
GigaScience, 10, 2021, 1–13

https://doi.org/10.1093/gigascience/giab057
Technical Note

TE CHNICAL NO TE

VC@Scale: Scalable and high-performance variant
calling on cluster environments
Tanveer Ahmad 1,*, Zaid Al Ars 1 and H. Peter Hofstee 1,2

1Faculty of Electrical Engineering, Mathematics and Computer Science, Quantum & Computer Engineering
Department, Mekelweg 4, 2628 CD Delft, Netherlands and 2IBM Austin, TX, USA
∗Correspondence address. Tanveer Ahmad, Delft University of Technology, Delft, Netherlands. E-mail:
t.ahmad@tudelft.nl http://orcid.org/0000-0003-0519-2315

Abstract

Background: Recently many new deep learning–based variant-calling methods like DeepVariant have emerged as more
accurate compared with conventional variant-calling algorithms such as GATK HaplotypeCaller, Sterlka2, and Freebayes
albeit at higher computational costs. Therefore, there is a need for more scalable and higher performance workflows of
these deep learning methods. Almost all existing cluster-scaled variant-calling workflows that use Apache Spark/Hadoop as
big data frameworks loosely integrate existing single-node pre-processing and variant-calling applications. Using Apache
Spark just for distributing/scheduling data among loosely coupled applications or using I/O-based storage for storing the
output of intermediate applications does not exploit the full benefit of Apache Spark in-memory processing. To achieve
this, we propose a native Spark-based workflow that uses Python and Apache Arrow to enable efficient transfer of data
between different workflow stages. This benefits from the ease of programmability of Python and the high efficiency of
Arrow’s columnar in-memory data transformations. Results: Here we present a scalable, parallel, and efficient
implementation of next-generation sequencing data pre-processing and variant-calling workflows. Our design tightly
integrates most pre-processing workflow stages, using Spark built-in functions to sort reads by coordinates and mark
duplicates efficiently. Our approach outperforms state-of-the-art implementations by >2 times for the pre-processing
stages, creating a scalable and high-performance solution for DeepVariant for both CPU-only and CPU + GPU clusters.
Conclusions: We show the feasibility and easy scalability of our approach to achieve high performance and efficient
resource utilization for variant-calling analysis on high-performance computing clusters using the standardized Apache
Arrow data representations. All codes, scripts, and configurations used to run our implementations are publicly available
and open sourced; see https://github.com/abs-tudelft/variant-calling-at-scale.

Keywords: whole-genome sequencing; Apache Spark; Apache Arrow; BWA-MEM; sorting; MarkDuplicate; DeepVariant

Introduction

Immense improvements in next-generation sequencing (NGS)
technologies enable large amounts of high-throughput and cost-
effective raw genome datasets to be produced. On the one hand,
this development paves the way to analyze more genomes with
higher accuracy, but at the same time this creates the compu-
tational challenge of processing such a large amount of data in
a timely fashion. The approximate raw data size of the human
genome sequenced using NGS technologies is 300 Gb when se-

quenced with 30× coverage and can be >1 TB raw data with 300×
sequencing coverage. The ongoing pace of development of these
technologies promises even longer reads of up to 100 kb and with
more coverage depth.

To process and prepare raw data for downstream analy-
sis, many open-source and proprietary bioinformatics tools and
workflows are available to run on single-node machines. But due
to the continuous growth in genomics datasets, processing these
data on a single node becomes inefficient and time consum-

Received: 28 January 2021; Revised: 5 June 2021

C© The Author(s) 2021. Published by Oxford University Press GigaScience. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any
medium, provided the original work is properly cited.

1

http://www.oxfordjournals.org
http://orcid.org/0000-0003-0519-2315
http://orcid.org/0000-0001-7670-8572
http://orcid.org/0000-0001-9649-7338
mailto:t.ahmad@tudelft.nl
http://orcid.org/0000-0003-0519-2315
http://orcid.org/0000-0003-0519-2315
https://github.com/abs-tudelft/variant-calling-at-scale
http://creativecommons.org/licenses/by/4.0/


2 VC@Scale: Scalable and high-performance variant calling

ing because of input/output (I/O) bottlenecks, limitations on the
number of physical cores in a single CPU, and memory capac-
ity constraints. To scale up these tools for distributed comput-
ing environments, both high-performance computing (HPC) pro-
gramming models (using Message Passing Interface [MPI]) and
big data frameworks (using Hadoop and Spark) have been ex-
plored in the past decade.

MPI implementations leverage the benefits of distributed
memory architectures in inter-node communication. The work-
flow can exploit the maximum bare-metal performance of such
multi-node clusters using shared memory MPI implementa-
tions. Previously, insufficient emphasis has been put on devel-
oping MPI-based cluster-scaled bioinformatics tools and work-
flows. The reason can be the lack of fault tolerance [1], redun-
dant data replication, and the complexity of developing parallel
algorithms in this approach. However, new fault tolerance mod-
els for MPI [2] can enable fault tolerance mechanisms for such
applications and workflows. Similarly, the availability of 1-sided
communication in new the MPI-3 RMA (Remote Memory Access)
standard promises better performance gains in the applications
while requiring no (or very little) inter-node data sharing and
communication. Many tools in a variant-calling workflow ex-
hibit such a property of not sharing data between the nodes and
can run independently (with the exception of sorting).

Apache Hadoop [3] is a MapReduce framework used to pro-
cess chunks of big datasets in parallel on large cluster nodes in a
fault-tolerant and reliable manner. MapReduce usually splits the
input data into smaller chunks, runs these chunks completely
independently in map tasks, and sorts the output of these tasks,
which is fed to a reduce task as input to generate the final out-
put. MapReduce exclusively uses key-value pair input data to
process, sort, and aggregate the output on the basis of keys.
Hadoop Distributed File System (HDFS) is commonly used to
store the input and output data on local compute nodes or on
network storage nodes. Some early variant-calling workflows
such as Halvade [4] use this approach to exploit computing clus-
ter resources by running multiple legacy application instances
(loosely integrated in the Apache Hadoop Framework) in paral-
lel on chunked input data.

Apache Spark [5] is a unified analytics engine to process big
data in a distributed computing environment, with built-in mod-
ules for streaming data, distributed machine learning, SQL func-
tions, and graph processing. Spark also provides high-level APIs
for Java, Scala, Python, and R languages. In Spark, resilient dis-
tributed datasets (RDDs) are the core components that are dis-
tributed across the nodes of a cluster to be operated on in par-
allel. RDDs can be cached/persisted in-memory across nodes to
store intermediate results for iterative processing. Spark com-
monly uses HDFS to read/write data but also supports other
storage systems such as Network File System (NFS), HBase, and
Amazon’s S3. Many variant-calling workflows and tools have
been developed over the past decade since its first release, in-
cluding SparkGA2 [6], ADAM [7], SparkBWA [8], BWASpark [9],
PipeBWA [10], and others.

In this article, we propose and implement a new framework
that combines the advantage of easy programmability of Apache
Spark and the high efficiency of MPI. The resulting frame-
work integrates Apache Spark NGS data pre-processing with the
Apache Arrow in-memory data format. Our framework tightly
integrates pre-processing (read sorting and duplicate removal)
applications in Python using distributed Dataframes (DF)-based
sorting and vectorization. This is the first ever such implemen-
tation for genomics data to exploit the benefits of Apache Arrow

in-memory data format in Apache Spark. The key contributions
of our approach are as follows:

� The first scalable approach for DNA data pre-processing
that uses Apache Arrow for efficiently utilizing compute re-
sources while preserving easy programmability

� Improved performance of up to 2 times compared with state-
of-the-art scalability approaches

� Integration with DeepVariant to create the first scalable
open-source DeepVariant workflow on Apache Spark

This article is organized as follows. In Section “Background
and Related Work,” we discuss single-node and cluster-scaled
pre-processing and variant-calling workflows, followed by the
Methods section, which presents the in-depth details of the new
Apache Arrow–based data format for NGS data. In Section “De-
sign and Implementation,” the internal design flow and imple-
mentation details of our new efficient workflow are discussed.
Furthermore, Section “Results and Evaluation” describes the re-
sults of our implementation using different node configurations
with different sequencing coverage/depth datasets to show the
scalability and the performance comparisons with state-of-the-
art methods. In the Discussion section, more detailed insights
on performance, scalability, resource utilization, and memory
consumption are given. Finally, the Conclusion provides some
concluding remarks and possible future directions.

Background and Related Work

In this section, first we introduce and discuss some tools used to
pre-process NGS data followed by a discussion of some widely
used cluster-scale variant-calling workflows.

Pre-processing NGS data

Pre-processing of NGS data requires a number of steps: (i)
alignment of raw FASTQ data against a reference genome, (ii)
chromosome-based coordinate sorting, and (iii) PCR duplicate
removal (optional, only required if data are not PCR-free or in
some datasets for better accuracy). These steps are common
to almost every variant-calling workflow. There are many pub-
licly available tools that can pre-process NGS data efficiently on
single-node machines. Bowtie2 [11] and BWA-MEM [12] tools are
widely used for short-read sequence alignments. SAMtools [13],
Picard [14], Sambamba [15], and samblaster [16] are some of the
most famous and widely used tools for the purpose of indexing,
sorting, and duplicate removal in SAM/BAM/CRAM files.

Variant calling

Variant calling reveals deep insights into nucleotide-level or-
ganismal differences in some specific traits among popula-
tions from an individual’s genome sequence data. It discerns
genetic variations in 3 categories: single-nucleotide polymor-
phisms (SNPs), insertions and deletions (indels), and/or struc-
tural variants (SVs; may also include copy number variations
[CNVs], duplication, translocation, and so forth). The GATK
HaplotypeCaller is a widely used variant caller for detecting
germline variations. DeepVariant [17] is being considered a more
accurate germline variant caller for both short and long reads.
Such tools as VarScan [18], VarDict [19], and MuTect2 [20] are
used for somatic variant-calling analysis. NeuSomatic [21, 22]
is a deep convolutional neural network–based somatic variant
caller that runs in both stand-alone and ensemble modes (Mu-



Ahmad et al. 3

Figure 1: Single-node total runtimes for complete variant-calling workflow using

DeepVariant for different datasets.

Tect2, MuSE, Strelka2, SomaticSniper, VarDict, and VarScan2) for
accurate somatic variant detection. Octopus [23], FreeBayes [24],
Strelka2 [25], SNVer [26], and LoFreq [27] are also used for both
germline and somatic variant-calling analysis. The DeepVari-
ant variant caller–based workflow outperforms all other meth-
ods in both PrecisionFDA (pFDA) Challenges v1 [28] (highest
SNP performance) and v2 [29] (all benchmark regions for Pa-
cific Biosciences and multiple, difficult-to-map regions for Ox-
ford Nanopore Technology). DeepVariant does not require any
additional pre-processing steps such as base quality recalibra-
tion. Therefore we selected this variant caller to integrate with
our pre-processing workflow. As shown in Fig. 1, we run the
fastest pre-processing tools with DeepVariant on a single ma-
chine with different datasets to get an idea of individual tool
runtime in the workflow.

Cluster-scaled workflows

There are many cluster-scaled multi-node implementations
available for alignment using both HPC languages such as
MPI/Unified Parallel C (UPC), as well as big data frameworks
such as Hadoop MapReduce and Apache Spark. pBWA [30] and
mpiBLAST [31] use MPI, and CUSHAW3 [32] uses UPC++. Simi-
larly ADAM’s Cannoli [7], SparkBWA [8], and PipeMEM [10] are a
few Apache Spark–based BWA implementations that use BWA
as loosely integrated underneath these implementations while
GATK BWASpark modifies the original BWA to exploit the Spark
scheduling and shuffling functionality to run BWA instances in
parallel on clusters.

ADAM, Halvade, and SparkGA2 are a few implementations
that also handle whole variant-calling workflows based on GATK
best practices including alignment, sorting, duplicate removal,
and base quality score recalibration.

ADAM, Halvade, and SparkGA2 use the built-in Scala API in
Spark for sorting the aligned reads. Because the Picard MarkDu-
plicate algorithm is considered the standard for paired-end
reads for duplicate removal, SparkGA2 and Halvade use this Pi-
card MarkDuplicate tool in Spark for distributed processing on
clusters, while ADAM has implemented their own duplicate re-
moval algorithm in Scala, which is nearly identical to the Picard
MarkDuplicate algorithm. A more detailed comparison of these
workflows for each individual pre-processing stage output stor-
age strategy is given in Table 1.

Apache Arrow in Apache Spark

Apache Arrow [33] is an in-memory standard columnar data for-
mat. Apache Arrow also provides API interfaces and functions to

process datasets in Go, C, C++, C#, Java, JavaScript, R, Rust, MAT-
LAB, Ruby, and Python languages. Owing to the columnar data
storage, efficient vectorized data analytics operations and better
cache locality can be exploited. This in-memory format also sup-
ports zero-copy reads for large datasets in inter-process commu-
nication without serialization/deserialization overheads. Fig-
ure 2 shows how a common Apache Arrow–based data for-
mat is being used in Apache Spark with different language
interfaces.

Apache Spark leveraging Apache Arrow
In this article, we use Python as the language to implement our
workflow owing to its high level of abstraction and ease of im-
plementation. It also has a stable API to Apache Arrow [34] used
in Apache Spark to efficiently transfer data between JVM and
Python processes.

Pandas user-defined functions
The Python computation model in PySpark on user-defined
functions (UDFs) is scalar; i.e., during UDF evaluation, the JVM
executor process sends row data to PySpark workers, which in-
voke UDFs on a row-by-row basis and send the results back to
the executor process. However, the current Spark/PySpark re-
lease uses immutable Arrow RecordBatches (RBs) data instead
of Spark built-in row-based data. This enables vectorized UDF
evaluation on these RBs using Pandas Dataframes, which in turn
gives a huge performance improvement. Owing to vectorized
UDF operations, the reduced number of system calls enables
faster I/Os.

Because traditionally Apache Spark uses a row-based mem-
ory layout, using Arrow RBs requires converting Spark row-
based data to Arrow RecordBatch and vice versa to ap-
ply vectorized UDF operations in Pandas Dataframes. Some
other operations (e.g., grouped data in Pandas Dataframes
on UDFs, and converting Spark Dataframes to/from Pandas
Dataframes) are also becoming more efficient using Arrow un-
derneath, which is discussed in more details in the Methods
section.

Pandas function APIs
Python native functions can be applied on PySpark Dataframes,
which input/output Pandas instances. Grouped map, map, and
cogrouped map are a few Pandas API functions to apply on PyS-
park Dataframes. These functions use Arrow to transfer data
and Pandas to work on those data. These functions share the
same characteristics as those of Pandas UDFs.

UDF performance with or without Arrow
The Spark Python API supports UDFs that operate 1 row at a
time, resulting in a large serialization and invocation overhead.
Apache Arrow–based unified memory format brings the bene-
fits of high-performance and low-overhead dataframes conver-
sion (PySpark ↔ Pandas) and vectorized Pandas UDFs operations
in Python native environments. Because Spark inherently op-
erates on row-based memory layouts and Arrow data format
is columnar, this requires row-column conversions (Spark row
↔ Arrow RecordBatch) overhead when doing these operations.
In Fig. 3, we show the performance comparison of (i) convert-
ing a Pandas dataframe to PySpark dataframe with Arrow and
without Arrow, (ii) Python UDF (row-at-a-time) and Pandas vec-
torized UDF (using Apache Arrow) for plus 1, (iii) cumulative
probability distribution function (cdf), and (iv) subtract mean
examples [35].



4 VC@Scale: Scalable and high-performance variant calling

Table 1: A comparison of NGS data pre-processing workflows with their output storage approaches for each stage

Framework Alignment (output) Sorting (output) Duplicate removal (output)

Halvade ∗.SAM in disk In-memory (elPrep) In-memory (elPrep)
SparkGA2 ∗.fq.gz in disk ∗.BAM in disk ∗.BAM in disk
ADAM ADAM Parquet in disk ADAM Parquet in memory ADAM Parquet in memory
VC@Scale (this work) In memory (Apache Arrow

RecordBatches)
In memory (PySpark DFs) In memory (PySpark DFs →

∗.BAM)

Figure 2: A. Python programs in Spark require inefficient data serialization/deserialization between Python and JVM processes (using the Py4j library). B. Efficient

data communication between frameworks/languages using Apache Arrow unified in-memory columnar data format with zero-copy overhead and different languages
APIs/interfaces availability in Spark cluster.

Methods

In this section, we discuss the details of architectural ap-
proaches that we have adopted in this work for processing the
variant-calling workflow.

Overview

The benefits of using distributed big data frameworks to process
genomics data are 4-fold: they provide easy and flexible deploy-
ment, efficient cluster scalability, and fault tolerance, as well as
cheaper costs on public clouds and private HPC clusters. Tradi-
tionally, these frameworks use distributed file systems like HDFS
or NFS for storage. The intermediate processing stages place
data in-memory on-demand if enough memory is available in
the form of RDDs. RDDs generally store data in their internal
row format while Apache Arrow provides an efficient columnar
data format to create distributed RDDs of Arrow RecordBatches
object types.

To validate the scalability and performance advantage of
our Apache Arrow–based in-memory data placement, shuffling,
conversion, and computation techniques in Apache Spark us-
ing PySpark, we present the design methods for a full variant-
calling workflow. We have also developed high-performance and
scalable but very simple, portable, and stand-alone methods for
BWA-MEM and DeepVariant scalability on HPC clusters using
traditional I/O-based storage.

Variant-calling workflow

In this subsection, we describe the various stages of the variant-
calling workflow that we designed, as shown in Fig. 5. We
start with the implementation of the pre-processing stages
(alignment, sorting, and duplicate removal) using Apache Ar-
row in-memory data format for temporary data storage in
Plasma Stores, shuffling/conversion of data, and transforma-
tions/computations on these data. The resultant data from
these pre-processing stages is saved in BAM format. Each
BAM file contains the reads of a particular chromosome and
a specific region inside a chromosome. Variant caller (Deep-
Variant) instances process these BAM files on worker nodes
and produce VCF files, which are merged to produce a final
VCF file.

FASTQ chunk streaming

We use the SeqKit [36] to create the FASTQ input chunks in par-
allel with BWA-MEM for input paired-end NGS data as shown
in Step 1 of Fig. 5. SeqKit is an efficient multi-threaded utility,
through which we provide these FASTQ data to BWA-MEM in-
stances in streaming fashion, without the need to create FASTQ
chunks separately. The number of created FASTQ chunks can
be configured in the SeqKit command option, depending on the
number of nodes available in the Spark cluster.



Ahmad et al. 5

Figure 3: Performance comparison of Pandas dataframe to PySpark dataframe

conversion using Arrow and without Arrow and Python UDF (row-at-a-time) and
Pandas vectorized UDF (using Apache Arrow) operations: plus one, cdf, and sub-
tract mean.

Figure 4: Static load balancing technique adopted in this work for BWA-MEM
output, which divides chromosome-based regions to join and process them in

parallel for all further workflow stages.

Arrow integration in BWA-MEM

BWA-MEM is the most popular alignment tool in the bioinfor-
matics community owing to its efficient and accurate alignment
algorithm for short reads. In our implementation, each Spark
cluster worker node runs 1 BWA-MEM instance as shown in Step
2 of Fig. 5. We have modified BWA-MEM to output in-memory
key-value pair SAM data instead of creating tab-delimited SAM
files.

Key-value pairs
Key-value pair-based data have proven efficient sorting perfor-
mance as compared with text/columnar data structures. For ev-
ery read, after creating its respective SAM fields we convert the
whole read SAM data into a key-value pair <POS:SAM> and with
RNAME, an extra piece of information in the structure to store

it in a designated immutable Arrow RecordBatch. Each Record-
Batch is a combination of a schema, which specifies the types
of data fields, and the data item itself. In our case, the POS field
is integer (Int) type while the SAM and RNAME fields are String
type.

Static load balancing
Owing to the size differences in the chromosomes of the human
genome, we created chromosome regions for efficient scalabil-
ity in BWA-MEM, and the same trend is followed in subsequent
pre-processing stages as well. The number of regions is different
for each chromosome; reads are stored corresponding to their
respective regions as shown in Fig. 4. Each region in each chro-
mosome is on average equal to 40–50 million base pairs.

Plasma Object Store
The Plasma Object Store is an inter-process communication
component of Apache Arrow that handles shared memory pools
across different heterogeneous systems [37]. To perform inter-
process communication, processes can create Plasma objects in-
side the shared memory pool that are typically data buffers un-
derlying an Arrow RecordBatch. We cannot use more than half
of overall system memory for these Plasma Stores. Through the
shared memory pool, Plasma enables zero-copy data sharing be-
tween the processes. The output SAM data from BWA-MEM in-
stances on each node are stored in key-value pairs in respec-
tive chromosomal regions using the Arrow in-memory format
as shown in Step 3 of Fig. 5.

flatMap() on BWA-MEM
We apply the PySpark flatMap() function on BWA-MEM
instances, which use an already SparkContext paral-
lelized/distributed collection of input FASTQ chunks described
in Section “FASTQ chunk streaming.” All the BWA-MEM in-
stances create Arrow RecordBatches of regions of individual
chromosomes on their own respective nodes. These Batches
are temporarily placed in Plasma Object Stores on each node.

RDDs of Arrow RecordBatches
As soon as the alignment process on Apache Spark worker nodes
finishes, we create distributed RDDs of these Arrow RecordBatch
objects available across all the Spark worker nodes as shown in
Step 4 of Fig. 5. Each RDD occupies the RecordBatches of a partic-
ular chromosome (with its specific region) distributed among all
the worker nodes. Arrow RecordBatches are filtered out in this
step and cached into the Spark context of the master node.

RDDs to Dataframe
These RecordBatches in RDDs are serialized and a PySpark
schema is generated through corresponding Arrow schema en-
closed in these RecordBatches. Python object to Java object con-
version on RDDs is then applied as shown in Step 5 of Fig. 5.
Finally, these resultant RDDs are converted to Spark Dataframe
through Scala PythonSQLUtils() methods. At this point, we have
distributed Spark Dataframes of specific regions of each chromo-
some. We process these specific chromosome regions indepen-
dently and in parallel in the next sorting and duplicate removal
stages.

Sorting

All the Spark Dataframes containing specific chromosome re-
gions are sorted (Step 6 in Fig. 5) by coordinates through
df[n].orderBy(’beginPos’, ascending=True) function. This func-



6 VC@Scale: Scalable and high-performance variant calling

Figure 5: Complete design flow of the variant-calling workflow implementation in VC@Scale. This design encompasses Slurm Spark/GCP DataProc cluster, Lustre/GCP
Filestore as file system, Apache Arrow as in-memory data format for pre-processing, and DeepVariant as variant caller.



Ahmad et al. 7

tion is very fast and efficient in sorting huge distributed
Dataframes. All the Dataframes are sorted in parallel using the
Python multiprocessing library Pool method.

Duplicate removal

Duplicate removal algorithms in this implementation were writ-
ten from scratch in Python for both single and paired-end reads.
These algorithms are developed using Pandas UDFs to apply on
PySpark Dataframes, which can use the Pandas function APIs
(df[n].groupby().applyInPandas()) to leverage the benefits of Ar-
row for data transfer/conversion and transformations (Step 7 in
Fig. 5). For paired-end reads, a Picard MarkDuplicate compatible
algorithm has been developed. The accuracy of this algorithm is
validated using different datasets, so that they can be used as a
cluster-scalable replacement for the existing Picard MarkDupli-
cate algorithm.

DeepVariant integration

DeepVariant is considered an accurate variant caller for de-
tection of both SNPs and indel variants in germline datasets.
Published results show that DeeVariant performs best for most
PrecisionFDA Truth Challenge datasets [38]. We have observed
that on a single node, DeepVariant scales very well up to 6–12
threads. Therefore we have enabled running multiple DeepVari-
ant instances on each Spark worker node using the PySpark
flatMap() function (Step 8 in Fig. 5). Each DeepVariant instance
takes input BAM (and BED as well in case of whole-exome se-
quencing data) and reference FASTA from the I/O-based NFS and
produces individual VCF/gVCF files.

VCFs merge

Finally, the individual VCFs created through DeepVariant in-
stances are merged (Step 9 Fig. 5) through Samtools to produce
a final complete VCF file(s) for further downstream analysis.

Stand-alone implementations

In addition to implementing the complete workflow, we can also
use BWA-MEM and DeepVariant as scalable stand-alone imple-
mentations capable of scaling almost linearly on HPC clusters
depending on the input data size and number of nodes avail-
able.

BWA-MEM
Almost all BWA-MEM cluster-scaled implementations
(SparkBWA [8], BWASpark [9], PipeMEM [10], ADAM [7], and
SparkGA2 [6]) run multiple BWA-MEM instances on each Spark
worker node as Spark tasks, which degrades the underlying
efficient single-node multi-threaded scalability of this tool.
Instead we use 1 BWA-MEM instance on each Spark worker
node, storing output SAM files on storage and merging these
SAM files to generate a single output SAM file.

DeepVariant
We use Samtools to generate different BAM files representing
chromosome regions from a single BAM file in accordance with
our human chromosome region–based approach as discussed in
Section “Static load balancing.” Similarly, we have divided the
reference FASTA into individual chromosome-based FASTA files
using faSplit [39]. The VCF/gVCF output files of these instances
can be merged through Mergevcf or Samtools.

Results and Evaluation

In this section, first we briefly describe the datasets and HPC in-
frastructure used in the evaluation of our techniques. In addi-
tion, we compare our results with other state-of-the-art frame-
works for both pre-processing and variant-calling stages, fol-
lowed by a detailed analysis and comparison of scalability, per-
formance, and speed-ups with these frameworks.

Datasets

We use multiple whole-genome sequencing (WGS) datasets with
varying coverage depth to analyze the maximum possible scala-
bility and performance of our methods. The first dataset is sam-
ple ERR001268 from the 1000 Genomes Project (Phase 3) Illumina
HiSeq-generated WGS paired-end read data of NA12878 [40]. In
addition, we used Illumina HiSeq 2000 paired-end NA12878 cell
line data sequencing sample ERR194147 [41] with sequencing
coverage of 30×. We also used 300× sequencing coverage WGS
data from Genome in a Bottle (GIAB) aligned with novoalign for
the Illumina HiSeq 300× reads for NA12878 [42] to analyze the
scalability of DeepVariant. Human Genome Reference, Build 37
(GRCh37/hg19) [43], is used as a reference genome.

Evaluation HPC cluster

All experiments and comparisons were performed on the Surf-
Sara Cartesius [44] HPC cluster (part of the Dutch national super-
computing infrastructure). Each CPU-only node is equipped with
a dual socket Intel Xeon Processor (E5-2695 v2 or E5-2690 v3) run-
ning at 2.4/2.6 GHz. Each processor has 12 physical cores with
support of 24 hyper-threading jobs. Similarly, each CPU + GPU
node is equipped with a dual socket Intel Xeon Processor (E5-
2450 v2) running at 2.5 GHz and 2× NVIDIA Tesla K40m GPGPUs.
Each processor has 8 physical cores with support of 16 hyper-
threading jobs. A total of 64 GB (E5-2695 v2/E5-2690 v3) and 96
GB (E5-2450 v2) of DDR4 DRAM with a maximum of 59.7 GB/s
bandwidth is available for the whole system. A local storage of
1 TB and the same amount of network attached storage is avail-
able on the system. All nodes are connected through Mellanox
ConnectX-3 or Connect-IB InfiniBand adapter.

Lustre [45] distributed and parallel file system is attached to
our evaluation HPC cluster. Lustre file system has performance
similar to that of HDFS/YARN-based Hadoop cluster for shuffle-
heavy workloads in Apache Spark.

Red Hat Enterprise Linux operating system is installed on
all nodes. The Apache Spark cluster is created in deploy-mode
“client” thorough Slurm [46] Workload Manager and all work-
flows are executed through bash scripts.

We also used a Google GCP DataProc cluster and Google cloud
Filestore, a network attached storage (NAS) to reproduce and run
this approach on public cloud environments. All the required
applications are installed on Dataproc custom image, which is
based on the DataProc 2.0.1-ubuntu18 operating system. A de-
tailed description and quick start guide to run all methods in
this approach are given on the project GitHub page.

Pre-processing (BWA, sorting, duplicate removal)

Our approach performs pre-processing in a more tightly coupled
fashion (i.e., using native PySpark functions) as compared with
alternative solutions such as SparkGA2, which stores the output
of each of the pre-processing stages to storage and loads it again
for subsequent stages. We have tested the scalability and perfor-



8 VC@Scale: Scalable and high-performance variant calling

Figure 6: VC@Scale, SparkGA2, and ADAM comparisons of scalability for pre-
processing stages using different number of nodes for ERR194147 (2×) dataset.

Figure 7: VC@Scale, SparkGA2, and ADAM comparisons of scalability for pre-
processing stages using different number of nodes for ERR001268 dataset.

mance of our architectural choices with that of SparkGA2 and
ADAM for different cluster sizes; 2, 4, 8, and 16 nodes have been
used in almost all comparisons. Storing BWA-MEM output to in-
memory key-value pairs using the Arrow format involves almost
zero cost overhead for loading data to the next sorting stage.
The only data transformation that happens between the align-
ment and sorting stages is the conversion of RDDs containing
Arrow RecordBatch objects to PySpark Dataframes. This trans-
formation is handled through the Apache Arrow APIs internally.
A similar key-value pair transformation of sorted Dataframes to
SAM values occurs before the MarkDuplicate stage. Compared
to SparkGA2 and ADAM pre-processing results, >2 times speed-
up is achieved for all cluster sizes and for both ERR001268 and
ERR194147 (2×) datasets for SparkGA2 while 2–4 times speed-up
is achieved as compared to ADAM workflow pre-processing, as
shown Figs 6 and 7, respectively.

Figure 8: Single-node CPU-only and GPU accelerated DeepVariant for ERR194147
(30×) dataset.

Figure 9: Total runtime for DeepVariant-based complete variant-calling work-
flow (VC@Scale), which uses best performance combination of nodes. For both
datasets pre-processing (BWA-MEM, sorting, and MarkDuplicate) uses 16 nodes

while 32 nodes are used for DeepVariant.

Variant calling (DeepVariant)

DeepVariant is ∼3–4 times slower than GATK’s HaplotypeCaller
on CPU-only machines [47]. To make it scalable for clusters,
we run each chromosome region independently on a differ-
ent Spark worker node. In our pre-processing stage, we already
store the load-balanced BAMs as individual chromosome re-
gions. This approach provides a fruitful base for a subsequent
variant-calling stage (DeepVariant in our case). For DeepVariant
CPU-only version, we used a CPU cluster with different numbers
of nodes (2, 4, 8, 16, and 32) and with multiple datasets such
as ERR001268, ERR194147 (2×), ERR194147 (30×), and NA12878
(300×). Fig. 8 shows both CPU and GPU accelerated DeepVariant
runtime while Fig. 9shows the total runtime of variant calling
workflow based on this work. In Fig. 10, the results show an in-
creasing speed-up for DeepVariant scalability on a Spark clus-
ter. In DeepVariant some smaller datasets perform best with
just 16 nodes, while the processing trend of other datasets
shows even more scalability when we increase the number of
nodes from 16 to 32. The total runtime is decreased up to 8×
as compared to a single CPU machine. DeepVariant consists of
3 steps: (i) make examples, (ii) call variants, and (iii) postpro-
cess variants. The first 2 steps are the most time consuming (see
Fig. 1). To improve their performance, the make examples step is
multi-threaded for reading inputs and creating examples, while
call variants has been accelerated for GPUs. As shown in Fig. 8,
we have observed in some datasets such as ERR194147 (30×) that
the call variants step takes up to 95% of the total time of Deep-
Variant. This step can be accelerated on GPUs by almost 10 times



Ahmad et al. 9

Figure 10: VC@Scale-DeepVariant scalability for different datasets and the num-
ber of nodes used in each run.

as shown in the GPU accelerated results of Fig. 8. Such accelera-
tion makes it more feasible to adopt DeepVariant in practice. We
also use a GPU cluster to test our approach for DeepVariant scal-
ability, as well as acceleration. Results in Fig. 11 show >2 times
speed-up with GPU accelerated DeepVariant for the ERR194147
(30×) dataset as compared to CPU-only.

Variant-calling workflow

The total runtime results for the whole variant-calling workflow
using BWA-MEM, Sorting, MarkDuplicate, and DeepVariant are
shown in Fig. 9. Here we show the best possible node config-
uration for both the pre-processing and variant-calling stages.
For the dataset ERR194147 (2×), in pre-processing the best fit is
found with 16 nodes while 32 nodes give better scalability in
variant calling. Similarly for dataset ERR001268, the choice of 16
nodes provides the best performance and scalability. The total
runtime is decreased by up to 5 times as compared to a single
CPU machine.

Stand-alone BWA-MEM and DeepVariant

Our workflow can also be used as 2 independent components: a
stand-alone BWA-MEM and a stand-alone DeepVariant compo-
nent. The BWA-MEM component represents the fastest stand-
alone Spark-based scalable implementation compared to other
state-of-the-art BWA-MEM cluster solutions. In this solution we
achieve almost linear speed-ups with increasing the number of
nodes. The output is saved into separate SAM files, which can be
merged through Samtools to output a single SAM file.

In this solution, an already created BAM file can be used
with DeepVariant for variant calling on a cluster. As discussed
in the Section “DeepVariant,” we used Samtools to split the BAM

Figure 11: GPUs accelerated VC@Scale-DeepVariant scalability for ERR194147
(30×) dataset.

file into our pre-defined chromosome regions to generate load-
balanced chromosome region parts. In this way we ran Deep-
Variant instances on Spark worker nodes. The output speed-up
and scalability results are the same as described in Section “Vari-
ant calling (DeepVariant).”

Standalone pre-processing (Piped)

BWA-MEM, Sambamba (sorting, markdup) and Samtools (merge)
This is a simple and efficient implementation of pre-processing
stages (alignment, sorting, and markduplicate) on a Spark clus-
ter. We integrated already existing and widely used tools in this
workflow. Sambamba sorting and MarkDuplicate algorithms
produce the same output as Picard’s. In this approach, the mas-
ter node streams the FASTQ data to all worker nodes as dis-
cussed in Section “FASTQ chunks streaming.” All worker nodes
initiate 1 BWA-MEM instance. The BWA-MEM output is then
piped into Sambamba, which performs both SAM to BAM con-
version and sorting. The Sambamba MarkDuplicate stage is op-
tional. After these stages, we use the Samtools merge algorithm
to combine all the resultant BAM files into a single BAM file. We
have developed a demo with different nodes on a Google GCP
DataProc cluster, which is publicly available and can be tested
with GCP. A complete guide to executing this workflow is avail-
able on our project GitHub page [48].

Support/integration of other variant callers

Any variant caller that can support region-specific variant call-
ing can be integrated into this workflow. We integrate Octo-
pus [23], a recently developed, accurate, and fast variant caller,
as a use case to demonstrate the feasibility of integrating other
variant callers in this approach. We also performed a compari-



10 VC@Scale: Scalable and high-performance variant calling

son on DeepVariant and Octopus on Chr20-HG003 Illumina WGS
reads publicly available from the PrecisionFDA Truth v2 Chal-
lenge, and we found that the accuracy of Octopus was almost
identical to that of DeepVariant for both SNP and indel variants.
We also provide a guide to reproduce both these use cases on
GitHub.

Discussion

Here we discuss some of the advantages and limitations of our
approach, in addition to the advantages of using Apache Arrow
as a common in-memory data format for variant-calling work-
flows.

Portability of the implementation

The workflow implementations discussed in this article are
portable to many HPC cluster environments. We use standard
cluster solutions such as the Singularity container and the Slurm
Workload Manager to deploy and reproduce them with ease on
other cluster environments.

Accuracy

To compare the detection accuracy of small variants in
both single-node (default) method and VC@Scale (distributed)
method, we used the HG002 (NA24385 sample with 50× cover-
age taken from PrecisionFDA challenge V2) dataset to detect SNP
and indel variants using DeepVariant (v1.1.0), against the GIAB
v4.2 benchmark set for HG002 dataset. The GA4GH small-variant
benchmarking tool hap.py [49] has been used to compare the re-
sulting variants in both methods. Tables 2 and 3 list the accu-
racy analysis results in terms of recall, precision, and F1-score.
The tables show that in general VC@Scale has very compara-
ble accuracy results to the baseline. Detailed inspection of the
results shows that VC@Scale detects the same number of indel
true-positive and false-negative results and slightly fewer false-
positive results compared to the baseline. This gives the same
recall results but ensures a slightly improved precision and F1-
score. For SNPs, however, VC@Scale detects slightly fewer true-
positive results but more false-negative and false-positive re-
sults. This gives a marginally degraded SNP recall, precision, and
F1-score.

Parallelization and scalability

Owing to dividing chromosomes on the basis of regions for
load-balancing in the alignment stage, better parallelization is
achieved per node in both pre-processing and variant-calling
stages. In the examples in this article, we created a total of 65
such regions, which allows us to scale up to 32 nodes for the pre-
processing and DeepVariant stages. When using 32 nodes, 2 re-
gions are being mapped to each worker node. The total runtime
of the workflow is determined by the slowest node in the clus-
ter. As the size of the input dataset increases, making smaller
regions can give more scalability for higher number of nodes.

Two points are important to understand the scalability and
performance predictability of such applications when using the
Apache Spark framework. (i) Spark always takes some fraction of
time to initialize the underlying processes on its worker nodes
and also spends a similar amount of time in scheduling and col-
lecting the result. Therefore, increasing the number of nodes
Spark uses also increases this overhead time. If increasing the
number of nodes results in a small overall processing time, then

Figure 12: SparkGA2 cluster-wide system resource utilization graph for pre-
processing stages.

Figure 13: VC@Scale cluster-wide system resource utilization graph for pre-
processing stages.

it reaches a point where the aforementioned overhead time sur-
passes the processing time. (ii) Data size also influences the scal-
ability and performance of these applications, and this is di-
rectly linked to our previous point. When we increase the num-
ber of nodes, the data size is always divided by the number of
nodes being used. So we have to figure out the best possible sce-
nario of performance on the cluster when choosing the number
of nodes and data size being used.

System resource utilization

Existing Spark-based variant-calling workflows like ADAM,
SparkGA2, and Halvade launch multiple instances of BWA-MEM
on each Spark worker node, which degrades the actual perfor-
mance of BWA-MEM instances on each individual node. These
workflows store the output of each stage to the disk, which
sometimes incurs I/O wait overheads, as well as reading and
writing to I/Os for each stage, and parsing text SAM or com-
pressed BAM also involves some additional overheads as shown
in Fig. 12. The figure uses the ERR194147 (2×) dataset with
a 16-node cluster (the best scalable and optimized use case
for both SparkGA2 and in our approach). For comparison, we
also show the system resource utilization for our approach in
Fig. 13. In both approaches, the first 50 seconds are spent load-
ing the FASTA index and reading the first FASTQ data chunk. In
SparkGA2, the I/O wait time is a bit higher than ours because
it loads multiple indices for multiple BWA-MEM instances on
each node while we just load 1 FASTA index on each node. Af-



Ahmad et al. 11

Table 2: Accuracy evaluation of small variants of HG002 (NA24385 with 50× coverage taken from PrecisionFDA challenge V2 datasets) against
GIAB HG002 v4.2 benchmarking set for Chr1 on a single-node (default) run

Variant type Truth total True positive False negative False positive Recall Precision F1-Score

Indel 42,689 42,390 299 131 0.992996 0.997053 0.995020
SNP 264,143 262,367 1,776 351 0.993276 0.998665 0.995963

Table 3: Accuracy evaluation of small variants of HG002 (NA24385 with 50× coverage taken from PrecisionFDA challenge V2 datasets) against
GIAB HG002 v4.2 benchmarking set for Chr1 on a cluster-scaled (distributed) VC@Scale implementation

Variant type Truth total True positive False negative False positive Recall Precision F1-Score

INDEL 42,689 42,390 299 127 0.992996 0.997142 0.995065
SNP 264,143 262,365 1,778 355 0.993269 0.998649 0.995952

Chr1 has been chunked into 10 parts. HG002-NA24385 datasource is available at https://precision.fda.gov/challenges/10.

ter loading the files, the actual alignment process starts. The
figures show that in SparkGA2, a maximum of 78% of the CPU
resources are being used for BWA-MEM while in our approach
almost 95% on average of the CPU resources are being used for
BWA-MEM. Similarly, in Sorting only ∼10% and in MarkDupli-
cate 50% on average CPU resources are being used in SparkGA2.
In our approach, the timing graph shows that both stages can
be almost completed in half of the total time with an aver-
age of 60–65% utilization. Because Spark uses lazy evaluations
of Dataframes operations, we cannot distinguish exactly the
timing for each operation separately. Owing to some internal
shuffling and the PySpark to Pandas Dataframes conversion
via Apache Arrow, slightly more system time is being spent
there.

Memory consumption

We use Plasma Object Store to place temporary BWA-MEM out-
put data in-memory on each node. These objects are removed
when the Spark Dataframes creation is accomplished. During
this intermediate step we use a memory space that is twice the
size of the SAM file. Similarly, during the sorting process, Spark
does a lot of internal shuffling, which requires additional mem-
ory. In MarkDuplicate, we use Pandas UDFs, which internally
use the Arrow data format for PySpark Dataframes to Pandas
Dataframes conversion and vice versa. This step is also mem-
ory intensive. This workflow in pre-processing stages requires
double the memory size as compared to SAM data produced by
the BWA-MEM stage on that worker node while the master node
requires a memory size equal to the total size of the SAM data
produced by all worker nodes. For the DeepVariant stage, it only
requires a couple of gigabytes of memory on both worker and
master nodes.

Conclusion

A scalable and high-performance DeepVariant-based variant-
calling workflow for cluster-scaled environments is presented
in this article. We use a FASTQ data streaming technique to feed
data to an alignment stage followed by an in-memory data load-
balancing method to store alignment output. Sorting and mark
duplicate stages are implemented in such a way as to get ben-
efits from the Apache Arrow data format. The load-balanced
BAM file output of the pre-processing stages is used in Deep-
Variant, making variant calling more efficient on a compute
cluster.

Scalability analysis of our approach shows significant reduc-
tion in runtime compared to a single node. For pre-processing
stages, ERR001268 and ERR194147 (2×) datasets provide up to
7 and 8 times speed-up for 16 nodes, respectively. For Deep-
Variant, ERR001268 (1× coverage) gives 5 times, ERR194147 (2×)
gives nearly 8 times, and ERR194147 (30×) and NA12878 (300×)
give 12 times speed-up for 32 nodes as compared to single-
node runtime. Similarly, our approach is faster than state-of-
the-art workflows, such as SparkGA2, resulting in 1.8 and 2
times speed-up for ERR001268 (1×) and ERR194147 (2×) for pre-
processing stages on 16 nodes, respectively. Our architectural
approach also increases efficient system resource utilization. For
pre-processing stages, we achieve 20%–25% better processor uti-
lization, which in turn helps to speed up overall processing. The
variant accuracy analysis on PrecisionFDA V2 challenge datasets
against the GIAB truth v4.2 benchmark truth data shows almost
identical results as compared to single-node runs. We also show
the flexibility of this approach to adopt other variant callers. We
integrate the Octopus variant caller as a use case for this pur-
pose. We also demonstrate the deployment of this approach on
public clouds; currently, Google GCP DataProc cluster has been
used for this purpose.

Availability of Source Code and Requirements
� Project name: VC@Scale (Scalable Variant Calling)
� Project home page: https://github.com/abs-tudelft/variant-c

alling-at-scale
� Operating system(s): Platform independent
� Programming language: Bash, Python, C, C++
� Other requirements: Singularity, Apache Spark 3.0.1, Apache

Arrow 3.0.0
� License: Apache 2.0
� biotools:variant-calling-at-scale

Data Availability

Human Reference Genome, Build 37, is available for download
(GRCh37/hg19) [43]. Illumina HiSeq-generated WGS paired-end
read data of NA12878 with sample ERR001268 [40], Illumina
HiSeq 2000 paired-end NA12878 with sample ERR194147 [41]
with sequencing coverage of 30×, and Illumina HiSeq 300×
HG002 sample of NA12878 [42] were used to evaluate this work
and are publicly available. An archival snapshot of the code
and supporting data is available via the Gigascience database, Gi-
gaDB [50].

https://precision.fda.gov/challenges/10
https://github.com/abs-tudelft/variant-calling-at-scale


12 VC@Scale: Scalable and high-performance variant calling

Abbreviations

API: Application Programming Interface; BAM: Binary Align-
ment/Map; BWA: Burrows-Wheeler Aligner; CNV: copy number
variation; CPU: central processing unit; DF: Dataframe; GATK:
Genome Analysis Toolkit; Gb: gigabase pairs; GPU: graphics pro-
cessing unit; HDFS: Hadoop Distributed File System; HPC: high-
performance computing; indels: insertions and deletions; I/O:
input/output; JVM: Java Virtual Machine; kb: kilobase pairs; MPI:
Message Passing Interface; NFS: Network File System; NGS: next-
generation sequencing; RB: RecordBatches; RDD: resilient dis-
tributed datasets; SAM: Sequence Alignment/Map; SNP: single-
nucleotide polymorphism; SV: structural variant; UDF: user-
defined function; UPC: Unified Parallel C; VC@Scale: Scalable
Variant Calling; VCF: Variant Calling File; WGS: whole-genome
sequencing.

Ethical Approval

All work is carried out with publicly available and authorized
human genome datasets.

Competing Interests

The authors declare that they have no competing interests.

Funding

The PhD research of Tanveer Ahmad is generously funded by
Punjab Educational Endowment Fund (PEEF), Pakistan.

Authors’ Contributions

Z.A.A and H.P.H. conceived and supervised this work. T.A. de-
signed and developed the whole variant-calling workflow. All
authors read and approved the final manuscript.

Acknowledgements

This work was carried out on the Dutch national e-infrastructure
with the support of SURF Cooperative. Thanks to Hamid Mush-
taq from Maastricht University Medical Center+ (Maastricht
UMC+), Netherlands, for helping run the SparkGA2 on thet HPC
cluster.

References

1. Gropp W, Lusk E. Fault tolerance in message passing
interface programs. Int J High Perform Comput Appl
2004;18(3):363–72.

2. Cappello F, Al G, Gropp W, et al. Toward exascale re-
silience: 2014 update. Supercomput Front Innov 2014;1(1):
5–28.

3. Apache Apache Hadoop. 2019. https://hadoop.apache.org/.
Accessed 2 April 2019.

4. Decap D, Reumers J, Herzeel C, et al. Halvade: scal-
able sequence analysis with MapReduce. Bioinformatics
2015;31(15):2482–8.

5. Apache. Apache Spark: Lightning-fast unified analytics en-
gine. 2019. https://spark.apache.org/. Accessed 2 April 2019.

6. Mushtaq H, Liu F, Costa C, et al. SparkGA: A Spark frame-
work for cost effective, fast and accurate DNA analysis at
scale. In: Proceedings of the 8th ACM International Confer-
ence on Bioinformatics, Computational Biology, and Health

Informatics, ACM-BCB ’17, Boston, MA, USA. New York, NY,
USA: ACM; 2017:148–57.

7. Massie M, Nothaft F, Hartl C, et al. ADAM: Genomics formats
and processing patterns for cloud scale computing. Tech.
Rep. No. UCB/EECS-2013-207. Berkeley, CA, USA: EECS De-
partment, University of California; 2013.

8. Abuı́n JM, Pichel JC, Pena TF, et al. SparkBWA: Speeding
up the alignment of high-throughput DNA sequencing data.
PLoS One 2016;11(5):1–21.

9. Broad Institute. BWA on Spark. 2018. https://gatk.broadinst
itute.org/hc/en-us/articles/360037225092-BwaSpark-BETA-.
Accessed: 27 June 2019.

10. Zhang L, Liu C, Dong S. PipeMEM: A framework to
speed up BWA-MEM in Spark with low overhead. Genes
2019;10(11):886.

11. Langmead B, Salzberg SL. Fast gapped-read alignment with
Bowtie 2. Nat Methods 2012;9(4):357–9.

12. Li H, Durbin R. Fast and accurate short read align-
ment with Burrows–Wheeler transform. Bioinformatics
2009;25(14):1754–60.

13. Li H. The Sequence Alignment/Map format and SAMtools.
Bioinformatics 2009;1(25):2078–9.

14. Picard toolkit. Broad Institute. http://broadinstitute.github.io
/picard/. Accessed 11 April 2019.

15. Tarasov A, Vilella AJ, Cuppen E, et al. Sambamba: Fast
processing of NGS alignment formats. Bioinformatics
2015;31(12):2032–4.

16. Faust GG, Hall IM. SAMBLASTER: Fast duplicate mark-
ing and structural variant read extraction. Bioinformatics
2014;30(17):2503–5.

17. Poplin R, Chang PC, Alexander D, et al. A universal SNP and
small-indel variant caller using deep neural networks. Nat
Biotechnol 2018;36:983.

18. Koboldt DC, Zhang Q, Larson DE, et al. VarScan 2: Somatic
mutation and copy number alteration discovery in cancer by
exome sequencing. Genome Res 2012;22(3):568–76.

19. Lai Z, Markovets A, Ahdesmaki M, et al. VarDict: A novel
and versatile variant caller for next-generation sequencing
in cancer research. Nucleic Acids Res 2016;44(11):e108.

20. Cibulskis K, Lawrence MS, Carter SL, et al. Sensitive detection
of somatic point mutations in impure and heterogeneous
cancer samples. Nat Biotechnol 2013;31:213.

21. Sahraeian SME, Liu R, Lau B, et al. Deep convolutional neu-
ral networks for accurate somatic mutation detection. Nat
Commun 2019;10(1):1041.

22. Sahraeian SME, Fang LT, Mohiyuddin M, et al.. Robust
cancer mutation detection with deep learning models de-
rived from tumor-normal sequencing data(2019). bioRxiv:
doi.org/10.1101/667261.

23. Cooke DP, Wedge DC, Lunter G. A unified haplotype-based
method for accurate and comprehensive variant calling. Nat
Biotechnol 2021;39:885–92.

24. Garrison E, Marth G. Haplotype-based variant detec-
tion from short-read sequencing(2012). arXiv:1207.3907.

25. Kim S, Scheffler K, Halpern AL, et al. Strelka2: fast and accu-
rate calling of germline and somatic variants. Nat Methods
2018;15(8):591–4.

26. Wei Z, Wang W, Hu P, et al. SNVer: A statistical tool
for variant calling in analysis of pooled or individ-
ual next-generation sequencing data. Nucleic Acids Res
2011;39(19):e132.

27. Wilm A, Aw PPK, Bertrand D, et al. LoFreq: A sequence-
quality aware, ultra-sensitive variant caller for uncover-
ing cell-population heterogeneity from high-throughput

https://hadoop.apache.org/
https://spark.apache.org/
https://gatk.broadinstitute.org/hc/en-us/articles/360037225092-BwaSpark-BETA-
http://broadinstitute.github.io/picard/


Ahmad et al. 13

sequencing datasets. Nucleic Acids Res 2012;40(22):
11189–201.

28. FDA. PrecisionFDA Truth Challenge. 2019. https://precision.
fda.gov/challenges/truth.

29. FDA. PrecisionFDA Truth Challenge V2: Calling variants from
short and long reads in difficult-to-map regions. 2019. https:
//precision.fda.gov/challenges/10.

30. Luo X, Qiu K, Liang P, et al. Speeding up large-scale next gen-
eration sequencing data analysis with pBWA. J Appl Bioin-
form Comput Biol 2012;1(1):doi:10.4172/2329-9533.1000101.

31. Darling A, Carey L, Feng W. The design, implementa-
tion, and evaluation of mpiBLAST. Proc Cluster World 2003;
2003.

32. Liu Y, Popp B, Schmidt B. CUSHAW3: Sensitive
and accurate base-space and color-space short-read
alignment with hybrid seeding. PLoS One 2014;9(1):
doi.org/10.1371/journal.pone.0086869.

33. Apache. Apache Arrow: A cross-language development plat-
form for in-memory data. 2019. https://arrow.apache.org/.
Accessed 29 December 2019.

34. Apache. PySpark Usage Guide for Pandas with Apache Ar-
row. 2019. https://spark.apache.org/docs/latest/sql-pyspark
-pandas-with-arrow.html. Accessed 2 April 2019.

35. Jin L. Introducing Pandas UDF for PySpark. 2018.
https://databricks.com/blog/2017/10/30/introducing-vec
torized-udfs-for-pyspark.html.

36. Shen W, Le S, Li Y, et al. SeqKit: A cross-platform and
ultrafast toolkit for FASTA/Q file manipulation. PLoS One
2016;11(10):doi.org/10.1371/journal.pone.0163962.

37. Apache, Plasma In-Memory Object Store. 2019. https:
//arrow.apache.org/blog/2017/08/08/plasma-in-memory-ob
ject-store/. Accessed 29 December 2019.

38. FDA. precisionFDA: A community platform for NGS
assay evaluation and regulatory science exploration.
2019. https://precision.fda.gov/. Accessed 12 December
2020.

39. UCSC. faSplit. 2018. http://hgdownload.cse.ucsc.edu/admin/
exe/linux.x86 64/. Accessed 12 December 2020.

40. Illumina, Illumina Cambridge Ltd. 2012. ftp://ftp.1000geno
mes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/sequence rea
d/. Accessed 24 May 2019.

41. (ENA) TENA. Illumina 30X. 2020. https://www.ebi.ac.uk/ena/
browser/view/ERR194147. Accessed 12 December 2020.

42. GIAB. NHGRI Illumina 300X BAM. 2020. ftp://ftp-trace.nc
bi.nlm.nih.gov/giab/ftp/data/NA12878/NIST NA12878 HG0
01 HiSeq 300x/NHGRI Illumina300X novoalign bams/. Ac-
cessed 12 December 2020.

43. UCSC. UCSC hg19 (GRCh37). 2020. https://hgdownload.soe
.ucsc.edu/goldenPath/hg19/bigZips/. Accessed 12 December
2020.

44. SurfSara. Cartesius: the Dutch supercomputer. 2020. https://
userinfo.surfsara.nl/systems/cartesius. Accessed 12 Decem-
ber 2020.

45. Lustre. Lustre parallel filesystem. 2020. https://www.lustre.o
rg/. Accessed 12 December 2020.

46. Slurm. Slurm workload manager. 2020. https://www.schedm
d.com/. Accessed 12 December 2020.

47. Carroll A, Thangaraj N. Evaluating DeepVariant: A new deep
learning variant caller from the Google Brain Team. 2017.
https://blog.dnanexus.com/2017-12-05-evaluating-deepvari
ant-googles-machine-learning-variant-caller/. Accessed 12
December 2020.

48. Ahmad T. Standalone pre-processing on clusters. 2021.
https://github.com/abs-tudelft/variant-calling-at-scale/bl
ob/main/README.md#standalone-pre-processing-on-clus
ters. Accessed 12 December 2020.

49. Krusche P. Haplotype VCF comparison tools. 2021. https://gi
thub.com/Illumina/hap.py. Accessed 12 December 2020.

50. Ahmad T, Al Ars Z, Hofstee HP. Supporting data for
VC@Scale: Scalable and high performance variant calling
on cluster environments. GigaScience Database 2021. http:
//dx.doi.org/10.5524/100912.

https://precision.fda.gov/challenges/truth
https://precision.fda.gov/challenges/10
https://arrow.apache.org/
https://spark.apache.org/docs/latest/sql-pyspark-pandas-with-arrow.html
https://bit.ly/3930obR
https://arrow.apache.org/blog/2017/08/08/plasma-in-memory-object-store/
https://precision.fda.gov/
http://hgdownload.cse.ucsc.edu/admin/exe/linux.x86_64/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/sequence_read/
https://www.ebi.ac.uk/ena/browser/view/ERR194147
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/NIST_NA12878_HG001_HiSeq_300x/NHGRI_Illumina300X_novoalign_bams/
https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/
https://userinfo.surfsara.nl/systems/cartesius
https://www.lustre.org/
https://www.schedmd.com/
https://bit.ly/3n4XtDT
https://bit.ly/3yC3QFf
https://bit.ly/3yC3QFf
https://github.com/Illumina/hap.py
http://dx.doi.org/10.5524/100912

