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Background: There is accumulating evidence on the clinical importance of the fibroblast
growth factor receptor (FGFR) signal, hypoxia, and glycolysis in the immunemicroenvironment
of head and neck squamous cell carcinoma (HNSCC), yet reliable prognostic signatures based
on the combination of the fibrosis signal, hypoxia, and glycolysis have not been systematically
investigated. Herein, we are committed to establish a fibrosis–hypoxia–glycolysis–related
prediction model for the prognosis and related immune infiltration of HNSCC.

Methods: Fibrotic signal status was estimated with microarray data of a discovery cohort
from the TCGA database using the UMAP algorithm. Hypoxia, glycolysis, and immune-cell
infiltration scores were imputed using the ssGSEA algorithm. Cox regression with the
LASSO method was applied to define prognostic genes and develop a
fibrosis–hypoxia–glycolysis–related gene signature. Immunohistochemistry (IHC) was
conducted to identify the expression of specific genes in the prognostic model. Protein
expression of several signature genes was evaluated in HPA. An independent cohort from
the GEO databasewas used for external validation. Another scRNA-seq data set was used
to clarify the related immune infiltration of HNSCC.

Results: Six genes, including AREG, THBS1, SEMA3C, ANO1, IGHG2, and EPHX3, were
identified to construct a prognostic model for risk stratification, which was mostly validated
in the independent cohort. Multivariate analysis revealed that risk score calculated by our
prognostic model was identified as an independent adverse prognostic factor (p < .001).
Activated B cells, immature B cells, activated CD4+ T cells, activated CD8+ T cells, effector
memory CD8+ T cells, MDSCs, andmast cells were identified as key immune cells between
high- and low-risk groups. IHC results showed that the expression of SEMA3C, IGHG2
were slightly higher in HNSCC tissue than normal head and neck squamous cell tissue.
THBS1, ANO1, and EPHX3 were verified by IHC in HPA. By using single-cell analysis,
FGFR-related genes and highly expressed DEGs in low-survival patients were more active
in monocytes than in other immune cells.
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Conclusion: A fibrosis–hypoxia–glycolysis–related prediction model provides risk
estimation for better prognoses to patients diagnosed with HNSCC.

Keywords: head and neck squamous cell carcinoma, fibroblast growth factor receptor, hypoxia, glycolysis,
prognosis, immune-cell infiltration

INTRODUCTION

Head and neck squamous cell carcinoma (HNSCC) has a
worldwide incidence of more than 600,000 cases per year
(Ferlay et al., 2015), including a heterogeneous group of tumors
that arise from the oral cavity, oropharynx, larynx, hypopharynx,
nasopharynx, and sinonasal cavity (Kim et al., 2021). Due to its
special anatomical location, patients with HNSCC often experience
vital dysfunction, especially in the aspects of swallowing, feeding,
breathing, and psychological health (Zhu et al., 2017). Despite
significant progress in available therapies, the 5-year overall
survival (OS) rate of HNSCC patients has not obviously
improved in recent decades (Siegel et al., 2019). Therefore, there
is an urgent need for a way to predict the progression of HNSCC
(Shield et al., 2017).

The fibroblast growth factor receptor (FGFR) is a receptor
tyrosine kinase (RTK) signaling pathway involved in the
regulation of angiogenesis, invasion, and metastasis of tumors
(Chae et al., 2017). It is considered to be a contributory factor in
the development of fibrosis, causing the exacerbation of liver
fibrosis (Seitz and Hellerbrand, 2021), systemic sclerosis (SS)
(Chakraborty et al., 2020), idiopathic pulmonary fibrosis (IPF)
(Wollin et al., 2015), and so on. A recent study also revealed the
clinically activity of an FGFR inhibitor against HNSCC (Schuler
et al., 2019). However, few investigations focus on the potential
mechanisms about this profibrotic mediator in HNSCC.

Hypoxia, as a hallmark of tumor, is a potent
microenvironmental factor facilitating proliferation and
progression in a variety of cancers (Rankin and Giaccia, 2016).
Previous research suggests that hypoxic HNSCC cells trigger
glycolysis to obtain energy and balance metabolic and
bioenergetic (Zhu et al., 2017). Furthermore, activated
fibroblasts synthesized excessive collagen, leading to a
microenvironment of hypoxia, which might deteriorate the
progression of disease, whereas there were few records on the
prognosis of HNSCC by combining a profibrotic signal with
hypoxia and glycolysis. The immune landscape associated with
the factors mentioned above also demands exploration.

Therefore, in this study, we establish an FGFR-
signaling–hypoxia–glycolysis–related prediction model for the
prognosis of HNSCC with a series of bioinformatics analyses.
Immune cell infiltration associated with prognosis and
profibrotic signaling is also revealed.

METHODS

Patient Cohort and Data Preparation
The discovery cohort of the study contained 483 HNSCC
patients from the Cancer Genome Atlas (TCGA, available at

https://portal.gdc.cancer.gov/) data set. To obtain a validation
cohort, RNA-seq data and related clinicopathological data were
downloaded from the Gene Expression Omnibus (GEO, available
at https://www.ncbi.nlm.nih.gov/geo/) database (GSE41613),
including 97 patients with HPV-negative oral squamous cell
carcinoma (OSCC). The microarray data of GSE41613 was
built upon the GPL570 Platform (Affymetrix Human Genome
U133 Plus 2.0 Array). A single-cell RNA sequencing (scRNA-seq)
data set (GSE139324) was also used for analyzing tumor immune
infiltration in HNSCC patients, including tumor-infiltrating
immune cells from 18 HNSCC patients and tissue resident
immune cells from five healthy donor tonsils (Cillo et al., 2020).

The mRNA expression profiles from the TCGA database were
normalized using fragments per kilobase of exon per million reads
mapped (FPKM). Background correction and normalization has
been performed for each series before downloading GSE41613
from the GEO database. Additionally, the harmony algorithm was
used in the integration of the single-cell RNA-seq data set
GSE139324 considering biological and technical differences
(Korsunsky et al., 2019). The general idea and methodologies of
our study are shown in a flowchart (Figure 1).

Distinction of Fibrotic Signal Status and
FGFR-Related DEGs
An algorithm of uniform manifold approximation and projection
(UMAP) was applied to deduce the fibrotic signal status of HNSCC
patients. Based on the given hallmarks or signatures, UMAP, a
nonlinear reductive dimension method, is able to assign a group of
patients to diverse clusters. The gene set of the FGFR signal pathway
was downloaded from the Molecular Signatures Database (MSigDB
version 6.0), identifying the relative activation degree of fibrotic
signal in patients. Based on the limma algorithm (Korsunsky et al.,
2019) and functional enrichment analysis, two clusters including
“fibrosislow” and “fibrosishigh”were identified to estimate the fibrotic
signal status. The limma algorithm was applied to identify DEGs
between the two clusters based on the standards of false discovery
rate (FDR) adjusted p-value<.0001 and | log2(Fold change) |> 1. To
confirm biological functions and pathway enrichment of the
fibrosis-related DEGs, we performed Gene Ontology (GO)
functional analysis and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis using the
“Metascape” website (https://metascape.org/) (Zhou et al., 2019).

Distinction of Hypoxia–Glycolysis–Related
DEGs
The ssGSEA algorithm was applied to explore the hypoxia and
glycolysis degree in the HNSCC expression profile of the TCGA
database. According to hypoxia and glycolysis scores calculated

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 9 | Article 8017152

Chen et al. FGFR-Related Model in HNSCC

https://portal.gdc.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://metascape.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


previously, two groups of patients were stratified. An optimal
cutting point for classifying was determined by maximally
selected rank statistics using the “survival” and “survminer” R
package. Subsequently, “hypoxiahigh,” “hypoxialow,”
“glycolysishigh,” and “glycolysislow” groups were identified,
respectively. We further considered hypoxia and glycolysis
together by combining them into a two-dimensional index;
that is, patients were divided into three groups,
i.e., hypoxialow/glycolysislow, hypoxiahigh/glycolysislow, and
“mix” groups. Hypoxia–glycolysis–related DEGs were
identified based on the standards of FDR adjusted p-value
<.0001 and | log2(Fold change) | > 1 using the R package “limma”.

Prognosis Prediction Model of HNSCC
Based on
Fibrosis–Hypoxia–Glycolysis–Related DEGs
Hypoxia–glycolysis–related DEGs and fibrosis–related DEGs
were intersected to obtain the 39 shared
fibrosis–hypoxia–glycolysis–related DEGs by Venn analysis. To
obtain prognostic shared DEGs, univariate Cox regression
analyses were further performed among all 39 DEGs
mentioned above to screen those risk or protective shared
DEGs with p < .05. Thereafter, we applied the least absolute
shrinkage and selection operator (LASSO) (Friedman et al., 2010;
Liu et al., 2013) to preserve valuable variables in 21 prognostic
shared DEGs, implementing a high-dimensional prediction and
avoiding overfitting. The LASSO Cox regression model was
scientifically built up depending on threefold cross-validation
and 1000 iterations, which decreased the underlying instability
of the results. The optimal tuning parameter λ was identified via

1-SE (standard error) criterion. Eventually, the selected
prognostic gene signatures were used to establish the
prognosis prediction model of HNSCC based on
fibrosis–hypoxia–glycolysis–related DEGs. The risk score
computing formula is:

Risk score � ∑n

i�1(coefficienti × exp ression of signature genei).

Based on the risk scores, we computed the optimal cutting
point to stratify HNSCC patients into high- and low-risk groups.

Identification of Immune Cell Infiltration
Status
To predict the immune cell infiltration status, the ssGSEA
algorithm was applied to identify the abundance of 28
immunocytes in each HNSCC patient, confirming the
underlying correlation between immune infiltration status and
prognostic model. The gene set from Charoentong et al. was
obtained to calculate ssGSEA scores for immune cell populations.
(Charoentong et al., 2017).

Evaluation of Immunohistochemical
Staining
Formalin-fixed, paraffin-embedded tumor tissues were collected
from eight patients with HNSCC diagnosed at the 3rd Xiangya
Hospital from January 2020 to December 2020. This study was
approved by the Ethics Committee of the 3rd Xiangya Hospital
(No: 21158). The immunohistochemical process was performed
as described previously (Guan et al., 2020). Our procedure used

FIGURE 1 | Flowchart diagram of the study.
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the following antibodies: Polyclonal rabbit anti-Semaphorin 3c
(1:200 dilution; ab135842; Abcam Biochemicals, UK);
monoclonal rabbit anti-human IgG2 (1:1000 dilution;
ab134050; Abcam Biochemicals, UK). IHC results for IGHG2
and SEMA3C were evaluated by computerizing optical density
(OD) measurements using ImageJ software, which depends on
the degree and area of staining. Samples were scored by two
trained pathologists according to the percentage contribution of
high positive, positive, low positive, and negative. The
immunoreactive score (IRS) was evaluated as follows: 4, high
positive; 3, positive; 2, low positive; and 1 negative (Varghese
et al., 2014).

The Human Protein Atlas (HPA, https://www.ptroteinatlas.
org/) provides us the IHC staining data in HNSCC and normal
tissue (Uhlen et al., 2010). The expression level of target protein
was classified into high, medium, low, and not detected according
to degree of staining (strong, moderate, weak, or negative) and the
proportion of stained cells (>75%, 25%–75%, or <25%).

Single-Cell Analysis of Tumor Infiltrating
Immune Cells From HNSCC Patients
After dimension reduction through principal component analysis
(PCA), the t-distributed stochastic neighbor embedding (t-SNE)
algorithm (Kobak and Berens, 2019), a technique that maps a set
of high-dimensional points to two dimensions, was used to
compute the degree of similarity between cells, which is
visualized by the distances among the plotted points on the
graph. It also potently governed how many of its nearest
neighbors each point is attracted to. Here, each point
represented a cell. The scores of individual cells for pathway

activities were estimated by the R package “AUCell.” According
to gene expression rankings in each cell for a certain gene set, area
under the curve (AUC) values were calculated to represent the
proportion of top-ranking genes in the gene set for each cell
(Corridoni et al., 2020).

Statistical Analysis
Using R version 4.0.2 (www.r-project.org/) and the appropriate
packages, all statistical analysis was carried out. We implemented
the UMAP algorithm using R package “umapr” for nonlinear
dimension reduction and the ssGSEA algorithm using R package
“GSVA” for the hypoxia and glycolysis score. The Lasso Cox
regression model was conducted, and standard statistical tests
were guaranteed by using the R package “glmnet.” The FDR
method was performed to adjust multiple tests. Risk factors were
eventually identified through multivariate Cox regression
analysis.

RESULTS

Fibrosis Signal and Fibrosis-Related DEGs
in HNSCC
The expression profiles and clinical information of 483 HNSCC
patients were contained in the discovery cohort downloaded from
the TCGA database. The clinical information of patients is shown
in Table 1. Seventy genes positively correlated with the FGFR
signaling pathway were used to evaluate the status of fibrosis
signal activation in patients. Based on the algorithm UMAP, we
divided the patients into two clusters using the fibrosis-related
expression matrix, enabling us to assign each patient to the

TABLE 1 | Basic information of HNSCC patients in discovery cohort.

Characteristics Whole cohort (483) Low risk (327) High risk (156)

Gender
Male 355 (0.735) 246 (0.752) 109 (0.699)
Female 128 (0.265) 81 (0.248) 47 (0.301)

Age
≥60 years 156 (0.323) 190 (0.581) 80 (0.513)
<60 years 213 (0.441) 137 (0.419) 76 (0.487)

original diagnosis
Squamous cell carcinoma, NOS 409 (0.847) 272 (0.832) 137 (0.878)
Squamous cell carcinoma, keratinizing, NOS 52 (0.108) 33 (0.101) 19 (0.122)
Squamous cell carcinoma, large cell, nonkeratinizing, NOS 11 (0.023) 11 (0.034) 0 (0.000)
Basaloid squamous cell carcinoma 10 (0.021) 10 (0.031) 0 (0.000)
Squamous cell carcinoma, spindle cell 1 (0.002) 1 (0.003) 0 (0.000)

UMAP clustering
Cluster1 309 (0.640) 173 (0.529) 136 (0.872)
Cluster2 174 (0.360) 154 (0.471) 20 (0.128)

Hypoxia status
High 381 (0.789) 242 (0.740) 139 (0.891)
Low 102 (0.211) 85 (0.260) 17 (0.109)

Glycolysis status
High 318 (0.658) 189 (0.578) 129 (0.827)
Low 165 (0.342) 138 (0.422) 27 (0.173)

Risk group
High 156 (0.323) 0 (0.000) 156 (1.000)
Low 327 (0.677) 327 (1.000) 0 (0.000)

Frontiers in Cell and Developmental Biology | www.frontiersin.org February 2022 | Volume 9 | Article 8017154

Chen et al. FGFR-Related Model in HNSCC

https://www.ptroteinatlas.org/
https://www.ptroteinatlas.org/
http://www.r-project.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


nearest cluster (Figure 2A). A Kaplan–Meier plot demonstrates
that significant differences in survival were witnessed between the
two clusters (Figure 2B). There were 309 and 176 patients
included in clusters 1 and 2, respectively. To obtain fibrosis-
related DEGs, we compared the expression profiles between the
clusters. A total of 187 fibrosis-related DEGs overexpressed in
cluster 1, where patients had worse survival, which were enriched
in “response to wounding” (Figure 2C), “TGF-beta signaling
pathway” (Figure 2D). This implied the patients in cluster 1 were
in a higher state of fibrosis activation. Enrichment analysis
showed 186 DEGs overexpressed in cluster 2 were enriched in
“immunoglobulin complex” (Figure 2E), “metabolism of

xenobiotics cytochrome P450” (Figure 2F). These findings are
consistent with the previous research that patients with good
immune status have a better prognosis.

Hypoxia Status, Glycolysis Status, and
Hypoxia–Glycolysis–Related DEGs in
HNSCC
Meanwhile, using the “GSVA” package, the ssGSEA algorithm
was implemented to quantify the hypoxia or glycolysis
enrichment score of each HNSCC patient in hypoxia or
glycolysis hallmark genes from the MSigDB. To identify the

FIGURE 2 |Grouping of patients according to FGFR signaling pathway. (A) The UMAP algorithm classifies HNSCC patients into two clusters, indicated by different
colors. (B) The survivorship analysis plot of OS in two clusters. GO function enrichment (C,E) and KEGG pathway enrichment analysis (D,F) of differentially expressed
genes in the fibrosislow-survival group, colored by p-values. (C,D) Analysis of the high expression genes in the fibrosislow-survival group. (E,F) Analysis of the low
expression genes in the fibrosislow-survival group.
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effect of hypoxia and glycolysis on prognosis, univariate Cox
regression analyses were further performed among patients’
hypoxia and glycolysis scores. Hypoxia and glycolysis, as
illustrated in the forest diagram in Figure 3A, were
considered risk factors for prognosis in HNSCC patients.
Based on maximally selected rank statistics, we divided
patients into two groups according to hypoxia (Figure 3B)
and glycolysis (Figure 3C) scores. We further synthesized the
hypoxia and glycolysis status into a two-dimensional index,

dividing patients into three groups, i.e., hypoxiahigh/
glycolysishigh, hypoxialow/glycolysislow, and “mix” groups.
Significant differences in survival were observed among three
groups (Figure 3D, log rank test, p < .0001). The survivorship
analysis (Kaplan–Meier) showed a better survival in the
hypoxiahigh/glycolysishigh group than the hypoxialow/
glycolysislow group as we expected (Figure 3E). Besides this,
the mix group was at an intermediate level. A total of 108
hypoxia–glycolysis–related DEGs were obtained after

FIGURE 3 |Grouping of patients according to their hypoxia and glycolysis status. (A) Forest plot of hypoxia and glycolysis scores by univariate Cox regression. (B,C) A
vertical dashed line was used to mark the cutoff point with the maximum standard log-rank statistic based on hypoxia and glycolysis scores. (D) Kaplan–Meier plot of OS
among hypoxiahigh/glycolysishigh, hypoxialow/glycolysislow, and mix groups. (E) Kaplan–Meier plot of OS between hypoxiahigh/glycolysishigh and hypoxialow/glycolysislow.
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comparing expression profiles between hypoxiahigh/
glycolysishigh and hypoxialow/glycolysislow.

Construction of the
Fibrosis–Hypoxia–Glycolysis–Related
Prognostic Model in the TCGA Data set
The above 334 fibrosis-related and 108
hypoxia–glycolysis–related DEGs screened from HNSCC were
intersected to obtain the 39 shared genes (Figure 4A). To
further filtrate the prognostic DEGs, univariate Cox
regression analysis was conducted on 39 shared DEGs, and
21 DEGs with p < .05 were identified (Figure 4B). Among them,
most of them (18 out of 21, 85.7%) were risk DEGs. Six critical
variables were selected from the above 21 prognostic DEGs
using the LASSO regression method, among which four were
risk DEGs and two were protective (Figures 4C,D). For each
HNSCC patient, a risk score was calculated based on the
expression levels of the six characteristic DEGs and

corresponding coefficients from the LASSO Cox regression:
risk score = 0.0369 × expression of AREG+ 0.03432 ×
expression of THBS1+ 0.02182 × expression of SEMA3C+
0.07125 × expression of ANO1+(-0.07718) × expression of
IGHG2+ (-0.09177) × expression of EPHX3. Using the
maximum selective rank method as the basis of demarcation,
patients were divided into high- and low-risk groups according
to their risk scores (Figure 4E). The low-risk group showed a
significantly better effect on prognosis compared with the high-
risk group (Figure 4F, log rank test, p < .0001).

Supplementary Information on Prognostic
Model and its Relationship With
Immunocyte Infiltration
We performed survival analysis on 483 HNSCC patients, which
reorganized according to the location of the primary tumor in an
attempt to verify the reliability of the prognostic model. In several
regions with high incidence of HNSCC, such as tongue and

FIGURE 4 | Constructing a prognostic survival model in patients with HNSCC. (A) Venn diagrams show the fibrosis–hypoxia–glycolysis related DEGs (39). (B)
Forest plot of the prognostic effects of 21 DEGs with p < .05 on a univariate Cox regression analysis. (C) LASSO coefficient profiles of 21 screened DEGs. (D) Threefold
cross-validation for LASSO analysis was performed to calculate the minimum criteria. (E) A vertical dashed line was used to mark the cutoff point with the maximum
standard log-rank statistic. (F) Kaplan–Meier plot established the survival differences between high- and low-risk groups.
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larynx (Figures 5B,D), survival comparison revealed that the
high-risk group was associated with a worse prognosis of the
patients. The same went for tonsil, hypopharynx, and so on
(Figures 5A,C). Univariate Cox regression analyses indicate that
the risk score, similar to other clinical characteristics, such as age,
could be deemed as an independent risk factor to assess the

prognosis of patients with HNSCC (Figure 5E). Additionally,
ssGSEA was used to estimate the immune cell infiltration in the
patients. To explore the correlation between prognostic model and
immune cell infiltration, correlation analysis was performed
between six optimal prognostic signatures and the immunocyte
infiltration score (Figure 5F). Furthermore, significantly decreased
infiltration of eight specific immune cells was observed in the high-
compared with the low-risk group, that is, activated B cells,
immature B cells, activated CD4+ T cells, activated CD8+

T cells, effector memory CD8+ T cells, MDSCs, and mast cells
(Figure 5G).

External Independent Cohort Validation of
the Fibrosis–Hypoxia–Glycolysis–Related
Prognostic Model in the GEO Data set
The fibrosis–hypoxia–glycolysis–based prognosis model was
further validated in an independent cohort “GSE41613.”
Searching for six genes from the prognosis model in the
expression matrix of 97 OSCC patients, five of them were
found. The clinical information of patients is shown in
Table 2. Univariate Cox regression analyses confirmed that

FIGURE 5 | (A–D) A Kaplan–Meier plot establishes the survival differences between high- and low-risk groups in HNSCCwith different primary sites. (E) Forest plot
of other clinical characteristic and risk scores on a univariate Cox regression analysis. (F) Heatmap plotted by the correlations between the expression of genes in
prognostic model and immune infiltrate level in HNSCC. (G) Comparison of immunocyte infiltration between high- and low-risk groups.

TABLE 2 | Basic information of OSCC patients in validation cohort.

Characteristics Whole cohort (97)

Gender
Male 66 (0.680)
Female 31 (0.320)

Age
≥60 years 47 (0.485)
<60 years 50 (0.515)

treatment
uni-modality 43 (0.443)
multii-modality 53 (0.546)
unknown 1 (0.010)

tumor stage
I/II 41 (0.423)
III/IV 56 (0.577)
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FIGURE 6 | Validation in external data set (GSE416130). (A) Forest plot of the prognostic effects of five genes in prognostic model on a univariate Cox regression
analysis. (B,D,F,H,J) A vertical dashed line was used to mark the cutoff point with the maximum standard log-rank statistic based on the expression of each gene.
(C,E,G,I,K) Kaplan–Meier plot established the survival differences between high (high expression of target gene) and low (low expression of target gene) groups.

FIGURE 7 | IHC analysis of the protein expression of SEMA3C in HNSCC and normal tissues. (A–E) The expression of SEMA3C was detected by IHC in five
patients with HNSCC (Magnification ×200). (F) The expression of SEMA3C was detected by IHC in normal head and neck squamous cell tissue (Magnification ×200).
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AREG, THBS1, SEMA3C, and ANO1 were risk factors in the
prognosis of patients. On the contrary, EPHX3 was a protective
one, which is consistent with the model previously conducted
(Figure 6A). Based on maximally selected rank statistics, patients
were classified into two groups according to the level of each gene
expression (Figures 6B,D,F,H,J), and survival analysis was
performed (Figures 6C,E,G,I,K). Kaplan–Meier curves showing
that patients with higher expression levels of four risk genes in the
prognostic model had worse OS (Figures 6C,E,G,I), whereas the
opposite was true for protective genes (Figure 6K).

IHC Analysis of Prognostic Signatures
To further validate the expression of prognosis-related molecules
in HNSCC specimens and normal squamous epithelium of head
and neck, we performed IHC staining analysis of paraffin section
of HNSCC. IHC staining analysis suggested that the expression of
SEMA3C and IGHG2 were slightly higher in HNSCC tissue
quantified by the antibodies ab135842 (Figures 7A–F) and
ab134050 (Figures 8A–F).

According to the protein expression data from the HPA, we
compared the protein expression of six-gene signatures in
HNSCC tissue and squamous epithelium normally located in
the head and neck, such as oral squamous epithelium. We
preliminarily inferred that the protein expression of these
genes differed between HNSCC and normal tissues. The
detailed results are presented in Supplementary Figure S1.

Fibrosis-Related Immune Landscape of
HNSCC Patients Based on scRNA-Seq
To further understand the correlation between the fibrosis
signal and immunity, we analyzed scRNA-seq data

downloaded from the GEO data set “GSE139324.” A total of
23 samples were used for analysis. Of these, 18 samples were
tumor-infiltrating immune cells from HNSCC patients (HPV
negative), and five were tissue-resident immune cells from
healthy donor tonsils. After integrating data by the harmony
algorithm and binning by the t-SNE algorithm, 20 cell clusters
were successfully classified. Moreover, there was a significant
difference in the number of each cell subset between HNSCC
patients and healthy donors (HD) (Figure 9A). By the
expression of several cell surface and intracellular markers,
clusters 4 and 11 were defined as monocytes. Clusters 3, 9,
13, 14, and 20 expressed markers associated with B cells (e.g.,
CD79A), and the rest of the clusters expressed genes associated
with T cells (e.g., CD3D) (Figure 9B). The cells with a high
expression of FGF-receptor-signaling–related genes and highly
expressed DEGs in low-survival patients were severally
highlighted in Figures 9C,D, most of which were highly
expressed in clusters 4 and 11. An obviously higher
composition of monocytes is shown in patients compared
with healthy controls (Figure 9E). Significant differences in
the number of cells in clusters 4 and 11 were witnessed between
HNSCC and HD (Figures 9F,G). The dot-plot heatmap implies
that the genes mentioned are more enriched in monocytes than
in other kinds of immune cells (Figure 9H).

DISCUSSION

Considering the poor therapeutic effect and prognosis of patients
with HNSCC, it is necessary to construct an accurate prognostic
staging system, which might bring personalized treatment and
timely follow-up to them. In this study, a total of 483 HNSCC

FIGURE 8 | IHC analysis of the protein expression of IGHG2 in HNSCC and normal tissues. (A–E) The expression of IGHG2 was detected by IHC in five patients
with HNSCC (Magnification ×200). (F) The expression of IGHG2 was detected by IHC in normal head and neck squamous cell tissue (Magnification ×200).
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patients from the TCGA data set were included in our discovery
cohort to exploit the prognostic value of FGFR-signal, hypoxia,
and glycolysis. The effect of immune status of the tumor
microenvironment (TME) was also the focus of our research.
We found that profibrotic signaling, hypoxia, and glycolysis were
associated with the survival of patients with HNSCC.
Furthermore, we constructed a new
fibrosis–hypoxia–glycolysis–related prognostic classifier including
a six-gene signature for HNSCC patients under the guarantee of an
external independent validation cohort. IHC was used to determine
the protein expression of these genes in HNSCC tissues. The single-
cell analysis of monocyte infiltration also revealed marked
differences between HNSCC patients and healthy controls. These
findings represent a new insight into the prognosis and tumor
immune microenvironment of patients with HNSCC.

Multiple studies suggest that the FGFR signal, hypoxia, and
glycolysis play a critical role in the tumorigenesis and progression
of HNSCC. On the one hand, it is reported that FGFR1
amplification is a frequent event (Göke et al., 2013) and might
act as a candidate prognostic biomarker in primary and
metastatic HNSCC (Koole et al., 2016). Rogaratinib, an
inhibitor that effectively and selectively inhibits pan-FGFR,
presents a broad antitumor activity in the FGFR-
overexpressing preclinical HNSCC model, revealing the
potentially important role of FGFR in disease development
(Grünewald et al., 2019). In the mechanism of drug resistance
in head and neck cancer stem cells, the FGFR signal also shows
latent vitality (McDermott et al., 2018). In addition, the FGFR
signal exerts high correlation with sustaining proliferative
signaling, resisting cell death, inducing angiogenesis, and

FIGURE 9 | (A) Twenty cell clusters were successfully classified by t-SNE algorithm. (B) Expression of several cell surface and intracellular markers in each cell
subpopulation. (C,D) Individual cell AUC score overlay for FGF receptor signaling and highly expressed DEGs in low-survival patients (cells from n = 18 HNSCC, n = 5
HD). (E)Composition of clusters 4 and 11 in each sample. (F)Comparison of cluster 4 between HNSCC andHD. (G)Comparison of cluster 11 between HNSCC andHD.
(H) Dot plot heatmap showing AUC1 and AUC2 enriched in monocyte (clusters 4 and 11).
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activating invasion by cell migration (Ipenburg et al., 2016).
However, FGFR signal–related prognostic study was still
lacking in HNSCC. On the other hand, to support rapid and
unlimited proliferation, solid cancer cells adopt unique energy
metabolism properties, such as anaerobic glycolysis (Pavlova and
Thompson, 2016) with the faster rate of ATP production and
reducing the generation of reactive oxygen species (ROS) mainly
produced by the electron transport chain (ETC) in the
mitochondria during respiration (Yamamoto et al., 2017). This
rule was also applied to HNSCC; glycolysis occurs in HNSCC
cells along with a hypoxia microenvironment (Zhu et al., 2017).
In the current analysis, hypoxia and glycolysis were presented as
risk factors in HNSCC, which was consistent with previous
studies. The FGFR signal, hypoxia, and glycolysis play a
synergistic role in HNSCC prognosis. Thus, the fibrosis signal,
hypoxia, and glycolysis accompanied with their interaction and
its relationship with the development of HNSCC could provide
improved special insight about the prognosis.

The results of single-cell analysis show that the infiltration of
monocytes in the HNSCC group was higher than the HD group.
Fibroblasts could communicate with the tumor cells by secreting
cytokines in TME. It is reported that monocyte chemotactic
protein (MCP)-1, a kind of cytokine associated with poor
long-term survival of HNSCC patients (Ji et al., 2014), could
be produced by fibroblasts infiltrating in TME to facilitate the
recruitment of monocytes into the local inflammatory tissues and
regulate their functions (Kondoh et al., 2019). This provides an
explanation for the increased infiltration of monocytes in the
tumor group and its close interconnection with the FGFR signal.

Significant roles of the predictive signature genes identified
above are reported previously in diversified types of cancers.
AREG, a ligand of epidermal growth factor receptor (EGFR), is
abnormally expressed in multiple types of cancers, such as
pancreatic cancer, implicated in mediating the motility,
metastasis, and proliferation of tumor cells (Liu et al., 2021).
It is proved that the AREG mRNA levels in cancer cells was
significantly correlated with the metastatic phenotype of
HNSCC tissues (Zhang et al., 2015). THBS1, known as
encoding thrombospondin 1, plays a vital role in
angiogenesis and tumor progression, overexpression of
which was significantly associated with tumor differentiation
(Yang et al., 2020). TGFB1 was reported to induce the
expression of THBS1, resulting in stimulating migration of
cancer cells and driving the expression of MMP3 (matrix
metalloprotease 3) via integrin signaling, conducive to
OSCC intrusion (Pal et al., 2016). Though the activation of
the p-ERK pathway, SEMA3C promotes cervical cancer
growth, which is related to poor prognosis (Liu et al.,
2019a). ANO1 encodes a calcium-dependent chloride
channel protein and commonly amplifies to facilitate several
cancers’ progression, including ovarian (Liu et al., 2019b),
prostate (Liu et al., 2012), breast (Britschgi et al., 2013), and
head and neck cancers (Filippou et al., 2021). After neoadjuvant
chemoradiotherapy, the expression level of IGHG2 increased
significantly in rectal cancer, indicating that IGHG2 was
originally with a low expression in tumor cells and existed
as a protective factor, which was consistent with our prognostic

analysis. The protective gene EPHX3, known as epoxide
hydrolase 3, whose hypermethylation is responsible for the
development of OSCC (Morandi et al., 2017), contributes to
predict the survival of HNSCC patients (Bai et al., 2019).
However, six signature genes in this study were barely
mentioned in the context of combination of the FGFR
signal, hypoxia, and glycolysis. Thus, the abovementioned
signature genes could provide therapeutic targets and
directions for the elucidation of molecular mechanisms in
HNSCC.

There were inevitable limitations in this study. The first
limitation is that IGHG2 was not detected in the independent
external cohort, so we could not validate the effect of it. More
independent HNSCC cohorts should be used for the validation of
the established prognostic model. Using expression profiles
downloaded from publicly available databases, it is difficult for
us to ensure that the validation samples including all primary
tissue sites of tumors in TCGA. Thus, verification of findings
above requires more well-designed, comprehensive, and
thorough study.

CONCLUSION

In conclusion, the status of the FGFR signal, hypoxia, and
glycolysis correlate with the prognosis of HNSCC patients.
The prognostic model conducted above might provide
potential application value for prognosis prediction and
individualized treatment.
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