specific signal(s) in the induction of IκB-ζ. Biochem. Biophys. Res. Commun. 2003, 301, 495–501.
[CrossRef]

http://dx.doi.org/10.1093/nar/gku1179
http://dx.doi.org/10.1038/75556
http://www.ncbi.nlm.nih.gov/pubmed/10802651
http://dx.doi.org/10.1093/nar/gkt1102
http://www.ncbi.nlm.nih.gov/pubmed/24243840
http://dx.doi.org/10.1093/nar/gkv1351
http://www.ncbi.nlm.nih.gov/pubmed/26656494
http://dx.doi.org/10.1093/nar/gkw1040
http://www.ncbi.nlm.nih.gov/pubmed/27899570
http://dx.doi.org/10.1093/nar/gku987
http://www.ncbi.nlm.nih.gov/pubmed/25332399
http://dx.doi.org/10.1093/nar/gkq1132
http://www.ncbi.nlm.nih.gov/pubmed/21062809
http://dx.doi.org/10.1016/j.smim.2013.10.007
http://www.ncbi.nlm.nih.gov/pubmed/24201029
http://dx.doi.org/10.1038/314266a0
http://www.ncbi.nlm.nih.gov/pubmed/3920526
http://dx.doi.org/10.1073/pnas.0308558101
http://www.ncbi.nlm.nih.gov/pubmed/15192144
http://dx.doi.org/10.1210/en.2012-1415
http://www.ncbi.nlm.nih.gov/pubmed/23372021
http://dx.doi.org/10.4049/jimmunol.1203266
http://www.ncbi.nlm.nih.gov/pubmed/23509368
http://dx.doi.org/10.1371/journal.pone.0057927
http://www.ncbi.nlm.nih.gov/pubmed/23469107
http://dx.doi.org/10.1016/j.biomaterials.2015.12.003
http://www.ncbi.nlm.nih.gov/pubmed/26731578
http://dx.doi.org/10.1126/science.1119407
http://www.ncbi.nlm.nih.gov/pubmed/16373578
http://dx.doi.org/10.1093/carcin/bgh260
http://www.ncbi.nlm.nih.gov/pubmed/15308583
http://dx.doi.org/10.4049/jimmunol.0803313
http://www.ncbi.nlm.nih.gov/pubmed/19494296
http://www.ncbi.nlm.nih.gov/pubmed/2118515
http://dx.doi.org/10.1016/S0006-291X(02)03082-6


Cancers 2017, 9, 160 17 of 18

33. Totzke, G.; Essmann, F.; Pohlmann, S.; Lindenblatt, C.; Jänicke, R.U.; Schulze-Osthoff, K. A novel member of
the IκB family, human IκB-ζ, inhibits transactivation of p65 and its DNA binding. J. Biol. Chem. 2006, 281,
12645–12654. [CrossRef] [PubMed]

34. Ghandhi, S.A.; Ponnaiya, B.; Panigrahi, S.K.; Hopkins, K.M.; Cui, Q.; Hei, T.K.; Amundson, S.A.;
Lieberman, H.B. RAD9 deficiency enhances radiation induced bystander DNA damage and transcriptomal
response. Radiat. Oncol. 2014, 9, 206. [CrossRef] [PubMed]

35. Kalanxhi, E.; Dahle, J. Transcriptional responses in irradiated and bystander fibroblasts after low dose
α-particle radiation. Int. J. Radiat. Biol. 2012, 88, 713–719. [CrossRef] [PubMed]

36. Ghandhi, S.A.; Sinha, A.; Markatou, M.; Amundson, S.A. Time-series clustering of gene expression in
irradiated and bystander fibroblasts: An application of FBPA clustering. BMC Genomics 2011, 12, 2. [CrossRef]
[PubMed]

37. Kalanxhi, E.; Dahle, J. Genome-Wide Microarray Analysis of Human Fibroblasts in Response to γ Radiation
and the Radiation-Induced Bystander Effect. Radiat. Res. 2012, 177, 35–43. [CrossRef] [PubMed]

38. Ghandhi, S.A.; Ming, L.; Ivanov, V.N.; Hei, T.K.; Amundson, S.A. Regulation of early signaling and gene
expression in the alpha-particle and bystander response of IMR-90 human fibroblasts. BMC Med. Genomics
2010, 3, 31. [CrossRef] [PubMed]

39. Ghandhi, S.A.; Yaghoubian, B.; Amundson, S.A. Global gene expression analyses of bystander and alpha
particle irradiated normal human lung fibroblasts: Synchronous and differential responses. BMC Med.
Genomics 2008, 1, 63. [CrossRef] [PubMed]

40. Iwakawa, M.; Hamada, N.; Imadome, K.; Funayama, T.; Sakashita, T.; Kobayashi, Y.; Imai, T. Expression
profiles are different in carbon ion-irradiated normal human fibroblasts and their bystander cells.
Mutat. Res./Fundam. Mol. Mech. Mutagen. 2008, 642, 57–67. [CrossRef] [PubMed]

41. Sharma, K.; Goehe, R.W.; Di, X.; Hicks, M.A.; Torti, S.V.; Torti, F.M.; Harada, H.; Gewirtz, D.A. A novel
cytostatic form of autophagy in sensitization of non-small cell lung cancer cells to radiation by vitamin D
and the vitamin D analog, EB 1089. Autophagy 2014, 10, 2346–2361. [CrossRef] [PubMed]

42. Ou, Y.; Wang, S.-J.; Li, D.; Chu, B.; Gu, W. Activation of SAT1 engages polyamine metabolism with
p53-mediated ferroptotic responses. Proc. Natl. Acad. Sci. USA 2016, 113, E6806–E6812. [CrossRef] [PubMed]

43. Mandal, S.; Mandal, A.; Park, M.H. Depletion of the polyamines spermidine and spermine by overexpression
of spermidine/spermine N1-acetyltransferase 1 (SAT1) leads to mitochondria-mediated apoptosis in
mammalian cells. Biochem. J. 2015, 468, 435–447. [CrossRef] [PubMed]

44. Pegg, A.E. Spermidine/spermine-N 1-acetyltransferase: A key metabolic regulator. Am. J. Physiol.
Endocrinol. Metab. 2008, 294, E995–E1010. [CrossRef] [PubMed]

45. Beenken, A.; Mohammadi, M. The FGF family: Biology, pathophysiology and therapy. Nat. Rev. Drug Discov.
2009, 8, 235–253. [CrossRef] [PubMed]

46. Nikitaki, Z.; Mavragani, I.V.; Laskaratou, D.A.; Gika, V.; Moskvin, V.P.; Theofilatos, K.; Vougas, K.;
Stewart, R.D.; Georgakilas, A.G. Systemic mechanisms and effects of ionizing radiation: A new “old”
paradigm of how the bystanders and distant can become the players. Semin. Cancer Biol. 2015. [CrossRef]
[PubMed]

47. Kavalali, E.T.; Nelson, E.D.; Monteggia, L.M. Role of MeCP2, DNA methylation, and HDACs in regulating
synapse function. J. Neurodev. Disord. 2011, 3, 250–256. [CrossRef] [PubMed]

48. Bektas, M.; Allende, M.L.; Lee, B.G.; Chen, W.; Amar, M.J.; Remaley, A.T.; Saba, J.D.; Proia, R.L. Sphingosine
1-Phosphate Lyase Deficiency Disrupts Lipid Homeostasis in Liver. J. Biol. Chem. 2010, 285, 10880–10889.
[CrossRef] [PubMed]

49. Heckmann, B.L.; Zhang, X.; Xie, X.; Liu, J. The G0/G1 switch gene 2 (G0S2): Regulating metabolism and
beyond. Biochim. Biophys. Acta 2013, 1831, 276–281. [CrossRef] [PubMed]

50. Pajonk, F.; McBride, W.H. Ionizing radiation affects 26s proteasome function and associated molecular
responses, even at low doses. Radiother. Oncol. 2001, 59, 203–212. [CrossRef]

51. Rolfe, M.; Chiu, M.I.; Pagano, M. The ubiquitin-mediated proteolytic pathway as a therapeutic area.
J. Mol. Med. 1997, 75, 5–17. [CrossRef] [PubMed]

52. Grune, T. Oxidative stress, aging and the proteasomal system. Biogerontology 2000, 1, 31–40. [CrossRef] [PubMed]
53. Grune, T.; Reinheckel, T.; Joshi, M.; Davies, K.J.A. Proteolysis in cultured liver epithelial cells during

oxidative stress: Role of the multicatalytic proteinase complex, proteasome. J. Biol. Chem. 1995, 270,
2344–2351. [CrossRef] [PubMed]

http://dx.doi.org/10.1074/jbc.M511956200
http://www.ncbi.nlm.nih.gov/pubmed/16513645
http://dx.doi.org/10.1186/1748-717X-9-206
http://www.ncbi.nlm.nih.gov/pubmed/25234738
http://dx.doi.org/10.3109/09553002.2012.704657
http://www.ncbi.nlm.nih.gov/pubmed/22765265
http://dx.doi.org/10.1186/1471-2164-12-2
http://www.ncbi.nlm.nih.gov/pubmed/21205307
http://dx.doi.org/10.1667/RR2694.1
http://www.ncbi.nlm.nih.gov/pubmed/22034846
http://dx.doi.org/10.1186/1755-8794-3-31
http://www.ncbi.nlm.nih.gov/pubmed/20670442
http://dx.doi.org/10.1186/1755-8794-1-63
http://www.ncbi.nlm.nih.gov/pubmed/19108712
http://dx.doi.org/10.1016/j.mrfmmm.2008.04.007
http://www.ncbi.nlm.nih.gov/pubmed/18538798
http://dx.doi.org/10.4161/15548627.2014.993283
http://www.ncbi.nlm.nih.gov/pubmed/25629933
http://dx.doi.org/10.1073/pnas.1607152113
http://www.ncbi.nlm.nih.gov/pubmed/27698118
http://dx.doi.org/10.1042/BJ20150168
http://www.ncbi.nlm.nih.gov/pubmed/25849284
http://dx.doi.org/10.1152/ajpendo.90217.2008
http://www.ncbi.nlm.nih.gov/pubmed/18349109
http://dx.doi.org/10.1038/nrd2792
http://www.ncbi.nlm.nih.gov/pubmed/19247306
http://dx.doi.org/10.1016/j.semcancer.2016.02.002
http://www.ncbi.nlm.nih.gov/pubmed/26873647
http://dx.doi.org/10.1007/s11689-011-9078-3
http://www.ncbi.nlm.nih.gov/pubmed/21484197
http://dx.doi.org/10.1074/jbc.M109.081489
http://www.ncbi.nlm.nih.gov/pubmed/20097939
http://dx.doi.org/10.1016/j.bbalip.2012.09.016
http://www.ncbi.nlm.nih.gov/pubmed/23032787
http://dx.doi.org/10.1016/S0167-8140(01)00311-5
http://dx.doi.org/10.1007/s001090050081
http://www.ncbi.nlm.nih.gov/pubmed/9020379
http://dx.doi.org/10.1023/A:1010037908060
http://www.ncbi.nlm.nih.gov/pubmed/11707918
http://dx.doi.org/10.1074/jbc.270.5.2344
http://www.ncbi.nlm.nih.gov/pubmed/7836468


Cancers 2017, 9, 160 18 of 18

54. Dallaporta, B.; Pablo, M.; Maisse, C.; Daugas, E.; Loeffler, M.; Zamzami, N.; Kroemer, G. Proteasome
activation as a critical event of thymocyte apoptosis. Cell Death Differ. 2000, 7, 368–373. [CrossRef] [PubMed]

55. Grimm, L.M.; Goldberg, A.L.; Poirier, G.G.; Schwartz, L.M.; Osborne, B.A. Proteasomes play an essential
role in thymocyte apoptosis. EMBO J. 1996, 15, 3835–3844. [PubMed]

56. Sean, D.; Meltzer, P.S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor.
Bioinformatics 2007, 23, 1846–1847. [CrossRef]

57. The Project for Statistical Computing. Available online: https://www.r-project.org/ (accessed on
6 February 2017).

58. Bioconductor. Available online: https://www.bioconductor.org/ (accessed on 6 February 2017).
59. Ritchie, M.E.; Silver, J.; Oshlack, A.; Holmes, M.; Diyagama, D.; Holloway, A.; Smyth, G.K. A comparison of

background correction methods for two-colour microarrays. Bioinformatics 2007, 23, 2700–2707. [CrossRef]
[PubMed]

60. Yang, Y.; Thorne, N. Normalization for Two-Color cDNA Microarray Data. Lect. Notes-Monograph Ser. 2003,
40, 403–418. [CrossRef]

61. Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential
expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [CrossRef]
[PubMed]

62. Smith, G.K. limma: Linear Models for Microarray Data. In Bioinformatics and Computational Biology Solutions
Using R and Bioconductor; Gentleman, R., Carey, V., Dudoit, S., Irizarry, R., Huber, W., Eds.; Springer:
New York, NY, USA, 2005; pp. 397–420.

63. Phipson, B.; Lee, S.; Majewski, I.J.; Alexander, W.S.; Smyth, G.K. Robust hyperparameter estimation protects
against hypervariable genes and improves power to detect differential expression. Ann. Appl. Stat. 2016, 10,
946–963. [CrossRef] [PubMed]

64. Illumina HumanHT12v3 Annotation Data (Chip IlluminaHumanv3), 2015. Available online: http://
bioconductor.org/packages/illuminaHumanv3.db/ (accessed on 1 December 2016).

65. Ritchie, M.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.; Shi, W.; Smyth, G. Bioconductor—Limma. Available online:
https://bioconductor.org/packages/release/bioc/html/limma.html (accessed on 9 October 2017).

66. Hochberg, Y.; Benjaminit, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to
Multiple Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing.
J. R. Stat. Soc. B 1995, 57, 289–300. [CrossRef]

67. Koutsandreas, T.; Pilalis, E.; Vlachavas, E.I.; Koczan, D.; Klippel, S.; Dimitrakopoulou-Strauss, A.;
Valavanis, I.; Chatziioannou, A. Making sense of the biological complexity through the platform-driven
unification of the analytical and visualization tasks. In Proceedings of the 2015 IEEE 15th International
Conference on Bioinformatics and Bioengineering, BIBE, Belgrade, Serbia, 2–4 November 2015; pp. 1–6.

68. Pihur, V.; Datta, S.; Datta, S. RankAggreg, an R package for weighted rank aggregation. BMC Bioinform. 2009,
10, 62. [CrossRef] [PubMed]

69. Oliveros, J.C. Venny. An Interactive Tool for Comparing Lists with Venn Diagrams. 2007–2015.
Available online: http://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 1 December 2016).

70. Ogata, H.; Goto, S.; Sato, K.; Fujibuchi, W.; Bono, H.; Kanehisa, M. KEGG: Kyoto encyclopedia of genes and
genomes. Nucleic Acids Res. 1999, 27, 29–34. [CrossRef] [PubMed]

71. Kuleshov, M.V.; Jones, M.R.; Rouillard, A.D.; Fernandez, N.F.; Duan, Q.; Wang, Z.; Koplev, S.; Jenkins, S.L.;
Jagodnik, K.M.; Lachmann, A.; et al. Enrichr: A comprehensive gene set enrichment analysis web server
2016 update. Nucleic Acids Res. 2016, 44, W90–W97. [CrossRef] [PubMed]

72. Chen, E.Y.; Tan, C.M.; Kou, Y.; Duan, Q.; Wang, Z.; Meirelles, G.; Clark, N.R.; Ma’ayan, A. Enrichr: Interactive
and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform. 2013, 14, 128. [CrossRef] [PubMed]

73. Luo, W.; Brouwer, C. Pathview: An R/Bioconductor package for pathway-based data integration and
visualization. Bioinformatics 2013, 29, 1830–1831. [CrossRef] [PubMed]

74. Luo, W.; Pant, G.; Bhavnasi, Y.K.; Blanchard, S.G.; Brouwer, C. Pathview Web: User friendly pathway
visualization and data integration. Nucleic Acids Res. 2017, 45, W501–W508. [CrossRef] [PubMed]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/sj.cdd.4400661
http://www.ncbi.nlm.nih.gov/pubmed/10773821
http://www.ncbi.nlm.nih.gov/pubmed/8670888
http://dx.doi.org/10.1093/bioinformatics/btm254
https://www.r-project.org/
https://www.bioconductor.org/
http://dx.doi.org/10.1093/bioinformatics/btm412
http://www.ncbi.nlm.nih.gov/pubmed/17720982
http://dx.doi.org/10.1214/lnms/1215091155
http://dx.doi.org/10.1093/nar/gkv007
http://www.ncbi.nlm.nih.gov/pubmed/25605792
http://dx.doi.org/10.1214/16-AOAS920
http://www.ncbi.nlm.nih.gov/pubmed/28367255
http://bioconductor.org/packages/illuminaHumanv3.db/
http://bioconductor.org/packages/illuminaHumanv3.db/
https://bioconductor.org/packages/release/bioc/html/limma.html
http://dx.doi.org/10.2307/2346101
http://dx.doi.org/10.1186/1471-2105-10-62
http://www.ncbi.nlm.nih.gov/pubmed/19228411
http://bioinfogp.cnb.csic.es/tools/venny/index.html
http://dx.doi.org/10.1093/nar/27.1.29
http://www.ncbi.nlm.nih.gov/pubmed/9847135
http://dx.doi.org/10.1093/nar/gkw377
http://www.ncbi.nlm.nih.gov/pubmed/27141961
http://dx.doi.org/10.1186/1471-2105-14-128
http://www.ncbi.nlm.nih.gov/pubmed/23586463
http://dx.doi.org/10.1093/bioinformatics/btt285
http://www.ncbi.nlm.nih.gov/pubmed/23740750
http://dx.doi.org/10.1093/nar/gkx372
http://www.ncbi.nlm.nih.gov/pubmed/28482075
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Statistical Inference and Differential Expression 
	Functional Enrichment Analysis 
	Rank Aggregation of Linker Genes 

	Discussion 
	Materials and Methods 
	Data Acquisition 
	Computational Pipeline and Data Analysis 

	Conclusions 

