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Background. To assess the peeling forces exerted by different calibers ofmicrosurgical forceps on an experimentalmodel of epiretinal
membrane.Methods. A model of epiretinal membrane was constructed using thin cellulose paper and heptanes-isopropyl alcohol
1%mixture.Themodel wasmounted on a force censoring device. Subsequently, flapswere createdwith three differentmicrosurgical
forceps of different calibers. We recorded the number of attempts, the duration of the event, and the pushing and the pulling forces
during the peeling.The results were compared by a one-way ANOVA and a Fisher unprotected least significant difference test with
an alpha value of 0.05 for statistically significance. Results. There was a statistical significant difference on the pulling and pushing
forces between the 25 gauge (13.79mN; −13.27mN) and the 23 (6.63mN; −5.76mN) and 20 (5.02mN; −5.30mN) gauge, being
greater in the first (𝑃 < 0.001). There were no differences in the duration of all events, meaning that all the forces were measured
within the same period of time. Conclusions. The 25 gauge microsurgical forceps exerted the greatest mechanical stress over our
simulated epiretinal membrane model and required more attempts to create a surgical suitable flap. The clinical implication of this
finding is still to be determined.

1. Introduction

The surgical resolution of vitreoretinal diseases involves the
micromanipulation of very fragile structures. A successful
surgery depends upon the surgeon possessing a particular
set of skills that include precise manual dexterity, fine visual-
motor coordination, and improvisation capabilities, acquired
after long hours of training [1, 2]. Imprecise movements due
to tremor, poor visibility, and fatigue often may result in
tissue damagewhich can be irreversible and sight-threatening
depending on location [3, 4].

Macular surgery is one such scenario in which external
factors (patient movements and surgical instruments), along
with the surgeon’s dexterity, may influence the outcome [5].
Macular hole (MH) repair, epiretinal membrane (ERM), and
internal limiting membrane (ILM) peeling are perfect exam-
ples where the application of unknown forces to the tissues

may lead to hemorrhage, tearing, and potential irreversible
visual loss [5–7].

With the introduction of minimally invasive surgical
techniques (23 and 25 gauge vitrectomy), macular diseases
are addressed surgically more often and earlier than ever [5].
Along with the change in surgical paradigm, several aspects
of retinal instruments have undergone further refinement
[8, 9]. Microsurgical forceps (MSF) play a central role on
macular surgery, since they allow fine surgical delamination,
grasping, and manipulation of delicate structures such as
ERMs and ILM.

Since the ability to achieve surgical objectives during
macular surgery is determined in part by the limits of the
instruments used, we assessed the magnitude of peeling force
that different sizes of MSF are able to exert over tissue
during ocular surgery. Being aware of these forces and limit
their impact on the retina, has the potential to improve
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precision and diminish surgical complications. To achieve
this objective, we designed an experimentalmodel simulating
the peeling of an ERM, comparing the peeling forces from the
three commercially available surgical calibers.

2. Methods

Amodel of macular surgery, simulating an ERM peeling, was
constructed. In order to simulate the tissues characteristics,
we selected materials that closely resemble the mobility and
fragility of the structures, while keeping the same close rela-
tionship between them. For simulating retina we used a piece
of 2 × 2 cm of extra-thin cellulose paper (cellophane paper,
≈50𝜇m± 1.3 𝜇m).The cellophane sheet was cut andmounted
over a pressure transducer (Pulse Transducer, ADInstru-
ments, Colorado Springs, CO) which was connected to a data
acquisition system (PowerLab 8/30 System, ADInstruments,
Colorado Springs, CO). The cellophane sheet was a suitable
simulated retina, being both mobile yet fragile when exposed
to tractional forces. The pressure transducer was able to
measure force in vectors: downward (pushing) and outward
(pulling) exerted on the simulated retina. After calibration of
the transducer by applying forces of knownmagnitude in the
direction of both vectors, the results of the tests were directly
measured from the force transducer.

To simulate an ERM and its close relationship with
the retina, we dripped three drops of heptanes-isopropyl
alcohol 1% mixture (rubber cement) over the cellophane
paper surface and let it dry for 10 minutes prior to further
manipulations (Figure 1). Similar to an ERM, an edge could
then be identified and peeled.

Brand new disposable 20, 23, and 25 gauge MSF were
used for the simulatedmembrane peeling (AlconGrieshaber-
Switzerland/Alcon Labs, Inc., Fort Worth, TX). A flap on
the simulated ERM was created a minimum of five times
to ten times per model by the surgeon with all three MSF
(CP). The experiment was conducted on three times per
forceps caliber. For every attempt we recorded the number
of attempts needed in order to create a suitable flap, the
mean pushing and the mean pulling forces, exerted on the
cellophane paper, and the duration of every attempt, defined
as the time that the instrument was in contact with the
artificial retina (Figure 2).

Data is presented as median and standard error of mea-
surement (SEM). Statistical analyses were made using and
excel spreadsheet (Excel 2007; Microsoft Corp., Redmond,
WA). A one-wayANOVA test was used to identify differences
in the variability of the means among groups, using a 𝑃
value of less than 0.05 for statistical significance. A Fisher
unprotected least significant difference (FLSD) test was used
to assess statistical difference between means within study
groups.

3. Results

We constructed three models of experimental ERM peeling
per caliber (9 models). In every model a minimum of
five flaps were attempted: mean 7.5 ± 2 attempts (range 15
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Figure 1: Graphic representation of the basic settings used for
the experiment. The MSF used were brand new and commercially
available.
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Figure 2: Microphotograph taken with the surgical microscope
during one of the attempts to create a flap.

to 24). The mean ± SEM values of the pulling, pushing
forces, duration and number of attempts to create a flap are
summarized on Table 1.

The duration of each attempt to create a flap was similar
with all three calibers, with an overall mean duration of
4.33ms (range 2.05 to 6.25ms).The variance analysis showed
that there was no significant difference in the duration of the
attempts to create a flap among the three calibers, meaning
that all other measured forces were applied over a similar
period of time (𝑃 = 0.6) (Figure 3).

The 25 gauge MSF measured the strongest pushing and
pulling forces: 13.79mN and −13.27mN, respectively, while
the 20 and 23 gauge MSF had very similar measurements
(5.02mN; −5.30mN and 6.63mN; −5.76mN, resp.).

The ANOVA analysis showed that there was a statistical
significant difference among the means of the pushing forces
(𝑃 < 0.01). Further analysis with FLSD demonstrated that
there was a significant difference between the mean pushing
forces of the 20 gauge and 25 gauge MSF (𝑃 < 0.01) and
between the 23 gauge and 25 gauge (𝑃 < 0.01), being in
both cases the force’s magnitude greater with the 25 gauge
MSF. There was no statistical difference between the 20 and
23 gauge mean pushing forces (Figure 3).

On the pulling analysis, the forces exerted with the
25 gauge MSF were again greater than with the 23 gauge
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Table 1: Mean forces and number of attempts.

Caliber Duration (seconds) Pushing (mN) Pulling (mN) Number of attemps
20 gauge 4.63 ± 1.62 5.02 ± 2.01 −5.30 ± 1.51 3.7 ± 1.01

23 gauge 4.38 ± 1.97 6.63 ± 3.96 −5.76 ± 2.58 2.0 ± 0.7

25 gauge 3.98 ± 1.93 13.79 ± 6.58 −13.27 ± 5.10 7.3 ± 1.58

Summary of the duration and mean ± standard deviation of the forces applied during the experiment. mN: millinewtons.
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Figure 3: Graphic representation of the mean duration and principal vector forces with their corresponding standard error of measurement
(SEM).

(𝑃 < 0.01) or 20 gauge MSF (𝑃 < 0.01). There were no
statistically significant differences on the pushing or pulling
forces between the 20 and 23 gauge MSF (Figure 3).

The number of attempts required to create a suitable flap
on the simulated ERM was significantly greater with the 25
gauge MSF than with the other two calibers.

4. Discussion

Macular procedures like MH repair and ERM peeling
have become standard procedures among retinal specialist,
mainly because current surgical techniques and available
technologies allow good rates of success [5, 10]. Compara-
tive studies between the standard 20 gauge vitrectomy and
minimally invasive vitrectomy techniques have shown that
there is no significant difference in terms of intraoperative
and postoperative complications, which along with shorter
intraoperative time, reduced postoperative discomfort and
intraocular inflammation, have contributed in the rapid

adoption of the new surgical paradigm [5, 7, 11, 12]. Proof of
this change is that since 2007, the results of the Preferences
and Trends survey (conducted by the American Society of
Retinal Specialists among its members) show that 80% of
the respondents use minimal invasive techniques for most
of their cases (Mittra RS, Pollack JS. Preferences and Trends
Survey. Poster presented at 25th Annual American Society
of Retina Specialists Meeting, December 1–5, 2007; Indian
Wells, CA).

In this study we specifically investigated the amount
of mechanical forces that MSF exert on retinal tissue. The
results of our experimental model showed that mechanical
forces of pushing and pulling are higher with smaller surgical
instruments than with standard 20 gauge instruments, being
significant only between the 20 gauge and 25 gauge (𝑃 <
0.01). Since the tip of the three MSF calibers was identical
(corroborated with the manufacturer and after examination
under microscope, data not shown), a possible explanation
for this results is the difference on surgical shaft stiffness. It
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is important to note that although the rubber cement film
kept a very close relationship with the cellulose paper (similar
to a true ERM), it was not as thin as a real ERM. Therefore
the forces needed to create a flap may be amplified. Another
issue to consider is that given the extremely small forces
involved, these differences may not be clinically relevant. For
instance, the retinal adhesion force to the retinal pigment
epithelium has been calculated to be around 140mN, several
times greater than the forces exerted by the MSF on this
experiment [13, 14]. Therefore it is important to keep the
correct perspective.

In a previous study, Gupta et al. recorded the axial tool
shaft forces during retinal manipulation in vitro in a porcine
cadaver eye model [1, 15]. He concluded that up to 75% of
all measured forces were below 7.5mN in magnitude [1, 16,
17]. Our results are consistent with those reported by Gupta
(5.3 nM for a 20 gauge MSF). Despite the similar results it
is important to highlight that in our study we measured the
pulling and the pushing forces exerted directly by the tip
of the instrument and that our experiment also included
different instrument calibers that were not available at that
time (23 and 25 gauge). On subsequent test of perception of
forces, Gupta et al. found that only 19% of event at this force
level were felt by the surgeon [1, 9, 16]. Our study results show
that smaller MSFmay be more traumatic to retinal tissue and
the inability of the surgeon to feel most of these events may
increase unintentional tissue damage theoretically.

In summary, 25 gauge MSF registered greater pulling
and pushing forces over a simulated model of retina ERM.
The same caliber required more attempt to create a surgical
suitable flap. There were no differences between the forces
exerted neither by the 20 and 23 gauge MSF nor on the
numbers of attempts to create a flap. Given the extremely
low forces involved, it is still not clear if the differences are
clinically significant.
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