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Abstract

The WU-Minn Human Connectome Project (HCP) is a publicly-available dataset containing state-of-the-art
structural magnetic resonance imaging (MRI), functional MRI (fMRI), and diffusion MRI (dMRI) for over a thou-
sand healthy subjects. While the planned scope of the HCP included an anatomic connectome, resting-state
fMRI (rs-fMRI) forms the bulk of the HCP’s current connectomic output. We address this by presenting a full-
cortex connectome derived from probabilistic diffusion tractography and organized into the HCP-MMP1.0
atlas. Probabilistic methods and large sample sizes are preferable for whole-connectome mapping as they in-
crease the fidelity of traced low-probability connections. We find that overall, connection strengths are lognor-
mally distributed and decay exponentially with tract length, that connectivity reasonably matches macaque
histologic tracing in homologous areas, that contralateral homologs and left-lateralized language areas are hy-
perconnected, and that hierarchical similarity influences connectivity. We compare the dMRI connectome to
existing rs-fMRI and cortico-cortico-evoked potential connectivity matrices and find that it is more similar to
the latter. This work helps fulfill the promise of the HCP and will make possible comparisons between the
underlying structural connectome and functional connectomes of various modalities, brain states, and clinical
conditions.
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Significance Statement

The tracts between cortical parcels can be estimated from diffusion magnetic resonance imaging (dMRI),
but most studies concentrate on only the largest connections. Here, we present an atlas, the largest and
most detailed of its kind, showing connections among all cortical parcels. Connectivity is relatively en-
hanced between frontotemporal language areas and homologous contralateral locations. We find that con-
nectivity decays with fiber tract distance more slowly than predicted by brain volume and that structural and
stimulation-derived connectivity are more similar to each other than to resting-state functional MRI (rs-fMRI)
correlations. The connectome presented is publicly available and organized into a commonly used scheme
for defining brain areas to enable ready comparison to other brain imaging datasets of various modalities.

Introduction
In the 21st century, advances in computation, theory, and

neuroimaging have spurred a broad and intense interest in
the anatomic connections and physiological correlations
among human brain areas. Bivariate functional connectivity
has given way to full functional connectomes, the most

comprehensive of which may be the WU-Minn Human
Connectome Project (HCP)’s resting-state functional mag-
netic resonance imaging (rs-fMRI) dense connectome (Van
Essen et al., 2013). The planned scope of WU-Minn HCP
also included a full anatomic connectome (Van Essen and
Ugurbil, 2017), and the project has collected, curated, and
preprocessed diffusion MRI (dMRI) data for 1065 subjects.

Received September 24, 2020; accepted November 19, 2020; First published
January 15, 2021.
The authors declare no competing financial interests.

Author contributions: B.Q.R. and E.H. designed research; B.Q.R. performed
research; B.Q.R. analyzed data; B.Q.R. and E.H. wrote the paper.

January/February 2021, 8(1) ENEURO.0416-20.2020 1–21

Research Article: New Research

https://doi.org/10.1523/ENEURO.0416-20.2020


However, a structural connectome has to date not been re-
leased for these data. This report seeks to address this
omission by presenting a full-cortex anatomic connectome
derived from local, probabilistic tractography.
dMRI techniques detect white matter by registering the

orientation biases of water molecule diffusion within my-
elinated axons. The majority of dMRI studies focus on dif-
ferences in specific connections between treatment
groups. In contrast, we seek here to present a robust,
densely populated average connectivity matrix for the en-
tire cortex using data from a large, healthy sample. Local
dMRI fiber tract tracing algorithms can be broadly or-
ganized into two classes: deterministic, e.g., dsi-studio
(Yeh et al., 2013), and probabilistic, e.g., probtrackX
(Behrens et al., 2007). Deterministic tractography con-
siders the most likely orientation at each voxel yielding
the maximum likelihood tracts whereas probabilistic
tractography considers the entire distribution of possi-
ble orientations, yielding a probability cloud of connec-
tions. As our goal is instead to explore all possible
connections between regions, we employed local,
probabilistic tractography (Behrens et al., 2007). This
method has been validated against macaque retro-
grade tracers within-species (Donahue et al., 2016),
and the dMRI protocol and equipment used for the WU-
Minn HCP database were optimized in anticipation of
this analysis (Sotiropoulos et al., 2013).
The physiological relevance of a connectome is maxi-

mized if its nodes form functionally distinct areas. Within
the scope of cortex, this amounts to selecting a parcella-
tion scheme. The HCP multimodal parcellation (HCP-
MMP1.0; Glasser et al., 2016) has several advantages: its
boundaries are both functionally and anatomically guided,
it has sufficient parcels (360) to generate a rich connec-
tome while few enough that the parcels’ extents comfort-
ably exceed the dMRI voxel size, and mechanisms exist
(Fischl et al., 2004) for it to be readily applied to individu-
als. Most importantly, the HCP-MMP1.0 parcellation is
publicly available and widely adopted, facilitating the
comparison of the generated matrices to other structural
and functional connectomes.
Given the computational intensity of dMRI fiber tractog-

raphy and the field’s inclination toward elucidating

specific connections, it is not surprising that the number of
existing publicly available dMRI datasets exceeds that
of finished, readily applicable connectivity matrices.
However, there do exist some prior examples. A brief
overview of the advantages of this dMRI connectome
compared to the USC Multimodal connectivity
database (http://umcd.humanconnectomeproject.org) con-
tains two dMRI tractography connectomes with standard
surface-based parcellations: Hagmann (Hagmann et al.,
2008) and ICBM (Mori et al., 2008), with sample-sizes of 5
and 138, respectively. A third is available at http://www.
dutchconnectomelab.nl, which contains 114 controls. All of
these use the Desikan–Killiany atlas (Desikan et al., 2006),
which consists of 68 cortical parcels, and were produced
with deterministic tractography. An atlas of major fiber tracts
for the HCP 1200 cohort has recently released at http://
brain.labsolver.org (Yeh et al., 2018). However, this deter-
ministic tractography connectome is spatially coarse,
consisting of only 54 cortical parcels, and lacks dynamic
range and statistical dispersion, as weaker connections
are unrepresented, rendering the connectivity matrix
nearly binary. The HCP-MMP1.0 atlas employed here has
more than five times as many parcels while retaining the
functional distinctness of areas. In contrast to the rela-
tively sparse existing deterministic matrices, the probabil-
istic approach may better resolve weak or low probability
connections leading to densely populated connectivity
matrices like those found non-human primate tracing
studies (Markov et al., 2014). Furthermore, the cohort
studied is large and many other types of data are available
for the same individuals including the National Institutes
of Health (NIH) neuropsychological toolbox (Gershon et
al., 2013), as well as fMRI and magneto-encephalography
(MEG) data for resting-state and cognitive tasks, permit-
ting within-cohort comparison to functional connectivity.
See Table 1 for a brief overview of the advantages of the
dMRI connectome described here.
The following report presents a novel structural connec-

tome of the human neocortex based on probabilistic diffusion
tractography. The connectome is partially validated against
retrograde tracing in macaques and the relationship between
tract length and connection strength is quantified. Further val-
idation is provided by reasonable connectivity properties be-
tween contralateral homologous parcels, within language
cortex, and between parcels lying at similar levels of the corti-
cal hierarchy. Finally, the dMRI connectome is compared
with cortico-cortico evoke potential (CCEP) and rs-fMRI de-
rived connectivity.

Materials and Methods
Subjects and data sources
No new data were collected for this study, and the existing

data used was gathered from publicly available databases.
Individual subject’s high-resolution T1-weighted structural
magnetic resonance volumes (MRI), diffusion images (dMRI),
and group average grayordinate resting-state function MRI
(rs-fMRI) connectivity were gathered from the HCP’s WU-
Minn 1200 release (Van Essen et al., 2013) at https://db.
humanconnectome.org. The diffusion imaging dataset
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consists of 1065 individuals (575 women), aged 22–361
years old. The rs-fMRI group average cohort consists of 1003
individuals, 998 of whom are also in the dMRI dataset. These
datasets include some twin and non-twin siblings. However,
individuals’ family structure, as well as exact age, handed-
ness, and ethnicity are access-restricted to protect the pri-
vacy of the subjects and these data were not requested as
they are not critical to this study. Group-average dense T1w/
T2w myelination index were gathered from the same source.
Macaque retrograde tracer connectivity was sourced from
Markov et al. (2014; their supplementary table 6). Parcel-by-
parcel values were averaged across monkey and hemi-
sphere. Group average, parcellated CCEP connectivity was
gathered from the v1903 release of the Functional Brain
Tractography project (F-TRACT; David et al., 2013; Trebaul et
al., 2018) at https://f-tract.eu.

Cortical parcellation and functional networks
The HCP multimodal parcellation scheme (HCP-MMP1.0),

consisting of 180 cortical parcels per hemisphere, was pro-
jected from the Workbench (Marcus et al., 2011) 32k
grayordinate template brain to the FreeSurfer (Fischl, 2012)
ico5 fsaverage template as per (Coalson et al., 2016).
Using the FreeSurfer reconstruction directories gathered
from the database, surface-based fsaverage parcel labels
were mapped onto each individual’s white matter surface
using spherical landmark registration (fs_label2label;
Fischl et al., 1999). Grayordinate rs-fMRI connectivity val-
ues were morphed to the ico5 fsaverage template then
averaged within each parcel. Finally, individual’s surface-
based parcel labels were converted to binary volumes
marking the gray matter–white matter boundary (mri_la-
bel2vol) to serve as seed and target regions for probabil-
istic tractography. Workbench and FreeSurfer functions
were sourced from releases 1.2.3 and 6.0, respectively.
To facilitate interpretation of the connectome, parcels

were ordered and grouped into functional networks
adapted from (Ji et al., 2019), which applied iterative
Louvain clustering (Blondel et al., 2008; Rubinov and
Sporns, 2010) and other criteria to a rs-fMRI connectivity.
These functional groupings and parcel order were selected
as they were also generated using (a subset of) the WU-
Minn HCP dataset and the HCP-MMP1.0 parcellation
scheme. For this study, the parcels of the left and right hemi-
spheres were separated and the order and groupings of the
left hemisphere in Ji et al. (2019) were used for homologous
parcels in the both right and left hemisphere, respectively,
when combining data across hemispheres. Two pairs of the
original networks (primary and secondary visual, ventral,
and posterior multimodal) contained too few parcels for ef-
fective analysis and were highly interrelated. These network
pairs were simplified by combining them into visual andmul-
timodal groups, yielding 10 functional networks per hemi-
sphere (Table 2).

Probabilistic tractography
All analysis of diffusion imaging data were performed

with FSL (Behrens et al., 2007; Jenkinson et al., 2012) re-
lease 6.0.1. Analyses were performed identically for each

subject and broadly follow (Burns, 2014). The diffusion
and bedpostX precursor directories made available
from the HCP database were used as inputs without
modification. The WU-Minn HCP diffusion data are cor-
rected for eddy currents and movement with FSL eddy
(Andersson and Sotiropoulos, 2016). Subjects’ esti-
mated displacement over time from their initial position
is written to the eddy_restricted_movement_rms out-
put. Using these data, a scalar index of each subject’s
motion was derived by integrating their displacement
over time.
Fractional anisotropy (FA) analysis was performed

using dtifit. The resulting FA volumes were not ana-
lyzed but only used for registering the FreeSurfer and
dMRI volumes (flirt), as is necessary to map the parcel
masks into dMRI space (probtrackx2 arguments –xfm
–seedref). Non-invasive probabilistic tractography was
performed with probtrackx2 in voxel-by-parcel mode
(–os2t –s2tastext). In this configuration, the number
and length of streamlines (–ompl –opd) is estimated from
each voxel in the seed parcel to each target parcel as a
whole. To aid parallelization of these computationally in-
tensive processes, the list of target parcels (–target-
masks) was quartered into four sublists. Therefore,
probtrackx2 was invoked 1440 times per subject, esti-
mating the connectivity between 1 seed parcel and 90 tar-
get parcels in each invocation. The default ½ voxel step
length, 5000 samples and 2000 steps were used (–step-
length 0.5 -P 5000 -S 2000). To avoid artifactual
loops, streamlines that loop back on themselves were dis-
carded (-l) and tractography was constrained by a 90°
threshold (-c 0) for maximal curvature between succes-
sive steps. Within-parcel connectivity and cotico-subcort-
ical connectivity were not examined in this study. All post
hoc analyses and visualization of connectivity data were
performed in MATLAB 2019b (MathWorks) except for
Figure 1C, which was rendered in fsleyes.

Normalization and symmetrization
Raw streamline counts were averaged across all

subjects, then normalized and symmetrized following
procedure developed for non-human primate histo-
logic tracing (Donahue et al., 2016; Theodoni et al.,
2020). Briefly, fractionally scaled values are defined as
the ratio of the number of streamlines originating at
parcel A and terminating at parcel B to the total num-
ber of streamlines that either originate at parcel A or
terminate at parcel B while excluding within-parcel
connections.

Table 1: Connectome features

Connectome Features
Probabilistic methodology sensitive to weak connections yield-
ing a fully-populated, un-thresholded connectome

Cortex parcellated into the standardized, relatively dense, and
functionally relevant HCP-MMP1.0 atlas

Large normative sample size (N=1065)
Enables comparison with other measures in the WU-Minn HCP
and other cohorts
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Table 2: Parcel order and network assignment

Idx. Parcel Orig. Network Idx. Parcel Orig. Network Idx. Parcel Orig. Network
1 V1 1 Cingulo-opercular 61 46 84 Cingulo-opercular 121 IP1 145 Frontoparietal
2 ProS 121 Visual 62 9-46d 86 Cingulo-opercular 122 PFm 149 Frontoparietal
3 DVT 142 Visual 63 43 99 Cingulo-opercular 123 p10p 170 Frontoparietal
4 MST 2 Visual 64 PFcm 105 Cingulo-opercular 124 p47r 171 Frontoparietal
5 V6 3 Visual 65 PoI2 106 Cingulo-opercular 125 A1 24 Auditory
6 V2 4 Visual 66 FOP4 108 Cingulo-opercular 126 52 103 Auditory
7 V3 5 Visual 67 MI 109 Cingulo-opercular 127 RI 104 Auditory
8 V4 6 Visual 68 FOP1 113 Cingulo-opercular 128 TA2 107 Auditory
9 V8 7 Visual 69 FOP3 114 Cingulo-opercular 129 PBelt 124 Auditory
10 V3A 13 Visual 70 PFop 147 Cingulo-opercular 130 MBelt 173 Auditory
11 V7 16 Visual 71 PF 148 Cingulo-opercular 131 LBelt 174 Auditory
12 IPS1 17 Visual 72 PoI1 167 Cingulo-opercular 132 A4 175 Auditory
13 FFC 18 Visual 73 FOP5 169 Cingulo-opercular 133 7m 30 Default mode
14 V3B 19 Visual 74 PI 178 Cingulo-opercular 134 POS1 31 Default mode
15 LO1 20 Visual 75 a32pr 179 Cingulo-opercular 135 23d 32 Default mode
16 LO2 21 Visual 76 p24 180 Cingulo-opercular 136 v23ab 33 Default mode
17 PIT 22 Visual 77 PEF 11 Dorsal attention 137 d23ab 34 Default mode
18 MT 23 Visual 78 7PL 46 Dorsal attention 138 31pv 35 Default mode
19 LIPv 48 Visual 79 MIP 50 Dorsal attention 139 a24 61 Default mode
20 VIP 49 Visual 80 LIPd 95 Dorsal attention 140 d32 62 Default mode
21 PH 138 Visual 81 6a 96 Dorsal attention 141 p32 64 Default mode
22 V6A 152 Visual 82 PFt 116 Dorsal attention 142 10r 65 Default mode
23 VMV1 153 Visual 83 AIP 117 Dorsal attention 143 47m 66 Default mode
24 VMV3 154 Visual 84 PHA3 127 Dorsal attention 144 8Av 67 Default mode
25 V4t 156 Visual 85 TE2p 136 Dorsal attention 145 8Ad 68 Default mode
26 FST 157 Visual 86 PHT 137 Dorsal attention 146 9m 69 Default mode
27 V3CD 158 Visual 87 PGp 143 Dorsal attention 147 8BL 70 Default mode
28 LO3 159 Visual 88 IP0 146 Dorsal attention 148 9p 71 Default mode
29 VMV2 160 Visual 89 55b 12 Language 149 10d 72 Default mode
30 VVC 163 Visual 90 PSL 25 Language 150 47l 76 Default mode
31 4 8 Somatomotor 91 SFL 26 Language 151 9a 87 Default mode
32 3b 9 Somatomotor 92 STV 28 Language 152 10v 88 Default mode
33 5m 36 Somatomotor 93 44 74 Language 153 10pp 90 Default mode
34 5L 39 Somatomotor 94 45 75 Language 154 OFC 93 Default mode
35 24dd 40 Somatomotor 95 IFJa 79 Language 155 47s 94 Default mode
36 24dv 41 Somatomotor 96 IFSp 81 Language 156 EC 118 Default mode
37 7AL 42 Somatomotor 97 STGa 123 Language 157 PreS 119 Default mode
38 7PC 47 Somatomotor 98 A5 125 Language 158 H 120 Default mode
39 1 51 Somatomotor 99 STSda 128 Language 159 PHA1 126 Default mode
40 2 52 Somatomotor 100 STSdp 129 Language 160 STSvp 130 Default mode
41 3a 53 Somatomotor 101 TPOJ1 139 Language 161 TGd 131 Default mode
42 6d 54 Somatomotor 102 TGv 172 Language 162 TE1a 132 Default mode
43 6mp 55 Somatomotor 103 RSC 14 Frontoparietal 163 TE2a 134 Default mode
44 6v 56 Somatomotor 104 POS2 15 Frontoparietal 164 PGi 150 Default mode
45 OP4 100 Somatomotor 105 7Pm 29 Frontoparietal 165 PGs 151 Default mode
46 OP1 101 Somatomotor 106 8BM 63 Frontoparietal 166 PHA2 155 Default mode
47 OP2-3 102 Somatomotor 107 8C 73 Frontoparietal 167 31pd 161 Default mode
48 FOP2 115 Somatomotor 108 a47r 77 Frontoparietal 168 31a 162 Default mode
49 Ig 168 Somatomotor 109 IFJp 80 Frontoparietal 169 25 164 Default mode
50 FEF 10 Cingulo-opercular 110 IFSa 82 Frontoparietal 170 s32 165 Default mode
51 5mv 37 Cingulo-opercular 111 p9-46v 83 Frontoparietal 171 STSva 176 Default mode
52 23c 38 Cingulo-opercular 112 a9-46v 85 Frontoparietal 172 TE1m 177 Default mode
53 SCEF 43 Cingulo-opercular 113 a10p 89 Frontoparietal 173 PCV 27 Multimodal
54 6ma 44 Cingulo-opercular 114 11l 91 Frontoparietal 174 TPOJ2 140 Multimodal
55 7Am 45 Cingulo-opercular 115 13l 92 Frontoparietal 175 TPOJ3 141 Multimodal
56 p24pr 57 Cingulo-opercular 116 i6-8 97 Frontoparietal 176 PeEc 122 Multimodal
57 33pr 58 Cingulo-opercular 117 s6-8 98 Frontoparietal 177 TF 135 Multimodal
58 a24pr 59 Cingulo-opercular 118 AVI 111 Frontoparietal 178 Pir 110 Orbito-affective
59 p32pr 60 Cingulo-opercular 119 TE1p 133 Frontoparietal 179 AAIC 112 Orbito-affective
60 6r 78 Cingulo-opercular 120 IP2 144 Frontoparietal 180 pOFC 166 Orbito-affective

The Idx indices refer to the parcel order in Figure 1A. The Orig. indices refer to the original parcel order presented in Glasser et al. (2016). All indices refer to the
left hemisphere, adding 180 yields the homologous right hemisphere indices.
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F DTIi;jð Þ ¼ DTIi;jXN

x¼1
DTIi;x 1

XN

y¼1
DTIy;j

;where x 6¼ i& y 6¼ j:

(1)

Fractional scaling is one of severalplausible normalization
strategies. Because we used 5000 samples (-P 5000) and
voxel-by-parcel mode (–os2t) in our probtrackX invocation,
the maximum possible raw streamline count between any
two parcels is 5000N where N is the number of voxels in the

seed parcel. Note that because, for probtrackX, all parcels
were defined as a single layer of 1-mm isotropic voxels at the
white matter–gray matter interface, Ni is also equivalent to
the area of the seed parcel, in mm2. As shown in Extended
Data Figure 1-1. We examined four strategies for normalizing
the raw streamline counts: (1) dividing by the number of sam-
ples, 5000; (2) dividing by the number of samples and seed
area, 5000Ni; (3) dividing by the number of samples and the
areas of both the seed and target parcels, 5000Ni

0.5Nj
0.5; and

(4) fractional scaling (see Eq. 1). These approaches yield

Table 3: Statistics and uncertainty

Location Data structure Test or analysis N Uncertainty [CI95%]
Extended Data
Fig. 1-1D

Gaussian predictor
Exponential response

Nonlinear regression (iterative optimization) 64,620
64,620
64,620
64,620

l = 23.8 [23.5, 24.0]
l = 22.8 [22.7, 22.9]
l = 22.2 [22.1, 22.2]
l = 23.4 [23.3, 23.6]

Fig. 2A Gaussian predictor
Exponential response

Nonlinear regression (iterative optimization) 16,110 l = 23.1 [22.8, 23.3]

Fig. 2B Gaussian predictor
Exponential response

Nonlinear regression (iterative optimization) 16,110 l = 23.9 [23.7, 24.2]

Fig. 2C Gaussian predictor
Exponential response

Nonlinear regression (iterative optimization) 32,400 l = 32.8 [32.5, 33.0]

Fig. 2D Gaussian predictor
Exponential response

Nonlinear regression (iterative optimization) 64,620 l = 23.4 [23.3, 23.6]

Extended Data
Fig. 2-2B

Gaussian predictor
Gaussian response

Linear correlation 1065 r = �0.14 [�0.20, �0.08]

Fig. 3D Gaussian predictor
Exponential response

Nonlinear regression (iterative optimization) 12,924 l = 27.8 [27.4, 28.2]

Fig. 3F Gaussian predictor
Gaussian response

Linear correlation 1065 r=0.70 [0.67, 0.73]

Fig. 4C Gaussian predictor
Gaussian response

Linear correlation 80 r=0.35 [0.14, 0.53]

Fig. 8A Gaussian predictor
Gaussian response

Linear correlation 16,110
16,110
32,400

r = �0.10 [�0.12, �0.09]
r = �0.12 [�0.13, �0.10]
r = �0.11 [�0.12, �0.10]

Fig. 8B Gaussian predictor
Gaussian response

Linear correlation 351
351
66
91
231
231
28
780
780
10

r = �0.17 [�0.27, �0.06]
r = �0.13 [�0.23, �0.02]
r = �0.41 [�0.60, �0.19]
r = �0.26 [�0.44, �0.06]
r = �0.30 [�0.42, �0.18]
r = �0.30 [�0.40, �0.17]
r = �0.56 [�0.77, �0.24]
r = �0.12 [�0.19, �0.05]
r = �0.17 [�0.24, �0.10]
r = �0.74 [�0.93, �0.20]

Fig. 9B Gaussian predictor
Gaussian response

Linear correlation 19,667
19,667
64,620

r=0.43 [0.42, 0.44]
r=0.23 [0.21, 0.24]
r=0.06 [0.05, 0.07]

Extended Data
Fig. 9-1

Gaussian predictor
Gaussian response

Linear correlation 8483
8483
16,110
8370
8370
16,110

r=0.42 [0.40, 0.44]
r=0.22 [0.20, 0.24]
r=0.06 [0.05, 0.07]
r=0.40 [0.38, 0.42]
r=0.22 [0.20, 0.24]
r=0.11 [0.10, 0.13]

Where multiple uncertainties are listed for a figure panel, they correspond to the statistics read left-to-right, top-to-bottom in that panel. For Figure 8B, only un-
certainties for significant correlations are listed. Uncertainties for Figures 6-8, 10 are not shown. Extended Data Figure 6-1 contains bootstrapped 95% confi-
dence intervals for the 180 means shown in Figure 6, n = 179. Figure 7 shows bootstrapped 95% confidence intervals in gray; the values of these intervals for all
distance bins are available in the figure source data at https://doi.org/10.5281/zenodo.4060485. For Figure 10, means across shuffled matrices are only neces-
sary to account for arbitrary ordering among tied edge weights, and the bootstrapped 95% confidence intervals for these means are vanishingly small. The values
of these intervals at all network densities are also included in the figure source data. For nonlinear regressions, confidence intervals are estimated using R�1, the
inverse R factor from QR decomposition of the Jacobian, the degrees of freedom for error, and the root mean squared error. For linear correlations, the confi-
dence intervals are based on an asymptotic normal distribution of 0.5*log((11r)/(1–r)), with an approximate variance equal to 1/(N – 3). For descriptive statistics,
e.g., means, empirical 95% confidence intervals are estimated by bootstrapping with 2000 iterations.
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Figure 1. Probabilistic diffusion tractography structural connectome of the human cortex. A, Group average (N=1065) structural
connectivity matrix consisting of the 360 HCP-MMPS1.0 atlas parcels organized into 10 functional networks. Raw streamline counts
are fractionally scaled yielding the log probability Fpt. The white arrows highlight the diagonal which contains contralateral homo-
logs. B, The first row of the connectivity matrix, showing connection probabilities from left V1 to all other parcels, projected onto the
fsaverage template cortex. C, Single subject (100307) volume ray casting visualization of left V1-originating streamline probabilities
within the skull-stripped T1-weighted structural MR volume. D, Ten functional networks, adapted from Ji et al. (2019), within HCP-
MMPS1.0 atlas. These are indicated by red boxes in panel A.
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similar connectivity matrices, distributions of pairwise con-
nectivity, and rates of connectivity fall-off with fiber tract dis-
tance. The choice of normalization does shift the absolute
scale of pairwise connectivity strengths, but as this effect is
mostly homogenous across all connections, subsequent
analyses are not greatly affected. The correlation coefficient
of connectivity strengths between normalization techniques
exceeds 0.97 for all pairwise comparisons, and exceeds 0.99
if the samples-only normalization approach is excluded (data
not shown).
While diffusion tractography is not sensitive to the di-

rectionality of connections, because parcel A to B and
parcel B to A streamlines are computed separately minor
asymmetries arise. Connectivity matrix symmetry is en-
forced by taking the arithmetic mean of the A-B and B-A
fractionally scaled connection weights.

Fi;j ¼ Fi;j 1Fj;i

2
: (2)

Because probabilistic tractography values span several
orders of magnitude, and are approximately log-normally
distributed (Extended Data Fig. 1-1B), data were log-
transformed (log10) before subsequent analyses. The
CCEP and rs-fMRI connectivity matrices were (re)normal-
ized following the same procedure. However, the rsMRI
connectivity values were not log-transformed, because
these data are already approximately normally distrib-
uted, if bimodal, in linear space).

Network theory metrics
All network theoretic measures were computed in

MATLAB using the Brain Connectivity Toolbox, 2019-03-
03 release (Rubinov and Sporns, 2010). It is available at
http://www.brain-connectivity-toolbox.net or https://www.
nitrc.org/projects/bct. The definitions for the metrics used
(for binary and undirected networks) are repeated below.

Precursor measures

di;j ¼
X
au;v2gi$j

au;v; (3)

where di,j is the shortest path length, a basis for meas-
uring integration, between nodes i and j, N is the set of all
nodes in the network, n is the number of nodes, and au,v is
the binarized connectivity between nodes u and v.

ti ¼ 1
2

X
j;h2N

ai;jai;haj;h; (4)

where ti is the number of triangles, a basis for measuring
integration, around node i.

ki ¼
X
j2N

ai;j; (5)

where ki is the number of degrees, or number of links,
connected to node i.

Mean clustering coefficient (MCC)

Ci ¼ 1
n

X
i2N

2ti
kiðki � 1Þ9 ; (6)

where Ci is the clustering coefficient of node i. (Ci = 0 for ki
, 2; Watts and Strogatz, 1998).

MCC ¼ 1
n

X
i2N

Ci: (7)

Characteristic path length (CPL)

Li ¼ 1
n

X
i2N

Xn

j¼1;j 6¼i
di;j

n� 1
; (8)

where Li is the number of the average distance between
node i and all other nodes (Watts and Strogatz, 1998).

CPL ¼ 1
n

X
i2N

Li: (9)

Global efficiency

Ei ¼ 1
n

X
i2N

Xn

j2N;j 6¼i
d�1
i;j

n� 1
; (10)

where Ei is the efficiency of node i.

E ¼ 1
n

X
i2N

Li; (11)

where E is the global efficiency of the network (Latora
and Marchiori, 2001).

Modularity

Q ¼ 1
l

X
i;k2N

ai;j � kikj
l

� �
d mi ;mj ; (12)

Where l is the number of links in the network,mi is module
containing node i, dmi,mj = 1 if mi = mj, and 0 otherwise,
and Q is the global efficiency of the network (Newman,
2004).

g (normalized MCC)

g ¼ MCC
MCCrand

; (13)

where MCCrand is the MCC of a random network of the
same statistical makeup.

l (normalized CPL)

l ¼ CPL
CPLrand

; (14)
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where CPLrand is the CPL of a random network of the
same statistical makeup. Note that this measure is unre-
lated to the length constant l .

Small-worldness

S ¼ g

l
; (15)

where S is the network small-worldness (Humphries and
Gurney, 2008).

Transitivity

T ¼

X
i2N

2tiX
i2N

ki ki � 1ð Þ
; (16)

where T is the transitivity of the network (Newman, 2003).

Assortativity

r ¼
l�1

X
ði;jÞ2L

kikj � l�1

X
ði;jÞ2L

1
2 ki 1 kjð Þ

� �2

l�1

X
ði;jÞ2L

1
2 k2i 1 k2j
� �� l�1

X
ði;jÞ2L

1
2 ki 1 kjð Þ

� �2 ;

(17)

where L is the set of all links and r is the assortativity coef-
ficient of the network (Newman, 2003).

Network density

D ¼ l
n2 � n

; (18)

where D is the density of the network before threshold-
ing and binarization.

Data availability
Individual and group average connectivity matrices as well

as all other figure source data can be found at https://doi.org/
10.5281/zenodo.4060485 (https://zenodo.org/record/
4060485). These data also include statistical uncertainty
(95% confidence intervals) for results not listed in Table 3.
The preprocessed HCP data using in this study was retrieved
from https://db.humanconnectome.org and the preprocess-
ing code used to create these files is available at https://
github.com/Washington-University/HCPpipelines. The source
code for FSL, including probtrackx2 is available from
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL. Network
theory measures were computed with the brain con-
nectivity MATLAB toolbox whose source code is avail-
able from http://www.brain-connectivity-toolbox.net.

Results
Awhole-cortex structural connectome
Figure 1A shows the group average parcel to parcel

and probabilistic diffusion tractography connectome. This
matrix consists of connectivity among the 360 cortical
parcels of the HCP-MMP1.0 atlas. Using left V1

connectivity as an example, Figure 1B illustrates the spa-
tial mapping of the connectivity matrix to the cortex, and
Figure 1C shows a rendering of streamline paths for one
subject. The cortical parcels are further organized into 10
functional groups per hemisphere modified from Ji et al.
(2019). These larger functional groupings are shown in
Figure 1D. The raw probabilistic tractography streamline
counts have been normalized by fractionally scaling (Eq.
1) into log probabilities (Fpt) following procedures devel-
oped for tracing non-human primate connectivity. As
dMRI reveals structural connections, the network is undir-
ected and therefore symmetric. The main diagonal is
masked as intraparcel connectivity was not examined in
this study. The upper left quadrant shows connectivity
among the 180 parcels of the left hemisphere, the lower
right quadrant the connectivity within the right hemi-
sphere. The upper right and lower left quadrants are dupli-
cates and show the interhemispheric, or callosal,
connections. The 180th (or half-) diagonal is clearly visible
(white arrows); this shows the connectivity between ho-
mologous parcels in the right and left hemispheres, which
is greater than non-homologous callosal connectivity for
most parcels.
After log10 transformation, Fpt connectivity among all

parcel pairs is approximately Gaussian in distribution with
mean 3.903 with 95% confidence interval (CI95%) of
[3.897, 3.910], standard deviation 0.8111 (CI95% = [0.806,
0.816]), skewness 0.627 (CI95% = [0.608, 0.644]), and kur-
tosis 3.605 (CI95% = [3.560, 3.650]). In addition to bringing
the range of Fpt values into the same order of magnitude,
log10 transformation is justified as it brings the distribu-
tion’s skewness significantly closer to zero (pre-log10:
9.047, CI95% = [8.719, 9.469]), and kurtosis significantly
closer to three, pre-log10: 103.684 (CI95% = [93.991,
117.026]) thus bringing the distribution closer to normal-
ity. See Extended Data Figure 1-1B,C for a graphical com-
parison. Empirical confidence intervals were estimated
via bootstrapping with 2000 iterations. The values of the
group average and individual probabilistic dMRI connec-
tivity matrices, as well as all other figure source data can
be found at https://doi.org/10.5281/zenodo.060485.

Tract length strongly predicts connectivity strength,
with exponential decay
In addition to the connection strength, diffusion tractog-

raphy estimates the fiber tract length between all pairs of
parcels. As shown in Figure 2, structural connectivity
(10ªFpt) falls off as an exponential function of fiber tract
length with the form 10ªFpt = a*e-d/l where l is the length
constant, a the scaling coeffect, and d the tract length.
Alternative functional forms were examined (Extended
Data Fig. 2-1), but the exponential was selected for parsi-
mony, goodness-of-fit, and concordance with histologic
tracing data (see Discussion). Note that l is sometimes
reported in inverted units of mm�1 (Markov et al., 2013;
Theodoni et al., 2020), but we here use the l convention
from neuronal cable theory (Dayan and Abbott, 2001),
which has more intuitive units (mm); the conventions are
conceptually equivalent. For the group-average connec-
tome, l = 23.4 mm and the least-squares exponential fit
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explains 84% of the variance in 10ªFpt across all parcel
pairs. Callosal connectivity, when isolated, decays more
slowly with respect to tract length, l = 32.8, and hews to
the exponential expectation less consistently r2 = 0.62.
Because the tracing of long fiber tracts may be hampered
by poor scan quality, we investigated the effects of sub-
jects’motion on l . For each subject, l was calculated for
non-zero connections in the same manner as the group
average. While subjects’ motion within the scanner does
reduce l , this effect is modest, only explaining 1.96% of
the intersubject variance (Extended Data Fig. 2-2).

Interindividual variability
The interindividual variability of connectivity was as-

sessed by deriving the across-subject coefficient of varia-
tion (CV) for each pairwise connection Fpt (Fig. 3). For this
analysis, the normalization, symmetrization, and log10-
transformation of raw connectivity values were performed
on each subject. Pairwise connections with zero stream-
lines were not log-transformed to avoid infinities. While
there is no clear relationship between fiber tract distance
and interindividual variability, the most consistent con-
nection appears in two clusters of around 50–100 and
170–225 mm (Fig. 3B). When the most consistent quintile
of connections is isolated (Roberts et al., 2017), connec-
tivity falls off more slowly with tract distance, with l in-
creasing to ;28 mm (Fig. 3D). Since the proportional size
of V1/V2 varies ;3-fold across individuals and is highly
heritable (Yoon et al., 2019), we hypothesized that the ip-
silateral V1–V2 connection would also be highly variable,
with that variability being correlated across hemispheres.

Indeed, we find that the ipsilateral V1–V2 connection is
very strong, with ;1.8-fold variability which is strongly
correlated across hemispheres (r=0.70). The scatter-plot
of right versus left Fpt values for this connection across
subjects (Fig. 3F) does not reveal obvious outliers which
would be indicative of subject-specific artifacts. This anal-
ysis of interindividual variability should be considered pre-
liminary. The WU-Minn HCP dataset is rich in individual
data, including the NIH neuropsychological toolbox
(Gershon et al., 2013), twin and non-twin siblings subsets,
and genotypic data (dbGaP phs001364.v1.p1), although
the latter two data types are only available by application
to ensure subject anonymity. With access to these data, a
full examination of interindividual variability, including as-
sessing the heritability and genetic correlates of the
strength of specific connections could be made.

Probabilistic dMRI tract tracing in humans reasonably
corresponds with histologic fiber tracing in macaques
The development of both the HCP-MMP1.0 human

cortical atlas (Glasser et al., 2016) and FV91 macaque
parcellation scheme (Felleman and Van Essen, 1991)
were led by David Van Essen and the parcel definitions
of the human atlas were informed by human-macaque
homology. As such, the parcel names of these atlases
have considerable overlap, particularly for visual and
visual association areas as well as the non-visual par-
cels 1, 2, 25, and 44. We therefore assumed that par-
cels with the same name were roughly homologous
and limited the scope of the interspecies comparison
to these parcels. Furthermore, the macaque FLne

Figure 2. Connectivity strength exponential decays with fiber tract length. A, B, Connections within the right and left hemispheres,
respectively. C, Connections between the right and left hemisphere. D, All connections. Each marker represents a pair of parcels.
Red traces show the least-squares exponential fit; inset are the length constant l and r2 of this fit. Note that Fpt is log-transformed
making these axes effectively semi-log.
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values found in Markov et al. (2014) are directly com-
parable to fractionally scaled Fpt values (Donahue et
al., 2016). Comparing the pairwise connectivity be-
tween species, we found a Pearson correlation of

r = 0.35 (p = 0.0013; Fig. 4). Considering that for maca-
ques, Donahue et al. (2016) found a within-species,
between-technique correlation of r=0.59 when comparing
retrograde tracing and probabilistic diffusion tractography,

Figure 3. Interindividual variability. Shown are (A) the matrix of connectivity coefficients of variation (CV) across subjects (B) pairwise
CV versus fiber tract length, (C) the distribution of CV across all connections, (D) the Fpt versus fiber tract length for the connections
in the highest quintile of interindividual consistency, and (E) the Fpt of right hemisphere V1–V2 connection in all subjects versus left
hemisphere V1–V2 connection. In panels B, D, each marker represents a sample statistic for a connection between two parcels. E,
Each marker represents an individual subject. D, The red trace show the least-squares exponential fit, and inset is the length con-
stant l and r2 of this fit. Note that Fpt is log-transformed making this panel’s axes effectively semi-log. In panel E, the r2 of the
least-squares linear fit is reported.
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we find the magnitude of between-species correlation to be
reasonable supporting evidence for the efficacy of the
technique.

Contralateral connectivity exceeds ipsilateral
connectivity in some regions
On the whole, cortical connectivity is dominated by ipsi-

lateral connections. This effect is readily-observed by
comparing the ipsilateral and contralateral quadrants of
Figure 1A. However, there are exceptions to this rule. The
differential connectome of ipsilateral versus contralateral
connections is shown in Figure 5. This is achieved by sub-
tracting the mean of left-right and right-left contralateral
connectivity from the mean of the right and left ipsilateral
connectivity, i.e., subtracting the mean of the first and
third quadrants from the mean of the second and fourth.

A cingulo-parietal somatomotor region (parcels 5m, 5L,
24dd, and 24dv) are more strongly connected to most
contralateral cortex than ipsilateral cortex. Lateromedial
connectivity in select prefrontal (a10p, a9-46v, a10p,
p10p, p47r, p9-46v, 11l, IFSa, IFJp, a24, d32, p32, 10r)
and postcentral-superior parietal lobule (LIPv, VIP, 7AL,
7PC, 1, 2, 3a, 6d, 31a, 31pd, PCV) regions is stronger be-
tween hemispheres than within them. We speculate that a
possible commonality between these three regions is that
they have been broadly implicated in the unitary proc-
esses of somatosensory object recognition, emotion, and
spatial cognition, respectively. Conversely, the entire au-
ditory network and superior temporal cortices (STGa,
STSda, DTDdp, A5, and TPOJ1) as well as the operculum
and temporoparietal junction (Ig, MI, FOP1-FOP5, OP1-
OP4, PF, PFcm, PFop, PI, PoI1, PoI2, and 43) have pro-
nounced hyperipsilateral connectivity, consistent with the
low transmission latency required for auditory processing,
the left-lateralization of language, and the right lateraliza-
tion of attention.

With the exception of some language areas, most
parcels are disproportionately connected to their
contralateral homologs
The two hemispheres of the cortex have a high degree

of functional and anatomic symmetry. It follows then that
most regions will have greater connectivity to their contra-
lateral homologs than other contralateral areas, to coordi-
nate their overlapping processing tasks. This is hinted at
by the visibility of the 180th (or half-)diagonal in Figure 1A.
To further quantify this effect, for all 180 parcels we com-
pared the connectivity between interhemispheric homo-
logs to the mean of all other callosal connectivity.
Bonferroni-corrected, empirical 95% confidence intervals
were estimated via bootstrapping with 2000 iterations. As
detailed in Extended Data Figure 6-1 and visualized in
Figure 6, 147 parcels are hyperconnected to their contra-
lateral homologs, 18 are hypoconnected, and 15 have ho-
mologous callosal connectivity not significantly different
from their callosal mean connectivity. Interestingly, par-
cels that are not hyperconnected to their contralateral ho-
mologs are concentrated within and adjacent to the
language network, consistent with the greater degree of
lateralization in these areas.

The language network is hyperconnected at long
distances and left lateralized
In order to investigate distance-resolved left laterality in

connections among language-implicated cortex, pairwise
connections were binned by fiber tract length in 15-mm
increments. Within each bin, connections were grouped
as being within the combined language and auditory net-
work, or between the combined networks and the rest
of the cortex. For each subject, the Fpt of grouped con-
nections within each bin was averaged before being
log-transformed. The grand-averages of these within-lan-
guage and between-language/auditory cortex in each dis-
tance bin for each hemisphere are shown in Figure 7A.
Bonferroni-corrected, empirical 95% confidence intervals

Figure 4. Comparison of human diffusion tractography and
macaque retrograde tracing connectomes. Subset of homolo-
gous parcels in the human HCP-MMPS1.0 and macaque fv91
atlas. A, Macaque group-average retrograde tracer derived
structural connectome, gray indicates missing data. B, Human
probabilistic diffusion tractography connectome. C, Pairwise
correlation between macaque and human structural connectiv-
ity, r=0.35, p=0.0013.
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for these grand-averages were estimated via bootstrap-
ping with 2000 iterations. Within-language connectivity is
slightly attenuated at distances ,100 mm, but strongly
amplified at distances above 100 mm, especially ;100–
to 140-mm connections in the left hemisphere. A plurality
of these are between frontal and temporoparietal lan-
guage areas (18/45 connections between 100 and 140
mm). The differential traces of between-language versus
within-language connectivity (Fig. 7B) clearly show the
left-hemisphere dominance of this effect.

Connectivity is influenced by the cortical hierarchy
Hierarchy is a central organizing principle of the cortex

(Felleman and Van Essen, 1991; Markov et al., 2014; Burt
et al., 2018; Theodoni et al., 2020). Higher order areas,
e.g., supporting abstract processing, have low myelination,

and lower order areas, e.g., supporting unimodal sensory
processing, have highmyelination. Furthermore, areal myeli-
nation is indexed by the ratio between T1-wieghted and T2-
wieghted MRI contrast (Glasser and Van Essen, 2011). The
WU-Minn HCP 1200 release includes smoothed group-av-
erage myelination indices for all vertices in the 32k grayordi-
nate template brain. These values were averaged for each
parcel in the HCP-MMP1.0 atlas (Glasser et al., 2016) to
yield a group-average parcel-wise index of myelination.
The relationship between cortical hierarchy and con-

nectivity was assessed in two ways. We first examined
whether regions of similar level in the cortical hierarchy
are better connected, as predicted by Barbas (2015). An
index of hierarchical similarity, F|D myelination|, was obtained
for each pair of parcels by computing the pairwise differ-
ence in myelination between parcels and fractionally scal-
ing it in the same manner as Fpt, with smaller values

Figure 5. Interhemispheric connectivity. Differential connectivity between ipsilateral and contralateral connectivity. Greater ipsilateral
connectivity dominates and is indicated in red. Parcel-pairs with greater contralateral connectivity than ipsilateral are blue. The
green cortical patches show anatomic extent of parcel groups of notable contrast.
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indicating hierarchical closeness. The similarity matrix
created by this derivation is shown in Extended Data
Figure 8-1. Correlations were obtained for the left and right
hemisphere as a whole as well as the colossal connections
(Fig. 8A). In addition, for each of the twenty functional net-
works (10 per hemisphere) the Pearson correlation between
the F|D myelination| and Fpt for pairwise within-network connec-
tions was computed (Fig. 8B). With the exception of the in-
terhemispheric connections, calculations were performed
on the hemispheres separately to avoid the collinearity intro-
duced by hemispheric homology.
With the exceptions of the bilateral visual and somato-

motor networks and right language network, for which
there is convincingly no relationship, the preponderance
of coefficients is negative, indicating that, on average,
areas at similar levels of the cortical hierarchy are better
connected. However, quantified in this way, the influence
of hierarchy is modest, explaining ;1% of the variance in
Fpt overall, although perhaps 10–30% in certain subsets
of parcels, such as the left auditory and language net-
works. The left lateralization of the influence of hierarchy
in these networks is striking, as is the right-lateralization
of the dorsal attention network.
Second, we investigated whether a cortical region’s hi-

erarchical level affected its overall connectivity. For each
parcel, the Pearson correlation between the parcel’s Fpt
to all other parcels and the parcel-wise index of myelination
was computed. In other words, correlation between each
row of the connectome matrix and the vector of myelination
indices was obtained. After Bonferroni correction for

multiple comparisons, 74 of 360 parcels (Extended Data
Figs. 8-2, 8-3) have connectivity significantly correlated to
their myelination index and of these the vast majority (70)
are negatively correlated, indicating that low myelination
predicts high connectivity (Fig. 8C). These areas form a con-
tiguous bilateral prefrontal network as shown in Figure 8D,
indicating that prefrontal areas are more connected with
higher cortical regions. The rare positively correlated excep-
tions are the left and right DVT and V6A.

Probabilistic dMRI connectivity more closely
resembles CCEPs than rs-fMRI
In order to further contextualize the dMRI connectome,

we compared it to existing connectivity matrices gener-
ated from two other brain mapping modalities: CCEP and
rs-fMRI correlation magnitude. As shown Figure 9A, the
qualitative pattern of rs-fMRI markedly differs from the
other two modalities with proportionally stronger ipsilat-
eral across-network connections and especially non-ho-
mologous contralateral connections, although the latter is
somewhat obscured for CCEPs because of sparse spatial
sampling. Over all connections, pairwise probabilistic
dMRI connectivity values are nearly twice as linearly cor-
related to pairwise CCEP connectivity than to rs-fMRI
connectivity (Fig. 9B), and this contrast is equally evident
in the ipsilateral connection within each hemisphere
(Extended Data Fig. 9-1). Contralateral connections were
not examined in isolation as contralateral sampling for the
CCEP modality is relatively rare.
When comparing the distributions of pairwise connec-

tivity strength (Fig. 9C), rs-fMRI again exhibits properties
different from the other two modalities. While both dMRI
and CCEP distributions skew in opposite directions (0.63
and �0.43, respectively), their strengths form unimodal
log-normal distributions and thus shown with log-trans-
formed values. In contrast, rs-fMRI connectivity values
form a bimodal Gaussian-mixture distribution in linear
space. The two modes were characterized by obtaining
the maximum-likelihood fit (fitgmdist) of a two-compo-
nent Gaussian-mixture to the data, yielding a left mode
(m = 0.0011, s = 8.1e-8) forming 63% of the distribution
and a right mode (m = 0.0017, s = 8.1e-8) forming 37%,
respectively. Splitting the rs-fMRI modes at the midpoint
between their means (0.0014) and plotting their respective
connectivity matrices (Fig. 9D) reveals that the low-con-
nectivity (left) mode consists primarily of connections be-
tween the default mode/frontoparietal networks and other
regions of the cortex.
To further contrast the three connectivity modalities, we

computed six network theoretic metrics for each of the con-
nectivity matrices: MCC, CPL, global efficiency, g (normal-
ized MCC), l (normalized CPL), small-worldness, transitivity,
and assortativity (see Eq. 3–18). Binarized network metrics
were assessed after thresholding by edge weight (connectiv-
ity strength) at intervals of 0.1. Note that this l is unrelated to
the exponential length constant reported above. To account
for the order-based arbitrary treatment of equal edge weights
when thresholding, the node (parcel) order was randomized
1000 times, and the meanmetric values are shown. Empirical
95% confidence intervals for these means are too small to be

Figure 6. Contralateral homologs. Differential connectivity be-
tween contralateral homologous parcels versus the mean of all
other contralateral parcels. Red indicates contralateral homolo-
gous connectivity greater than mean contralateral connectivity.
Note that many language-implicated regions have relatively
weak connectivity with their contralateral homologs.
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shown at scale. Networks densities above 0.6 were not ex-
amined as the un-thresholded network density of CCEP con-
nectivity matrix, treating missing data as non-connections, is
,0.7. However, all measures appear to converge as binary
network density approaches 1. As shown in Figure 10, the
MCC, CPL, global efficiency, small-worldness, transitivity,
and assortativity are markedly different for rs-fMRI connectiv-
ity than for CCEP and probabilistic dMRI tractography,
whosemetrics as a function of network density aremore sim-
ilar to each other. Normalizing bymetrics computed for a ran-
dom network with the same statistical makeup changes this
pattern. For g , the rs-fMRI and CCEP networks are more
similar than either is to probabilistic dMRI tractography, and
l rs-fMRI and probabilistic dMRI tractography are more simi-
lar than either is to the CCEP network. The high MCC, transi-
tivity, and assortativity and low global efficiency of rs-fMRI
relative to the other modalities may be indicative of strong,
long-range correlativity beyond that predicted by anatomic
connections.

Discussion
In this study we compiled a whole-cortex structural

connectome by applying probabilistic tractography to the
diffusion MR volumes of 1065 subjects from the WU-Minn

HCP. We report a novel, complete, and high-dynamic-
range connectivity matrix discretized into the 360 parcels
of the HCP-MMP1.0 atlas and further arranged into 10
functional networks. It is shown that connectivity strength
exponentially decays with fiber tract length, that the parts
of the connectome with clear homology to macaques cor-
respond reasonably to retrograde tracer mappings in that
species, that contralateral homologs are hyperconnected,
and that some connections within language-implicated cor-
tex are stronger than expected and left-lateralized. While ip-
silateral connectivity generally dominates, some regions
have stronger contralateral connections. Interindividual vari-
ability is relatively high for early visual cortex, whose con-
nectivity co-varies across hemispheres. Cortical areas tend
to bemore connected with areas at similar levels of the cort-
ical hierarchy, as indexed by their estimated myelination,
particularly in prefrontal areas. Lastly, it is shown that proba-
bilistic tractography connectivity more closely resembles
that of CCEPs than rs-fMRI. In sum, we quantify a dMRI-
based estimate of medium-range to long-range anatomic
corticocortical connectivity in a large normative sample.
dMRI and automated post hoc tractography are power-

ful tools for the elucidation of cerebral connectivity. The
defining advantages of these techniques are non-inva-
siveness and large field-of-view, enabling whole-brain

Figure 7. Language/auditory network hyperconnectivity and left-lateralization. A, Distance-binned connectivity within the language
and auditory networks compared with connectivity between the language and auditory networks and other networks, separately for
the left and right hemispheres. B, Differential trace for the within-connectivity and between-connectivity in both hemispheres. In
both panels, gray patches show Bonferroni-corrected bootstrapped 95% confidence intervals across subjects.

Research Article: New Research 14 of 21

January/February 2021, 8(1) ENEURO.0416-20.2020 eNeuro.org



mapping in humans. However, dMRI does have signifi-
cant limitations when compared with histological fiber
tracing, electron microscopy, or stimulation. The most ob-
vious of these is insensitivity to whether underlying axons
are anterograde or retrograde, as evidenced by the sym-
metry of the connectivity matrix. The anisotropic diffusion
of water molecules occurs in both anterograde and retro-
grade directions. Thus, the true one-way connectivity be-
tween two areas could be anywhere between none to all

of the symmetric diffusion connectivity. Another important
limitation is spatial resolution. While the 1.25-mm iso-
tropic voxels achieved by the WU-Minn dMRI protocol
are smaller than those of most studies (Jeurissen et al.,
2019), they are still more than three orders-of-magni-
tude larger than the typical submicron axon diameter
(von Keyserlingk Graf and Schramm, 1984; Liewald et
al., 2014). This discrepancy is particularly impactful
when fiber orientations are not consistent within a

Figure 8. Connectivity is influenced by the cortical hierarchy. A, B, Connectivity is strongly predicted by hierarchical similarity in
some networks and modestly predicted overall. A, All connectivity versus myelination difference, including within-network and
across-network connections, for the left, right, and callosal connections. For both panels, each marker represents a parcel pair. B,
Within-network connectivity versus myelination difference for 10 functional networks. Linear fits and correlation coefficients com-
puted independently for the left and right hemisphere. A negative correlation indicates that parcels at similar hierarchical levels tend
to be more connected. C, D, Higher order prefrontal areas are better connected. C, Histogram of correlation coefficients between
areal myelination and Fpt connectivity to each parcel. Only significant coefficients after Bonferroni correction are shown. Most coeffi-
cients are negative indicating high connectivity to low-myelination (i.e., higher-order) areas. D, Significant negative coefficients (red)
map onto bilateral prefrontal cortex. Only the bilateral DVT and V6A are show positive significant correlations (blue).
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voxel, i.e., crossing fibers. Probabilistic diffusion trac-
tography (Behrens et al., 2007) partially ameliorates the
issue by modeling the probability distribution of orienta-
tions and accounting for uncertainty, but ultimately
dMRI with current technology is a meso- to macroscale
technique. Direct histologic validation of dMRI techni-
ques is uncommon, but has been performed for proba-
bilistic tractography in vitro in pigs (Dyrby et al., 2007)

and macaques (Jbabdi et al., 2013; Donahue et al.,
2016), with the latter two studies using the same
probtrackX algorithm as the current study (Behrens et
al., 2007). We have extended these validations with a
between-species comparison (Fig. 4).
Of the several families of dMRI tractography algorithms

available, we selected local, probabilistic tractography
(Behrens et al., 2007). The WU-Minn HCP makes available

Figure 9. Probabilistic dMRI more closely resembles CCEPs than rs-fMRI. A, Connectivity matrices for probabilistic dMRI tractogra-
phy, CCEP, and rs-fMRI. For CCEPs missing data has been colored gray and pre-log zero-strength connections black. B,
Correlations among the three modalities. The least-squares linear fit is shown in red. C, Non-zero pairwise connection strength dis-
tributions. Note that rs-fMRI connectivity values, which are not log-transformed, display two modes, separated at 0.0014. D,
Cortical parcels displaying lower (left) and higher (right) modes of rs-fMRI connectivity.
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the bedpostX precursor files and creating a probabilistic
tractography connectome was always a stated component
of the WU-Minn HCP project (Van Essen et al., 2013; Van
Essen and Ugurbil, 2017). That such a connectome has not
yet been released for these data may be because of the im-
mense computational challenge of performing these analy-
ses at the scale of the HCP. An advantage of probabilistic
tractography is its sensitivity to minor, or low-probability
connections. Deterministic dMRI tractography connec-
tomes typically have low network densities, e.g., 0.18 (Mori
et al., 2008) or 0.23 (Cui et al., 2019), when compared with
histologic fiber tracing in macaques, 0.66 (Markov et al.,
2014), and this is likely a lower bound as such tracing is sub-
ject to false-negatives because of imperfect dye uptake and
incomplete cortical sampling. This suggests the determinis-
tic dMRI connectomes are missing weaker connections. On
the other hand, dMRI in general and probabilistic tractogra-
phy in particular has been found vulnerable to false-positive
connections (Maier-Hein et al., 2017). This exchange of
specificity for sensitivity (Zalesky et al., 2016; Sarwar et al.,
2019) is consistent with our very high group-average net-
work density of 1.0 and the likely presence false-positive
connections and is, thus, an important caveat to the data
presented here. In cases where false-negative connections
are less concerning than false-positive connections, such as
topological analyses (Zalesky et al., 2016), subsequent
users of these data may opt to threshold the connectivity
matrix by either connection strength or consistency (Fig. 3;
Roberts et al., 2017).
When constructing this connectome, we divided the

cortex into 180 parcels per hemisphere following the
HCP-MMP1.0 atlas (Glasser et al., 2016). To ease inter-
pretation, we further organized the parcels into 10 func-
tional networks modified from (Ji et al., 2019). These
networks were created by applying iterative Louvain

clustering (Blondel et al., 2008; Rubinov and Sporns,
2010) and other criteria to HCP rs-fMRI data. While these
fMRI-defined network definitions correspond reasonably
to the structural connections reported here, there are ex-
ceptions. The operculum and temporoparietal junction, in
particular, appears to be a structurally distinct area that
has been folded into several functional networks (Ji et al.,
2019). However, this contiguous region forms the lateral
salience network in Barnett et al. (2020), which similarly
applied a very similar methodology to a non-HCP cohort.
Like many cortically-focused studies, we used a surface-
based methodology to define these areas, with seed and
target regions constrained to the white-matter–gray-mat-
ter interface. This approach reduces the overrepresenta-
tion of major bundles (Jeurissen et al., 2019), enables the
automated assessment based on intersubject homology
(Fischl et al., 1999), facilitates comparison to other cortical
datasets, and is true to the anatomic nature of the cortical
ribbon. Unfortunately, the subcortex and cerebellum are
omitted in this analysis, as are short-range, often unmyeli-
nated, intraparcel connections. While the inclusion of the
thalamic radiations, in particular, is a merited future exten-
sion of this connectome, the small size of subcortical struc-
tures relative to diffusion imaging voxels, the nuclear (as
opposed the sheet-like) organization of subcortical struc-
tures, and complex geometry of the subcortical white mat-
ter, gray matter interface (e.g., the internal medullary lamina
of the thalamus), all render the challenges and methods for
obtaining subcortical tractography substantially distinct
from those of cortico-cortico tractography.
The HCP-MMP1.0 atlas used was selected because of

its wide adoption, symmetry, and high parcel count.
Furthermore, the parcels are based on multiple functional
and anatomic criteria and are consistent with previous
functional parcellations in human and non-human

Figure 10. Network theoretic differences between the connectivity modalities. Binarized network metrics after thresholding by edge
weight (connectivity strength).
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primates (Felleman and Van Essen, 1991; Glasser et al.,
2016). Because the parcels are relatively small and in-
formed by function, erroneous averaging of disparate
connections, a connectomic extension of the partial vol-
ume artifact, is minimized. However, this comes at the
cost of non-uniformity in both parcel area and shape.
Methodologically, parcels are assembled from vertices on
the tessellated cortical surface. A future vertex-based or
voxel-based connectome, while computationally chal-
lenging, would have the distinct advantage of being read-
ily reformulated into any arbitrary surface-based
parcellation scheme.
We found that pairwise connectivity between cortical

parcels exhibits an exponential decay rule with respect
to fiber tract distance with a length constant l of ;23
mm (;33 mm for callosal connections). While a tight ex-
ponential relationship between probabilistic diffusion
tractography strength and fiber length has been previ-
ously reported (Roberts et al., 2016), this study did not
report the observed l or release its data. Histologic
studies in non-human primates (Markov et al., 2013;
Donahue et al., 2016; Theodoni et al., 2020) consistently
show exponential connectivity decay with distance.
Such a rule when combined with a roughly Gaussian dis-
tribution of interareal distances explains the observed
log-normal distribution of connectivity strength (Markov
et al., 2013). Histologic data indicate a l of ;3.33 mm
for marmosets (Theodoni et al., 2020) and 5.55 mm for
macaques (Markov et al., 2013). Across species, there
appears to be a linear relationship between the logs of l
and total gray matter volume, predicting a human l of 10
mm (Theodoni et al., 2020). While methodological differ-
ences between diffusion and histologic tractography can-
not be completely ruled out, Donahue and colleagues found
similar l for the two methods in macaques (Donahue et al.,
2016). Our results suggest that, compared with other spe-
cies, human cortical areas are exceptionally well connected
relative to their cortical volume, reflected in a disproportion-
ately long l . Conservatively restricting the exponential fit to
only the most consistent quintile of connections (Fig. 3D)
yields a l of;28 mm, further accentuating the proportional
long-range hyperconnectivity of humans.
Geometric scaling strongly constrains corticocortical

connectivity in humans. Considering primate brains in-
creasing in diameter d, volume and number of cortical
neurons increases by d3 (Ventura-Antunes et al., 2013),
so arriving at a constant probability of connection be-
tween any two neurons would require d6 axons, and since
they would need to be about d times as long, this would
require a volume proportional to d7, or more if axonal di-
ameter is increased to maintain a relatively constant la-
tency of communication (Wang et al., 2008). However, the
actual white matter volume is less than d4 (Zhang and
Sejnowski, 2000), and consequently the probability of
corticocortical connectivity must be highly limited in hu-
mans. The relatively long l in humans we report reduces
even further the number of connections which can be ac-
commodated within the available white matter volume. A
consequence of fewer but longer connections would be
reduced metabolic cost, inasmuch the cost of an action

potential is 1/3 axonal transmission (proportional to
length) and 2/3 synaptic transmission (Lennie, 2003). The
low firing rate of human pyramidal cells (Chan et al., 2014)
would also reduce the metabolic cost of their axons.
These observations are consistent with the proposal that
the metabolic costs of corticocortical connections may
help constrain their organization in the primate brain
(Ercsey-Ravasz et al., 2013). Given this strong correlation
of connection strength with distance, as well as the bias
of tract-tracing techniques toward shorter, less geometri-
cally complex connections (Jeurissen et al., 2019), there
may be some merit in regressing out the effect of tract
length when evaluating the relative connectivity of different
cortical areas. However, the considerations enumerated
above imply a strong evolutionary selection to place cortical
parcels which require high connectivity to perform their cal-
culations to be situated in direct physical proximity to each
other. The patterns of relatively long-distance connectivity
identified here thus must be viewed as minor deviations
from an overall strong tendency favoring local connectivity,
a conceptualization consistent with the view of the cortex as
a spatially embedded small world network.
One striking deviation from the distance-based connec-

tivity was the left-lateralized hyperconnectivity between
language areas, and specifically between posterior and
anterior language areas. This connectivity presumably
passes, completely or in part, through the classical lan-
guage pathways (for review, see Dick and Tremblay,
2012). The lateralization we observed may then reflect
that of the arcuate and inferior longitudinal fasciculi which
connect the same structures and show significant left lat-
eralization in humans but not macaques (Panesar et al.,
2018; Eichert et al., 2019). Left-lateralization of the arcu-
ate fasciculus develops late (Lebel and Beaulieu, 2011),
and is sensitive to the presence, quality and quantity of
early language experience (Romeo et al., 2018; Cheng et
al., 2019). More generally, many of the connectivity pat-
terns observed here could be the indirect result of co-acti-
vation of the connected parcels (Mount and Monje, 2017).
The left-lateralized ipsilateral connectivity may be com-
pensated by a relative lack of callosal connections from
the same areas, under the hypothesis that the total con-
nectivity is constrained.
A more general factor that might induce deviations from

a distance-based connectivity rule may be the principle of
hierarchical organization. It has been proposed that dis-
tant areas with similar laminar properties, and thus of sim-
ilar hierarchical order may have privileged connections
(Barbas, 2015). Across the entire cortex we find that mye-
lination similarity explains a significant but small amount
of the overall variance. However, there are regions where
the influence of hierarchical position is more pronounced
including the right dorsal attention and left auditory/lan-
guage networks. The observed hyperconnectivity and
high degree of lateralization in these regions may be a
consequence of the low-latencies necessary for the func-
tions they underly. More broadly, the effects of transmission
latency constraints on neuroanatomy and conduction delay
on large-scale physiological recordings are an emerging
area of study in human neuroscience (Muller et al., 2018).
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Latency is a hybrid structural–functional property of connec-
tivity, and might in future be quantified using the latency of
CCEPs.
By emphasizing the cortical connectivity matrix over the

white matter bundles per se and organizing the matrix into
the widely adopted HCP-MMP1.0 atlas (Glasser et al.,
2016), the structural connectome reported here enables
ready comparison to other structural, functional, and hy-
brid connectomes. As an example, we compared the
probabilistic tractography connectivity to exist rs-fMRI
(Van Essen et al., 2013) and CCEP (Trebaul et al., 2018)
connectivity matrices and found that our dMRI-inferred
structural connectivity better reflects CCEP probability
than rs-fMRI connectivity in both linear and network-theo-
retic comparisons, despite the dMRI and rs-fMRI cohorts
being highly overlapping. This is not unreasonable, as
functional correlations are to varying degrees neurobeha-
vioral state dependent and far more spatiotemporally dy-
namic than structural connections. Furthermore, although
resting-state functional connectivity is constrained by
anatomic networks and can be partially predicted by
them (Honey et al., 2009), indirect connections or parallel
processing of stimuli in different areas can produce corre-
lated activity even in the absence of direct anatomic con-
nections. One notable example of the latter may be
interhemispheric connectivity. While we did find hyper-
connectivity between interhemispheric homologs when
compared with other callosal connections, anatomic in-
terhemispheric connectivity on the whole is much weaker
than found in rs-fMRI. CCEPs, being directed by clinical
requirements, have poor interhemispheric sampling, but
we found that even among ipsilateral connections, rs-
fMRI is still less similar to CCEP than probabilistic tractog-
raphy. These intermodal connectivity comparisons are
not intended to be comprehensive. The HCP cohort also
includes source-localized resting-state MEG (Larson-
Prior et al., 2013), which could be used to examine the de-
gree to which the functional connectivity of various fre-
quency bands corresponds to anatomic connectivity.
Furthermore, neuropsychological metrics, including the
NIH toolbox (Gershon et al., 2013), and genotypic data
(dbGaP phs001364.v1.p1) are also available for this co-
hort, enabling future studies of the interplay between cort-
ical connectivity, cognition, and genetics.
The HCP was a scientific undertaking of visionary

scope and ambition. Its commitment to open science and
accessibility of data by the public enabled this study and
will continue to facilitate further studies for years to come.
Emerging clinical applications of brain connectomics will
be underpinned by a strong base of normative data for
comparison. The whole-cortex probabilistic diffusion trac-
tography connectome reported here fulfills a key goal out-
lined in the project’s conception and we hope it will
empower yet further study of the myriad and beautiful
web of connectivity that the human brain embodies.
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