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Congenital diaphragmatic hernia (CDH) is a relatively common and life-threatening birth
defect, characterized by an abnormal opening in the primordial diaphragm that interferes
with normal lung development. As a result, CDH is accompanied by immature and
hypoplastic lungs, being the leading cause of morbidity and mortality in patients with
this condition. In recent decades, various animal models have contributed novel insights
into the pathogenic mechanisms underlying CDH and associated pulmonary hypoplasia.
In particular, the generation of genetically modified mouse models, which show both
diaphragm and lung abnormalities, has resulted in the discovery of multiple genes and
signaling pathways involved in the pathogenesis of CDH. This article aims to offer an
up-to-date overview on CDH-implicated transcription factors, molecules regulating cell
migration and signal transduction as well as components contributing to the formation
of extracellular matrix, whilst also discussing the significance of these genetic models
for studying altered lung development with regard to the human situation.

Keywords: congenital diaphragmatic hernia, diaphragm development, lung development, pulmonary hypoplasia,
pulmonary hypertension, genetic model, transgenic mice, retinoic acid

INTRODUCTION

Congenital diaphragmatic hernia (CDH) represents a relatively common and life-threatening
birth defect with an estimated global prevalence of 2.3 in 10,000 live births (1, 2). It is
characterized by incomplete formation and/or muscularization of the primordial diaphragm,
which allows herniation of abdominal viscera into the thoracic cavity, thereby filling space
usually reserved to hold the growing lung (3, 4). Hence, pulmonary development is disrupted,
leading to immature and hypoplastic lungs (5–7). Today, more than 70% of CDH cases are
diagnosed prenatally based on maternal-fetal ultrasound or magnetic resonance imaging in the
second trimester of pregnancy, thus potentially altering future outcome (8, 9). Depending on
the extent of pulmonary hypoplasia, newborns with CDH often present with severe respiratory
distress at birth, requiring immediate and complex treatment (10, 11). Although significant
advances have been achieved in postnatal resuscitation and ventilation strategies over the past
decades (12, 13), CDH continues to be one of the major challenges in neonatal intensive
care with mortality rates ranging between 30 and 50% (14–16). Surgical repair of CDH is
generally performed after clinical stabilization either by primary closure or in larger defects
by reconstruction using a prosthetic patch or muscle flap (17, 18). While newer therapeutic
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measures such as gentle ventilation techniques, high-frequency
oscillation and extracorporeal membrane oxygenation have
improved overall survival rates (19–21), this has led to substantial
long-term morbidity in CDH patients (22, 23), including chronic
lung disease, gastroesophageal reflux, scoliosis, sensorineural
hearing loss and neurodevelopmental deficits (24–26).

A defect in the posterolateral diaphragm (also referred to
as Bochdalek hernia) is the most common type of CDH
and comprises approximately 80–90% of all cases, with the
majority being left-sided (85%), less often right-sided (10%),
or bilaterally (<5%) (27). The dual-hit hypothesis explains
CDH-associated pulmonary hypoplasia by an initial disruption
in bilateral lung organogenesis before diaphragm closure, in
combination with a second ipsilateral insult resulting from
the intrathoracic herniation and subsequent restriction of fetal
breathing movements (28). Typical features of pulmonary
hypoplasia in CDH are structural immaturity and smaller
lung volume with a significantly reduced number of terminal
airways, disrupted alveologenesis, diminished alveolar airspaces,
thickened alveolar walls accompanied by increased interstitial
tissue and decreased gas-exchange surface area (29). These
findings have indicated that the pulmonary anomalies in CDH
are at least partially independent of the diaphragmatic defect,
suggesting a potential developmental linkage between both
organs at a molecular level. Much of our present knowledge on
the morphogenetic lung abnormalities in CDH has derived from
experimental animal research (30–33). Because diaphragm and
pulmonary evolution is remarkably similar between mice and
humans, mouse models represent a crucial aspect in advancing
our insight into the pathogenic mechanisms underlying CDH
and associated lung hypoplasia.

This article aims to offer a comprehensive overview
of genetically modified mouse models of CDH, resultant
candidate genes and signaling pathways, whilst also discussing
new opportunities and limitations for studying altered lung
development in relation to the human situation.

OVERVIEW OF GENETICALLY MODIFIED
MOUSE MODELS OF CONGENITAL
DIAPHRAGMATIC HERNIA

A large variety of genetic factors have been found to play
key roles during the pathogenesis of CDH and pulmonary
hypoplasia. Currently, genetic causes are detected in about 30%
of CDH patients (34–36). Through recent advances in genetic
engineering technologies, genetically modified mouse models
of CDH are now frequently used in basic science research
(37), offering several potential genes and signaling pathways
involved in the etiology of diaphragmatic defects and allied lung
anomalies (Table 1).

TRANSCRIPTION FACTORS AND
TRANSCRIPTIONAL (CO-)ACTIVATORS

Numerous transcription factors and transcriptional
(co-)activators have been suggested in the development of

the primordial diaphragm and lungs. Many of them are
associated with retinoid or sonic hedgehog signaling pathways.

Retinoid Signaling Pathway
Vitamin A (i.e., retinol) and its derivates (i.e., retinoids) are
indispensable for various aspects of early embryogenesis. Over
the years, several knockout models have indicated a role of
the retinoid signaling pathway and its downstream targets in
the pathogenesis of CDH (38). For instance, mice lacking both
subtypes of retinoic acid receptors α and β (Rarα and Rarβ)
have been demonstrated to generate offspring with posterolateral
diaphragmatic defects identical to those observed in human
patients (39–44), and similar to the vitamin A-deficient CDH
mouse model as previously reported by Anderson (45, 46).
Surprisingly, single Rar null mutant mice did not display any of
the predicted malformations that were seen in rats with vitamin
A deficiency (31). Nevertheless, when the activity of several
receptors was inhibited, various deformities were noted including
right-sided CDH in Rarα/β2 and left-sided CDH in Rarα/β2+/−
animals. Moreover, these mice exhibited severe pulmonary
hypoplasia (31). Despite the convincing data, these genetically
modified mouse models manifest only a comparatively low
incidence of diaphragmatic defects and a high rate of additional
comorbidities (e.g., cranial, cardiac, vertebral and limb), which
do not accurately depict the human situation (39, 42). Still,
mutations in the stimulated by retinoic acid gene 6 (STRA6), a
membrane receptor that controls the cellular uptake of vitamin
A and cellular retinoic acid binding protein 1 (CRABP1), which is
located on chromosome 15, have been found to lead to a spectrum
of developmental anomalies including CDH and hyperplastic
lungs (47, 48).

Nr2f2 (Couptf2)
Another important gene that is linked with the retinoid signaling
pathway is chick ovalbumin upstream promoter transcription
factor II (COUP-TFII), a transcription factor that is affiliated
with the nuclear steroid/thyroid hormone receptor superfamily,
whose DNA-binding site has been shown to reduce the induction
of retinoic acid receptors (49–51). COUP-TFII was recently
renamed as nuclear receptor subfamily 2 group F (NR2F2), which
is expressed in the diaphragm and lungs during early gestation
(34). Mapped to chromosome 15q26 in humans, the NR2F2
gene is situated on a recognized CDH hotspot region, thus
making it a likely contributor to the etiology of diaphragmatic
defects. On the basis of this observation, You et al. (52) have
created a tissue-specific Nr2f2−/−mouse model that features left-
sided Bochdalek-type CDH and pulmonary hypoplasia similar
to the human situation. Through targeted ablation of Nr2f2
in the foregut mesenchyme and pleuroperitoneal folds (PPFs),
posterolateral diaphragmatic defects presumably arise because of
the failure of the posthepatic mesenchymal plate to merge with
the lateral body wall, thus enabling stomach and liver to protrude
into the chest (52).

Wt1
The creation of genetic mouse models for various other
applications has revealed several genes, which one would not
necessarily immediately associate with CDH. Initially introduced
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TABLE 1 | Genetically modified mouse models of congenital diaphragmatic hernia.

Mouse models Full gene names (functions) Diaphragmatic defects Lung abnormalities

ChAT−/− Choline actelytransferased Central hernia –

Chtop−/− or
Chtoptr/tr

Chromatin target of Prmt 1a Posterolateral hernia Hypoplasia

DNase IIα−/− Desoxyribonuclease IIαd Malformed diaphragm with hernia Lungs not inflated

Eya1−/−;Eya2−/+ Eyes absent homolog 1 and 2a Absent diaphragm Hypoplasia, reduced epithelial
branching, increased mesenchmal
cellularity

Fbn1−/− Fibrillin 1c Unspecified hernia with ruptured edges –

Fbln4−/− Fibulin 4c Severe hernia with rupture Defective distal airways, emphysema

Fras1Q1263∗/Q1263∗ † Fraser extracellular matrix complex,
subunit 1c

Retrosternal hernia (with sac) –

Frem1eyes2/eyes2† Fras1-related extracellular matrix 1c Retrosternal hernia (with sac) Long lobulation defects, fused
pulmonary lobes

Frem2ne/ne or
Frem2b2b3270Clo†

Fras1-related extracellular matrix 2c Retrosternal hernia (with sac) –

Fuzb2b1273Clo† Fuzzy planar cell polarity proteinb Unspecified hernia Hypoplasia, single left lung lobe

Gata4+/1ex2 GATA-binging protein 4a Retrosternal hernia (with sac) Dilated distal airways, increased
saccule size, thickened mesenchyme,
abnormal vasculature

Gli2−/−, Gli3−/− or
Gli2−/−;Gli3+/−

GLI familiy zinc finger 2 and 3a Posterior hernia Hypoplasia, absent right accessory
lobe, thickened mesenchyme

Hlx−/− H2.0-like homeoboxa Muscular hypoplasia with unspecified
hernia

Enlarged lungs with normal structure

Hoxb4PolII Homeobox B4a Unspecified hernia –

Kif7dd/dd† or
Kif7maki†

Kinesin family number 7a,b Posterior hernia Hypoplasia, reduced alveolar epithelial
cell differentiation

Lox−/− or
Loxb2b370.2Clo

Lysyl oxidasec,d Central hernia with rupture Hypoplasia, abnormal acini, abnormal
elastic fibers

Lrp1b2b1554Clo† Low density lipoprotein receptor-related
protein 1b,d

Unspecified hernia –

Met−/− Mesenchymal-epithelial transition
factorb

Amascular diaphragm with hernia Abnormal saccule morphology

Mtpa−/− Mitochondrial trifunctional enzyme αd Unspecified lesions –

MyoR−/− (Msc−/−);
Cap−/− (Tcf21−/−)

Myogenic bHLH transcription factor R
(Musculin)a; Transcription factor 21
(Capsulin)a

Posterior hernia Hypoplasia, defective branching
morphogenesis, abscence of alveoli,
abnormal vasculature

Ndst1ECKO N-deacetylase-N-sulfotransferase 1b Central hernia Thick interalveolar septa

Nr2f2−/−

(Couptf2−/−)
Nuclear receptor subfamily 2, group F,
number 2 (Chicken ovalbumin upstream
promoter transcription factor 2)a

Posterolateral hernia Hypoplasia

Pbx1−/− Pre-B-cell leukemia transcription factor
1a,b

Muscularization and tissue patterning
defect

Hypoplasia, alveolar simplification

Pdgfrα−/− Platelet-derived growth factor receptor,
α-polypeptideb

Posterolateral hernia Hypoplasia, failure of alveogenesis

Pls3W499C Plastin 3b,c Posterolateral and anterior muscular
thinning, hernia

–

Rarα−/−;Rarβ−/− Retinoic acid receptor α and βa Posterior hernia Hypoplasia, abnormal alveoli, lung
agenesis

Robo1−/−;Robo2−/−

or Dutt1;Robo1−/−
Roundabout guidance receptor 1 and
2b

Posterior hernia Irregular bronchioles, reduced terminal
air spaces, abnormal alveoli, thick septa

Six1−/− Six homeobox 1a,b Absent diaphragm Hypoplasia, reduced branching
morphogenesis, narrow bronchi,
arrested expansion of epithelial tubules,
dense mesenchymal cellularity, failure of
lung maturation

Slit3−/− Slit guidance ligand 3b Central hernia (with sac) –

Sox7+/1ex2 Sex determining region Y-box 7a Retrosternal hernia (with sac) –

(Continued)
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TABLE 1 | (Continued)

Mouse models Full gene names (functions) Diaphragmatic defects Lung abnormalities

Wdr35yet/yet† WD repeat domain 35d Unspecified hernia Hypoplasia

Wt1−/− or
conditinal
knockouts (e.g.,
Wt1CreERT2/+;Bcatfx

or G2-
Gata4Cre;Wt1fl/fl)

Wilms tumor 1a;β-catenina Posterolateral hernia Hypoplasia, abnormally fused and
malformed lung lobes, collapsed distal
air spaces

Zfpm2−/−

(Fog2−/−)†
Zinc finger protein, multitype 2 (Friend
of GATA-binding protein 2)a

Posterolateral hernia (with sac) Hypoplasia, absent right middle and
accessory lobe

†Chemically induced by N-ethyl-N-nitrosourea. aTranscription factor or transcriptional (co-)activator. bCell migration, proliferation or mesodermal patterning. cFormation
of extracellular matrix. dSignal transduction or apoptosis.

as a model for the investigation of early urogenital organogenesis
(53), Wilm’s tumor 1 (Wt1) null mutant mice die during
mid-gestation, displaying posterolateral diaphragmatic defects
and lung hypoplasia alongside urogenital abnormalities (54–
56). Heterozygous mutations of the WT1 gene, which encodes
a transcription factor that contains four zinc finger motifs,
is known to produce distinct syndromes with clinical overlap
that include CDH (e.g., Denys-Drash syndrome or Meacham
syndrome) (57, 58). Wt1−/−, vitamin A-deficient and nitrofen
mouse models of CDH each implied a mutual pathomechanism
for the formation of diaphragmatic defects with several analogies
to the condition in humans (59). More recently, Carmona et al.
(60) and Cleal et al. (61) have reported that conditional deletion
of Wt1 in the mesenchyme of the septum transversum can cause
CDH in mice. Today, it is proven that Wt1 and Couptf2 both
interact with the retinoid signaling pathway during embryonic
development (3). Surprisingly, Wt1 and Couptf2 are not found
in the muscle precursors but in the non-muscular mesenchymal
compartment of the PPFs (3). Paris et al. (62) have developed a
novel genetically modified mouse model of CDH, demonstrating
that Wt1-induced β-catenin loss-of-function produces posterior
diaphragmatic defects, bilateral pulmonary hypoplasia and liver
herniation, comparable to the phenotypes associated with
CDH in human patients. Additionally, a decreased mesothelial
proliferation and increased rate of cell death was identified in
the posterior diaphragm mesenchyme, and all mouse pups died
postnatally with malformed lung lobes and collapsed distal air
spaces (62). Loss of Wt1 has also been associated with lung
branching defects before diaphragm closure in another genetic
model of CDH (63).

Sonic Hedgehog Signaling Pathway
GLI-Kruppel family member 2 (Gli2) and Gli3 and are both
members of a highly conserved morphogenetic family, belonging
to the sonic hedgehog (Shh) signaling pathway (64). This
pathway is thought to be crucial during normal diaphragmatic
development (36). A murine model of the VACTERL-like
syndrome (i.e., vertebral, anorectal, cardiac, tracheoesophageal,
renal and limb anomalies) created by Kim et al. (65) involved
Gli2−/−;Gli3−/− and Gli2−/−;Gli3+/− mice that developed left-
sided posterior CDH and pulmonary hypoplasia besides the
observed VACTERL components. This was the first experimental

model that reproduced the human VACTERL association,
indicating that disruptions in Shh signaling might contribute
to the pathogenesis of VACTERL syndrome. Likewise, as Gli2,
Gli3 and Wt1 all encode important zinc finger proteins, further
transcription factors of this type have been hypothesized through
the generation of newer genetic animal models of CDH.
For example, kinesin family member 7 (Kif7) and pre-B-cell
leukemia transcription factor 1 (Pbx1) were recently recognized
as indispensable components of the Shh signaling pathway,
functioning as regulators during early embryogenesis (66, 67).
Kif7 encodes a motor protein that functions downstream of
the transmembrane receptor smoothened, and interacts with
both Gli2 and Gli3 (68). Furthermore, Kif7 was found to
coordinate cell proliferation, central tendon patterning and
differentiation of the primordial diaphragm in a genetically
modified mouse model of CDH (69). Homozygous Kif7dd/dd

mutant mice and Pbx1−/− knockout mice both display left-
sided posterior diaphragmatic defects and hypoplastic lungs
(36, 69–71). In turn, haploinsufficieny of PBX1 has been
associated with various congenital anomalies including CDH
(72). Moreover, two predicted variants in the KIF7 gene were
recently detected in patients with CDH (73). Additionally, mice
lacking chromatin target of protein arginine methyltransferase 1
(Chtop) have numerous developmental abnormalities including
posterolateral defects in the diaphragm, pulmonary hypoplasia
and liver herniation (74–76). High-resolution 3D imaging further
characterized these diaphragmatic defects in Chtop−/− mice
embryos (77).

Zfpm2 (Fog2), Gata4 and Sox7
Zinc finger protein 2 (ZFPM2), formerly known as friend of
GATA-binding protein 2 (FOG2), encodes another zinc finger-
containing protein that regulates the transcriptional activity
of GATA4, hereby controlling a number of developmental
mechanisms in the forming diaphragm and lung (78–81).
In mice, Fog2 was initially found to be expressed in the
embryonic septum transversum of the diaphragm (81). In
humans, ZFPM2 is located on chromosome 8p23 and has been
demonstrated to interact with COUP-TFII (82, 83). However,
only a single mutation in the ZFPM2 gene has been identified
in isolated patients with non-syndromic CDH to date (31).
In a cohort of 275 patients with CDH, Longoni et al. (84)
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have recently reported the incidence of ZFPM2 mutations
to be nearly 5%. In addition, their genetic analysis of a
multigenerational family revealed a heritable intragenic ZFPM2
deletion with an approximated penetrance for clinical relevant
diaphragmatic defects of around 37.5% (84). On the other side,
mice exposed to the chemical mutagen N-ethyl-N-nitrosourea
(ENU) generated Fog2−/− offspring with bilateral hypoplastic
lungs and a defective posterolateral diaphragm characteristic
of CDH (80), while 70% of mice heterozygous for a Gata4
deletion mutation (i.e., Gata4+/1ex2) displayed retrosternal
diaphragmatic defects, dilated distal airways and thickened
pulmonary mesenchyme (85). Using genetically modified mice,
Merrell et al. (86) have shown that Gata4 mosaic mutations
in PPF-derived muscle connective tissue fibroblasts led to the
development of localized amuscular regions of the diaphragm,
which were biomechanically weaker and subsequently caused
CDH. GATA4 and ZFPM2 genes have been both found to be
absent in humans with CDH (78), emphasizing their roles as
possible candidate genes for CDH. Moreover, Zfpm2 is known to
interact with Nr2f2, indicating that these two transcription factors
together with Gata4 may contribute to diaphragm formation
(83). Recurrent microdeletions of 8p23.1, including GATA4 and
the sex determining region Y-box 7 (SOX7) gene are accompanied
with a significant risk of CDH and cardiovascular anomalies
(87). Even though mice lacking the Gata4 gene display both
diaphragmatic and cardiac defects, no human patient with
cardiac anomalies and GATA4 mutations have been identified
with CDH so far (87). However, Wat et al. (87) have recently
demonstrated that haploinsufficiency of Sox7 or Gata4 is enough
to cause retrosternal diaphragmatic defects in mice and that
haploinsufficiency of SOX7 and GATA4 may in turn be involved
in the pathogenesis of CDH in patients with 8p23.1 deletions.

Cap (Tcf21) and MyoR (Msc)
Several basic helix-loop-helix transcription factors have been
shown to support the development of the primordial diaphragm
in mice. Capsulin (Cap) is one of those, which is strongly
expressed in the fetal diaphragm and in mesenchymal cells of
the lung (88). As one might expect, Cap+/− mice have severe
defects in lung morphogenesis and lack alveoli (89). On the
other hand, mice homozygous deficient for both cap−/− and the
related myogenic bHLH transcription factor R (MyoR−/−) lack
facial musculature and exhibit posterior diaphragmatic defects.
This double mutant mouse model, which was generated at first to
study the formation of facial muscles, displayed not only CDH
and defective lung branching morphogenesis but also severe
facial muscle abnormalities (90). Although these genetically
modified mice died soon after birth because of pulmonary and
cardiac malformations, the type of diaphragmatic defect seen in
this model indicates that both Cap and MyoR are necessary for
the integrity of the developing diaphragm. Previously, these genes
were referred to as transcription factor 21 (Tcf21) and musculin
(Msc), respectively (90, 91).

Eya1 and Six1
Eyes absent (Eya) genes and the transcription factor sine oculis
homebox 1 (Six1) form an important signaling network, which

plays a central role during embryonic development (92, 93).
Eya1 and Six1 together constitute an evolutionary conserved
transcriptional complex that coordinates multiple integrated
processes needed for normal growth of the primordial diaphragm
and lung (94). Further research work has confirmed that the
Eya1-Six1 pathway has a key role in lung maturation by
regulating its branching morphogenesis (95). Mice deficient in
Eya1−/− and Eya2−/+ have no diaphragm (94), whereas single
mutant Eya1 mice die shortly after birth due to respiratory
failure, having severely hypoplastic lungs with reduced epithelial
branching and increased mesenchymal cellularity (95). In
Six1−/− mice, the diaphragm is also absent, and the Six1 deletion
causes pulmonary hypoplasia with greatly reduced epithelial
branching, narrow bronchi, dense mesenchyme and obvious
failure of normal lung maturation (96, 97). These findings
indicate that disruption of the Eya1-Six1 signaling pathway
may lead to neonatal lethality as a consequence of an absent
diaphragm and hypoplastic lungs.

Hlx and Hoxb4
H2.0-like homeobox (Hlx) is a protein coding gene that is
relatively conserved across various species (98). This homeobox
transcription factor has been found to be highly expressed
during early organogenesis in the septum transversum of the
diaphragm and lung mesenchyme (99, 100). Hlx−/− mice
suffered early demise and showed diaphragmatic defects (101).
Additionally, Farrell et al. (102) reported two human fetuses
with multiple congenital anomalies including CDH that were
homozygous for a missense variant in the HLX gene. The
Hox gene family encodes for multiple transcription factors that
have crucial regulatory functions during embryonic development
(103). Targeted mutation of the homeobox B4 (Hoxb4) gene in
mice resulted in offspring with poorly formed diaphragms and
diaphragmatic defects, strikingly similar to the phenotype seen in
humans with anterior CDH (104).

MOLECULES IMPLICATED IN CELL
MIGRATION, PROLIFERATION AND
MESODERMAL PATTERNING

Various genes and enzymes involved in cell migration,
proliferation and mesodermal patterning have been found to be
associated with embryonic diaphragm and lung development.

Slit3, Robo1/2, Ndst1 and Pdgfra
The Slit guidance ligand (Slit) family of proteins comprise a
group of molecules with crucial functions in cell migration
and adhesion through interaction with roundabout (Robo)
receptors. Slit genes are expressed in the mesothelium of the
diaphragm during embryogenesis (105). Homozygous Slit3−/−
mice experience faulty detachment of the central tendon region of
the diaphragm from the underlying liver due to connective tissue
defects, thus causing central-type (i.e., septum transversum)
CDH (105, 106). Therefore, this genetically modified model
is facing the disadvantage of having the diaphragmatic defect
on or near the ventral midline portion of the central tendon
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as opposed to the posterolateral diaphragm, thus representing
less than 5% of CDH cases seen in human patients. Further
malformations in this mouse model include ureteric and renal
agenesis in combination with intrathoracic herniation of liver
and gallbladder (106), which again occurs infrequently in humans
with CDH. Until now, no SLIT3 mutations have been identified
in CDH patients. Robo genes encode large transmembrane
receptors that are involved together with their ligands in numerus
developmental mechanisms (107–109). For example, the Slit-
Robo signaling pathway has been reported to have various
fundamental functions including axon guidance, neural crest cell
migration, epithelial cell adhesion, embryonic heart formation as
well as diaphragm and kidney development (105–107, 110–114).
Inactivation of Robo1 and Robo2 genes in mice has been shown
to cause diaphragmatic defects and subsequent herniation of the
stomach into the thorax, which leads to poor lung inflation and
perinatal death, similar to human CDH cases (107). Homozygous
mice with targeted deletion in the Dutt1/Robo1 gene often die
at birth due to respiratory failure, demonstrating delayed lung
maturation and diaphragmatic defects in some instances (115).
More recent studies identified the heparan sulfate proteoglycan
as an essential part of the Slit-Robo signaling complex, which
stabilizes the Slit-Robo interaction (116). Furthermore, Zhang
et al. (117) have noted that absence of the heparan sulfate
biosynthetic enzyme N-deacetylase-N-sulfotransferase-1 (Ndst1)
in the mouse endothelium interferes with vascular development
in the primordial diaphragm, resulting in hypoxia as well as
diaphragmatic hypoplasia and central-type CDH. The observed
phenotypes in these animals mirror the congenital anomalies
seen in Slit3 knockout mice. In addition, implementation of
a heterozygous mutation in the Robo4 gene, which encodes
the receptor of Slit3, exacerbated the defect in vascular and
diaphragmatic formation (117). Thus, these findings suggest
that loss of Ndst1 may lead to abnormal vasculogenesis
in the diaphragm and CDH and that heparan sulfate in
turn promotes the angiogenic Slit3-Robo4 signaling cascade
during normal vascular patterning. Apart from this, mice
homozygous for null mutations in the platelet-derived growth
factor receptor α (Pdgfra) gene exhibit not only posterolateral
diaphragmatic defects, they also develop a spectrum of other
comorbidities including cardiovascular anomalies, renal and
urogenital malformations, facial clefts, lung hypoplasia and
failure of alveogenesis (118, 119).

Fuz, Met and Pls3
Inbred C57BL/6J mice chemically mutagenized with ENU
displayed a previously unknown mutation in the fuzzy planar
cell polarity protein (Fuz) that was associated with CDH, liver
protrusion into the chest cavity and pulmonary hypoplasia with a
single left lung lobe (120). The mesenchymal-epithelial transition
factor (Met) gene encodes for a receptor tyrosine kinase that
is necessary for the migration of muscle precursor cells into
the forming diaphragm (121), whereas fibroblast growth factor
10 (Fgf10) is crucial for early organogenesis of the lung (122).
Oral administration of the herbicide nitrofen in Met−/− mice
with amuscular diaphragms and Fgf10−/− mice with hypoplastic
lungs resulted in CDH in both murine models, indicating that

diaphragmatic defects may develop independently of myogenesis
and pulmonary development (123). A novel missense variant
affecting the actin-binding domains of plastin 3 (PLS3) was
recently identified in eight unrelated families, causing X-linked
CDH and body wall defects. A genetically modified mouse
model of this Pls3W499C variant resulted in perinatal death and
reproduced the main features of the human phenotype, including
diaphragmatic and body wall abnormalities (124). An abnormal
plastin-actin interaction is the most likely explanation for the
observed congenital malformation in both humans and mice.

COMPONENTS INVOLVED IN THE
FORMATION OF EXTRACELLULAR
MATRIX

Normal development of the primordial diaphragm and
lung is also dependent on the proper formation of its
underlying extracellular matrix (ECM). Today, several
components of the ECM are known to be aberrant in CDH
and associated lung defects.

Fraser extracellular matrix complex subunit 1 (Fras1), Fras1-
related extracellular matrix 1 (Frem1) and Frem2 form a mutually
stabilizing ternary complex in the ECM, which plays a critical
role in cell adhesion and intercellular signaling (125, 126).
After identification of a novel FREM1 deletion in a female
infant with isolated left-sided CDH and a membranous sac,
Beck et al. (127) developed a Frem1-deficient mouse model that
displays a comparable phenotype with retrosternal diaphragmatic
defect and reduced levels of cell proliferation in the anterior
portion of the growing diaphragm, hereby showing that a
deficit of FREM1 can lead to CDH in both humans and mice.
Because of the observed phenotypic similarities between Frem1-
deficient mice and mice lacking the retinoic acid-responsive
transcription factor Gata4, the same author group conducted
further studies, revealing that Frem1 interacts not only with
Gata4 but also with Slit3 in this mouse model of CDH and
concomitant lung lobulation defects (128). More recently, Jordan
et al. (129) reported that Frem2ne/ne and Fras1Q1263∗/Q1263∗ mice
developed an almost identical type of anterior midline CDH
with herniated viscera covered by a thin membranous sac as
seen in Frem1-defcient mice, thus concluding that loss of the
Frem1/Frem2/Fras1 complex or its function results in retrosternal
CDH in these animals. The cross-linking of collagens and elastin,
which is essential for the structural stability of the ECM, is
catalyzed by lysyl oxidase (Lox), an extracellular cuproenzyme
(130). In turn, Lox−/− mice die at birth, having a ruptured
diaphragm as a result of fragmentation in the central tendon (131,
132). However, no human LOX mutations have been reported
so far. Another ECM protein associated with the pathogenesis
of CDH is fibrillin 1 (Fbn1), an integral part of microfibrils
in elastic and non-elastic connective tissues (133). A gene-
targeting mutation of the mouse Fbn1 gene has been associated
with diaphragmatic defects and histological examination revealed
a focal inflammatory infiltrate at the ruptured edges (134).
These homozygous Fbn1−/− mutant mice died postnatally due
to pulmonary insufficiency, exhibiting CDH and herniation of
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abdominal viscera into the thoracic cavity (134). Fibulin 4 (Fbln4)
also belongs to a family of ECM proteins, which controls fiber
assembly and is known to bind Lox (135). Fbln4 null mutant
mice die just after birth with severe CDH and rupture of the
diaphragm, in addition to defective distal airways and lung
emphysema (136).

ADDITIONAL GENES AND ENZYMES
PARTICIPATING IN SIGNAL
TRANSDUCTION AND APOPTOSIS

Several other genes and enzymes responsible for signal
transduction, intracellular signaling and apoptosis have been
discovered in association with diaphragmatic defects in
genetically modified mouse models.

The acetylcholine-synthesizing enzyme choline acetyltransferase
(ChAT) has been reported to be implicated in various
morphogenetic processes during embryonic development (137,
138). In fact, cross-sections of the diaphragm from ChAT−/−
mice showed liver herniation through the tendinous center of
the diaphragm (139), presumably as a consequence of impaired
muscle formation. Deoxyribonuclease IIα (DNase IIα) belongs
to a large group of endonucleases involved in DNA digestion
during apoptosis. DNase IIα−/− mice displayed a malformed
diaphragm with hernia and non-inflated lungs, suggesting that
these animals suffer perinatal lethality because of a dysfunctional
diaphragm and associated respiratory insufficiency (140). Low-
density lipoprotein receptor-related protein 1 (Lrp1) is crucial
for proper embryonic development through regulation of
intracellular signaling cascades (141). ENU-induced mutation
in the Lrp1 gene of mice resulted in body wall closure defects
with CDH and liver protruding outside of the abdominal
cavity (142). Mitochondrial trifunctional protein (Mtp) is a
multi-enzyme complex of four α and four β subunits that
catalyzes oxidation of long-chain fatty acids, which is essential
for normal embryogenesis (143). Mtpα−/− knockout mice
suffer neonatal death with cardiac and diaphragmatic defects,
indicating that deficiency of Mtpa may cause dysfunction
of the diaphragm and subsequent respiratory insufficiency
(143). WD repeat domain 35 (Wdr35) is a protein coding
gene, which participates in intracellular trafficking, cargo
recognition and binding during embryonic development (144).
Following a recessive ENU mutagenesis screen for genes affecting
embryogenesis, Mill et al. (144) noticed that mutant Wdr35yet/yet

mice embryos died before birth, displaying diaphragmatic defects
and hypoplastic lungs.

CONCLUSION AND FUTURE
DIRECTIONS

Over the years, experimental animal models of CDH have not
only permitted us to investigate the pathogenesis of this relatively
common but complex birth defect in more detail, they have
also led to a better understanding of the molecular genetic basis
of the underlying tissue defects. Therefore, animals with CDH
in which this congenital anomaly develops naturally represent
the ideal research models to study disease pathomechanisms
and related lung abnormalities, as there is minimal interference
to the animal before the examination. Furthermore, genetically
modified animal models of CDH not only resemble the natural
development of this malformation, they also provide new insights
into the participating genes and signaling pathways, and how
their modification can potentially change the course of this
life-threatening condition. With the recent advent of novel
molecular techniques including biomedical engineering and
ENU mutagenesis screens, we hopefully may identify additional
CDH-related mutations that are linked with abnormal diaphragm
and lung development in other genetic mouse models (145–147).
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