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Cutaneous leishmaniasis affects millions of people around the world. Several species of Leishmania infect mouse strains, and
murine models closely reproduce the cutaneous lesions caused by the parasite in humans. Mouse models have enabled studies on
the pathogenesis and effector mechanisms of host resistance to infection. Here, we review the role of nitric oxide (NO), reactive
oxygen species (ROS), and peroxynitrite (ONOO−) in the control of parasites by macrophages, which are both the host cells
and the effector cells. We also discuss the role of neutrophil-derived oxygen and nitrogen reactive species during infection with
Leishmania. We emphasize the role of these cells in the outcome of leishmaniasis early after infection, before the adaptive Th-cell
immune response.

1. Introduction

More than 20 Leishmania species cause leishmaniasis in
people with different genetic backgrounds and general states
of health. Further, the diversity of clinical manifestations,
epidemiology, and immunopathology makes leishmaniasis
a complex disease to study. Clinical manifestations include
ulcerative skin lesions, destructive mucosal inflammation,
and disseminated visceral infection (kala azar). Morbidity
includes disfigurement and disability. However, some fea-
tures are shared by all forms of infection by these protozoan
parasites: parasitism is persistent, tissue macrophages are the
main parasitized cell, and the host immune response defines
the outcome of the disease [1].

Cutaneous leishmaniasis is caused by several species
of the genus Leishmania, including L. major, L. tropica,
L. aethiopica, L. mexicana, L. braziliensis, L. guyanensis, L.

panamensis, L. peruviana, and L. amazonensis. The Leish-
mania genus is divided in two subgenera, Leishmania and
Viannia. In the subgenus Leishmania, L. amazonensis, L.
mexicana (complex L. mexicana), and L. major (complex
L. major) are by far the most studied species that cause
cutaneous leishmaniasis. The subgenus Viannia comprises
two important species that cause cutaneous leishmaniasis,
L. guyanensis (complex L. guyanensis) and L. braziliensis
(complex L. braziliensis) [2, 3].

The promastigote stage of the parasite lives in the gut
of sandflies (Phlebotomus in the Old World and Lutzomyia
in the New World) [4]. In the insect gut, Leishmania
promastigotes develop into metacyclic (infective) forms and
enter the vertebrate host when female sandflies take a blood
meal. In the vertebrate host, phagocytic cells ingest the
metacyclic promastigotes that, inside the phagolysosome,
differentiate into the amastigote form and replicate. The
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amastigotes rupture the macrophage and proceed to infect
other macrophages in the tissue, and, if unchecked by the
immune system, they will replicate indefinitely. The parasites
rely on macrophages for successful replication, although they
can also be taken up by neutrophils [5, 6] and dendritic
cells [7]. Leishmania do not enter cells actively; thus, they
are macrophage obligatory parasites, and the mechanism
of entrance is accepted to be phagocytosis [7]. The exit of
parasites from the macrophage is less clear. It is becoming
apparent that the release of intracellular pathogens is not
simply a consequence of a physical or metabolic burden
imposed on the host cell, but rather of particular exit
strategies governed by the microorganisms (reviewed in [8]).
In Leishmania, parasite-derived pore-forming cytolysins,
which we call leishporin, may be involved [8–13]. The life
cycle of Leishmania is complete when sandflies feed on
infected hosts, ingesting infected cells.

Although the immune response induced by infection
with Leishmania has been the subject of many investiga-
tions, the mechanisms that underlie host resistance and
pathogenesis in leishmaniasis are not entirely understood.
During the late 80s and early 90s, the discovery of two
distinct subpopulations of CD4+ T helper cells based on their
cytokine production, Th1 and Th2 [14], finally explained
resistance and susceptibility to L. major in the murine model.
The resistance of C57BL/6 and the susceptibility of BALB/c
mice were shown to be the result of the development of a
Th1 or Th2 response, respectively. IFN-γ produced by Th1
cells induces the expression of inducible nitric oxide synthase
(iNOS or NOS2) by macrophages. This enzyme catalyzes
the oxidation of the guanidino nitrogen of l-arginine to
produce nitric oxide (NO), which kills the parasite. In
contrast, the Th2 response not only activates macrophages
to produce arginase (by the action of IL-4, IL-13, and IL-
10), which competes with iNOS for the same substrate,
but also inhibits the ability to produce NO [15–19]. For
some time, Th1 cells and NO were thought to be the sole
protagonists of mouse resistance to leishmaniasis, until other
reports (referred below) showed that the polarization of the
response to Th1 or to Th2 does not explain host resistance
or susceptibility to all species of Leishmania and does not
occur in all host/parasite combinations. Hence, infection
with L. amazonensis is an example of the still controversial
nature of protective immunity in mice. The disease caused
in C57BL/6 mice by L. amazonensis, for instance, appears
to depend on Th1 cells [20], and lesions in C3HeB/FeJ
mice do not heal after induction of a Th1 response during
chronic infection [21]. However, Th1 cells help mice control
L. amazonensis infection established by promastigotes, but
not by amastigotes [22], and a Th1 response elicited by L.
major confers resistance in C3HeB/FeJ and C57BL/6 mice
to L. amazonensis challenge [23, 24]. Likewise, the lack of
resistance of C57BL/10 to L. amazonensis infection [25]
and of BALB/c to L. mexicana [26] does not correlate with
the presence of a typical Th2 response, suggesting that
susceptibility to these species of Leishmania is due to a
failure to mount a Th1 response, rather than the presence
of a Th2 response. Conversely, the resistance of BALB/c to
L. braziliensis appears to be due to the absence of a Th2

response rather than to the presence of a Th1 response
[27]. The inconsistency of the pattern protection/Th1 and
pathogenesis/Th2 to all species of Leishmania was recently
reviewed [28].

Indeed, except for a few references [29–31], innate
immunity has largely been overlooked with respect to
the mechanism of host resistance to Leishmania infection.
Dendritic cells, macrophages, and neutrophils, along with
their early-produced cytokines and reactive nitrogen and
oxygen species, have not been spotlighted as effector cells
during the initial stages of infection. Even the leishmanicidal
competence of macrophages has mostly been described as
a T-cell-dependent event, even though inducers of NO are
available very early after infection, namely, type 1 inter-
ferons (IFN-α and IFN-β) and type 2 (IFN-γ) interferons.
While IFNs-α and -β have been shown to be secreted by
macrophages [32], IFN-γ is produced by NK cells [16, 30, 33,
34] and possibly by γ/δ T cells [35], NKT cells [35], or even
macrophages [36, 37], although the latter is still controversial
[38]. More recently, however, innate immunity effector cells
have been suggested to be coparticipants in the maintenance
or elimination of the parasites, acting in the early stages of
infection in the absence of a Th-cell response.

In this paper, we highlight the participation of both
NO and reactive oxygen species (ROS) in the resistance
and pathogenesis of cutaneous leishmaniasis. We first
address the fate of promastigotes in the initial phase of
the infection, discussing the role of these leishmanicidal
molecules in eliminating part of the parasite burden while
the adaptive response is still absent (innate immunity). We
also discuss the role of these molecules at later phases of the
disease, when Th cells are available (adaptive immunity). In
both circumstances, we emphasize the differences among
the various Leishmania species and mouse strains. The
mechanisms that Leishmania utilize to evade killing by NO
and ROS have been the subject of a recent review and will
not be discussed here [39].

2. ROS and NO

Neutrophils and macrophages produce ROS in response to
phagocytosis and ligands of pattern recognition receptors
(PRRs). The patterns recognized by PRRs can be either of
pathogenic origin (pathogen-associated molecular patterns
(PAMPs)) or induced by danger patterns (damage-associated
molecular patterns (DAMPs)) that signal tissue damage,
which are generally hidden from PRRs, such as ATP [40–
42]. Moreover, endothelial activation can also induce ROS
production by neutrophils [43]. In response to these signals,
nicotinamide adenine dinucleotide phosphate- (NADPH-)
dependent phagocyte oxidase (Nox2, also known as phox
or gp91phox) is assembled, and superoxide is produced from
molecular oxygen [44, 45]. Superoxide may be dismutated
into hydrogen peroxide, which can, in turn, generate
hydroxyl radicals and other ROS. Macrophages produce ROS
in higher quantities than neutrophils [43, 46, 47].

NO is also produced by neutrophils and macrophages
in response to IFN-γ and a second signal provided by a
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PAMP ligand or TNF-α. iNOS expression is induced by
these signals. iNOS promotes the oxidation of the guanidino
nitrogen of l-arginine, resulting in the production of NO
and citrulline [47].

In activated macrophages, superoxide and NO are pro-
duced in nearly equimolar quantities and generate perox-
ynitrite (ONOO−), a free radical that is also highly toxic to
pathogens [48].

3. First Encounters—The Neutrophils

As early as 30 seconds after exposure of C57BL/6 mice to
L. major through the bite of infected sandflies or needle
inoculation of promastigotes, the injected area is infiltrated
by neutrophils, which has been elegantly visualized by two-
photon intravital microscopy [49]. Recruited neutrophils
readily phagocytose promastigotes, which remain viable,
although it is not known to what extent parasites are taken
up or survive. In fact, it has been reported that during
the first 24 h, most parasites are localized extracellularly
and can be taken up later by macrophages [49]. The above
report showed that parasites taken up by the early neutrophil
migration are kept alive inside these cells and do not suffer
from oxidative stress. However, another study showed that
at later time points, neutrophils might play a role in parasite
attrition [50], and, within 2 days, parasites inside neutrophils
show a wide variation in their morphology from healthy
to completely destroyed forms [50]. Killing of intracellular
parasites has been identified by severe signs of damage, such
as aggregated cytoplasm and extended vacuolization or com-
plete lysis [50], indicating that neutrophils can act as parasite
killers within the first few days of infection. Neutrophils
act through an array of microbicidal mechanisms, of which
the ability to produce NO [51] and ROS [52] are the most
studied in leishmaniasis. Indeed, L. major has been shown
to induce NO production by mouse neutrophils in vitro [53]
and to stimulate the respiratory burst in mouse [54], rabbit
[55], and human [56] neutrophils. Another study, however,
showed that L. major failed to induce a respiratory burst
in human neutrophils, and L. major-containing phagosomes
did not colocalize with granules involved in superoxide
production [57]. However, work by Peters et al. [49] has very
eloquently shown that there is no oxidative stress within the
first hours of infection.

Inflammatory neutrophils harvested from BALB/c mice
four hours after i.p. infection with L. major harbor more
parasites than C57BL/6 cells, which, in turn, produce
considerably higher amounts of NO than BALB/c in response
to L. major and IFN-γ [53]. In agreement with these data,
we have shown that neutrophils from uninfected C57BL/6
mice express much more iNOS and produce more NO
than cells from BALB/c mice when stimulated with IFN-
γ in vitro, indicating that the ability of these cells to be
activated to produce NO is inherent to each strain. These
data suggest that NO produced by neutrophils may help to
control infection with L. major in very early disease stages.
In vitro, however, iNOS expression and NO production can
be inhibited in neutrophils from both mouse strains by live,

but not dead, promastigotes of L. major (our unpublished
results).

In BALB/c mice, an iron-induced oxidative burst appears
to prevent the growth of L. major, protecting the animals
from developing the typical large lesions. This oxidative
burst has mainly been attributed to neutrophils [58, 59].
However, C57BL/6 resistance and BALB/c susceptibility
inversely correlate with the ability of their neutrophils to
generate ROS since BALB/c neutrophils produce more ROS
than C57BL/6 neutrophils when stimulated with phorbol
myristate acetate (PMA). L. major has also been shown to
inhibit a PMA-induced respiratory burst in neutrophils from
both strains of mice (our unpublished results).

Interestingly, the rapid recruitment of neutrophils to L.
major-induced lesions was previously reported to follow dif-
ferent kinetics in susceptible BALB/c and resistant C57BL/6
mice, which might account for these opposite outcomes. In
susceptible mice, almost 100% of the initial cellular infiltrate
is composed of neutrophils, half of which is replaced by
mononuclear phagocytes in 2-3 days. Neutrophils comprise
the other half of the cellular infiltrate for at least 12 days after
infection. In contrast, in resistant mice, only about 60% of
the initial cellular infiltrate is composed of neutrophils, and
the number of these cells drastically decreases to only 1-2% at
later time points. In resistant mice, mononuclear phagocytes
predominate at later time points, comprising more than
70–80% of the cells [49]. Notably, infection with L. major
also results in the differentiation of distinct neutrophil
populations in BALB/c and C57BL/6 mice. The parasite
induces CD49d expression in BALB/c, but not in C57BL/6,
neutrophils. The levels of Toll-like receptor (TLR) 2, TLR7,
and TLR9 mRNA are significantly higher in C57BL/6 cells
than in BALB/c cells. Moreover, C57BL/6, but not BALB/c,
neutrophils secrete biologically active IL-12p70 and IL-
10. BALB/c neutrophils instead transcribe and secrete high
levels of IL-12p40, which forms homodimers with inhibitory
activity. In C57BL/6 mice, neutrophils may constitute one
of the earliest sources of IL-12, while in BALB/c mice,
secretion of IL-12p40 may contribute to impaired early IL-
12 signaling [53]. Furthermore, C57BL/6 neutrophils were
found to release 2-3-fold more elastase than BALB/c cells,
which contributes to parasite killing through activation of
TLR4 [60]. These distinct neutrophil phenotypes may thus
influence both the early resistance or susceptibility and
the development of an L. major-specific immune response.
The role of these different populations of neutrophils on
resistance to parasites through reactive nitrogen and oxygen
species production deserves further investigation.

Recently, the interaction of neutrophils and macrophages
has been investigated in vitro (reviewed in [5]). Dead
neutrophils from C57BL/6 mice can activate infected
macrophages to kill L. major. In this system, activation is
mediated by the induction of TNF-α by neutrophil elastase,
but NO is not involved in parasite killing. Rather, superoxide
is partially responsible for parasite killing, as evidenced by
the partial inhibition of this effect when catalase was added to
this in vitro system [60, 61]. The same results were obtained
with dead human neutrophils and L. amazonensis-infected
human macrophages [62]. In another study, live murine
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neutrophils induced killing of L. braziliensis, but not L.
major, by infected macrophages. Superoxide production was
detected in this system, and killing of parasites was inhibited
by N-acetylcysteine, a superoxide scavenger. Killing of L.
braziliensis by macrophages cocultured with live neutrophils
was also independent of NO [63]. Neutrophil-induced
killing of L. amazonensis by macrophages from resistant and
susceptible mouse strains was also described and is mediated
by neutrophil elastase, TNF-α, and platelet-activating factor
(PAF), but not by NO or reactive oxygen species [64].

In response to pathogens, neutrophils may release the
so-called neutrophil extracellular traps (NETs), which are
fibrous nets composed of decondensed chromatin, his-
tones, and granule antimicrobial proteins that trap and
kill microbes extracellularly [65, 66]. NETs extruded by
human neutrophils cultured in vitro were shown to kill L.
amazonensis, L. major, and L. chagasi. These NETs were
found in lesions from patients. Killing of parasites was
found to be mediated mainly by histones [67]. Importantly,
NET formation is defective in patients suffering from
chronic granulomatous disease, who lack Nox2 activity
[68]. In fact, reactive oxygen species are required to ini-
tiate NETs. Oxidative stress ruptures neutrophil elastase
and mieloperoxidase-containing granules, and neutrophil
elastase binds to chromatin and cleaves histones, a reaction
that is further enhanced by mieloperoxidase, independent
of its enzymatic activity. This enzyme promotes chromatin
decondensation, which culminates in NET release due to
cellular rupture [69]. The molecular mechanism linking ROS
production to chromatin decondensation and binding to
antimicrobial proteins is still unknown.

Although several in vivo studies have addressed the role of
neutrophils during infection with L. major, their function in
resistance to the parasite is not totally understood and is still
a subject of debate. Due to the heterogeneous models used to
study the role of neutrophils in experimental leishmaniasis,
it is still unknown whether these cells have a protective or
pathogenic role. Like other immune responses in murine
models, the neutrophil function appears to depend on the
species and even the strain of Leishmania and the genetic
background of mice used as host (thoroughly reviewed in
[70]). Hence, even less clear is the in vivo role of reactive
oxygen and nitrogen species from neutrophils in Leishmania
resistance or pathology caused by the parasites. However,
in vitro evidence suggests that ROS from neutrophils are
involved in killing of the parasite, suggesting that ROS may
be important for resistance to parasites early in infection.

4. Latecomers—The Macrophages

Like neutrophils, macrophages are microbicidal cells that
are able to produce NO and ROS [47]. Paradoxically, these
cells are also the long-term host cell for Leishmania. In
experimental leishmaniasis, macrophages are as crucial for
parasite survival as for its elimination [71]. The role played
by these cells depends on the type of activation and the
vulnerability of the parasite to the effector mechanisms.

The mechanism by which macrophages are responsible
for resistance to Leishmania was first characterized by in
vitro experiments using murine macrophages infected with
L. major. In this model, killing of parasites is dependent on
the activation of macrophages by IFN-γ and a second signal
that triggers TNF-α. This signal is given by amastigotes, pro-
mastigotes, or parasite-derived glycoinositolphospholipids
(GIPLs) and lipophosphoglycan (LPG), but not by killed cells
or cellular lysates. Once these two signals are present, iNOS
is induced and NO is produced [72–74]. The clear role of
NO in killing L. major was established by pharmacological
inhibition of the production of NO in vitro and by the
observation of a higher susceptibility of iNOS knockout
mice to infections with L. major [16, 74–76]. It was further
confirmed by the inability of macrophages from iNOS
knockout mice to be activated and kill L. major by IFN-γ
[77]. Hence, NO clearly has a crucial role in killing of L.
major by IFN-γ-activated macrophages.

During L. amazonensis infection, IFN-γ and TNF-α
are not produced at high levels as in L. major infection
[25, 78]. Therefore, infection of L. major-resistant mice
with L. amazonensis leads to chronic lesions and inefficient
control of parasites at the site of infection. IFN-γ-activated
macrophages from CBA/J mice infected with either L. major
or L. amazonensis are able to kill the former, but not the
latter. When very high concentrations of NO were generated
in vitro, axenic L. amazonensis amastigotes succumbed. In
addition, macrophages infected with L. amazonensis produce
less TNF-α when compared to those infected with L. major
[79]. However, macrophages infected with either L. major
or L. amazonensis produce similar levels of NO (measured
as nitrite in culture supernatants) and express similar levels
of iNOS message when activated with IFN-γ [79]. Corrob-
orating these data, we found lower levels of TNF (α and
β were measured collectively) from L. amazonensis-infected
macrophages from C57BL/10 mice than from L. major-
infected macrophages (Figure 1(a)). In addition, two days
after infection in the hind footpad, popliteal lymph node
cells from C3H/HeN, C57BL/10 (mouse strains resistant
to L. major), and BALB/c mice produced more TNF ex
vivo when infected with L. major than with L. amazonensis
(Figure 1(b)). Interestingly, L. amazonensis-infected CBA/J
macrophages also produce less reactive oxygen species than
L. major-infected cells [79], which could be, in part,
responsible for the different abilities of macrophages to kill
these two species of Leishmania. The mechanism by which L.
amazonensis resists killing remains unknown.

Even more intriguing is the observation that low
doses of IFN-γ actually promote amastigote growth within
macrophages [22]. In accordance with this observation, at
later stages of infection, increased amounts of NO were
found in the more susceptible BALB/c mice than in C57BL/6
mice infected with L. amazonensis as lesions progressed and
parasites expanded because C57BL/6 mice partially control
lesions and parasite growth [80].

IFN-γ-activated macrophages represent the host-parasite
interaction in which T cells are already producing a large
amount of this cytokine. During the first 2 days after
infection with L. major, nearly all macrophages recruited to
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Figure 1: Infection with L. major induces more TNF than infection with L. amazonensis. (a) TNF production by inflammatory macrophages
from C57BL/10, mice infected in vitro with L. major or L. amazonensis. (b) Production of TNF ex vivo by lymph node cells from C3H/HeN,
C57BL/10 and BALB/c mice infected with L. major or L. amazonensis, 2 days after infection. A biological assay that does not distinguish
between TNF-α or TNF-β was used in these experiments. These are representative experiments of more than five performed experiments (L.
Q. Vieira and P. Scott, unpublished).

the site of infection contain phagocytosed parasites, both
in C57BL/6 and in BALB/c mice. However, the percentage
of cells (mostly neutrophils and mononuclear phagocytes)
containing intact parasites in BALB/c mice is higher than
that in C57BL/6 cells (mostly mononuclear cells), and the
elimination of parasites from the site of infection is higher
in resistant mice [50]. This suggests that parasites may also
be killed by tissue mononuclear cells well before the onset of
a T-cell response. Whether this killing is mediated by reactive
oxygen and nitrogen species remains unknown.

Isolated macrophages from C57BL/6 mice produce more
NO than macrophages from susceptible strains when stimu-
lated with IFN-γ [81–84], TNF-α [81, 85], or LPS [83, 85–
89]. This is an interesting but poorly explored aspect of
the murine models of resistance/susceptibility to microbial
infections, which is clearly independent of the development
of an adaptive Th1 or Th2 response. Mills et al. [90]
systematically tested this observation and generalized it to
other strains of mice. They showed that macrophages from
strains that are typical Th1 responders (termed M-1) or
typical Th2 responders (termed M-2) differ qualitatively in
their ability to be activated, as measured by their arginine
metabolic programs. M-2 macrophages from BALB/c mice
(prototypes of Th2 responders) stimulated with a particular
concentration of LPS not only produce little or no NO, but
increase arginine metabolism to ornithine. In contrast, M-
1 cells from C57BL/6 mice (prototypes of Th1 responders)
generate a strong NO and citrulline response and appear to
decrease their production of ornithine.

We investigated the molecular basis of the differential
production of NO by macrophages from mice with resistant
or susceptible phenotypes to L. major by in vitro stimulation
with IFN-γ and LPS. We have shown that M-1 macrophages

show a remarkably strong expression of the enzyme iNOS
upon stimulation when compared to M-2 cells [84]. The
accumulation of iNOS mRNA is also higher in M-1 cells.
Interestingly, however, we found that the accumulation of
the iNOS protein is more dramatic than the accumulation
of iNOS mRNA. The accumulation of both iNOS mRNA
and protein is not a consequence of a higher stability of
the molecule. The data showed that iNOS gene expression
is differentially regulated in M-1 and M-2 macrophages and
suggested that it is transcribed and translated at different
rates in these two types of cells [84]. Recent results from
our group indicate that the higher iNOS expression in M-1
macrophages may be multifactorial and may be regulated by
higher levels of TNF-α, IL-12, and IFN-β (unpublished data).

The intrinsic differential sensitivity to IFN-γ and LPS
of M-1 or M-2 cells has led to two important observations
regarding the in vivo infection.

(1) Small amounts of IFN-γ (from NK, NKT, or γ/δ T
cells) or other pathogen-derived inducers may induce M-1,
but not M-2 cells, to kill the pathogen through NO, before
T cells differentiate into the IFN-γ-Th1 subpopulation.
In fact, larger numbers of L. major are found in iNOS-
deficient macrophages than in wild-type macrophages 72
hours after infection, indicating that some NO is produced
by macrophages that have not been activated with IFN-γ and
that NO, even if not detectable, exerts some control of par-
asite growth [75, 77]. Further evidence of a NO-dependent
Th-cell-independent mechanism was obtained when resting
human macrophages were infected with NO-susceptible and
NO-resistant L. amazonensis and L. braziliensis isolates and
selected in vitro with increasing concentrations of NaNO2:
NO-resistant parasites grew better in resting macrophages
than the NO-susceptible isolates [91].
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(2) Activated M-1 and M-2 cells can distinctly affect
subsequent production of Th1-dominant or Th2-
dominant cytokines (IFN-γ or TGF-β1, resp.), positioning
macrophages as key performers in directing the Th1 or Th2
outcome. M-1 and M-2 macrophages differentially influence
the Th lymphocyte response, and how macrophages are
stimulated determines the route that Th responses will
take [90]. These observations indicate that macrophages
may contribute to the outcome of an immune response
through mechanisms other than by acting as established
NO-producing cells and that their role in determining the
resistant/susceptible phenotype in mice may be significant.
M-1 macrophages not only can mount an early (innate)
resistance, but also can consolidate the status of resistance by
favoring a Th1 adaptive response.

In addition to NO, ROS are considered to be a
major macrophage effector mechanism induced by IFN-
γ to control infections. Upon bacteria or other pathogen
engulfment by a phagocytic cell, ROS are rapidly produced
by NADPH oxidase, an enzymatic complex comprised of
membrane bound (p22phox and gp91phox) and cytosolic
(p40phox, p47phox, p67phox, and Rac-1/2) proteins [45, 92],
which may be assembled after TLR stimulation by bacterial
products via MyD88-dependent p38 MAPK activation [93].

Macrophages [54, 76] and neutrophils [54] produce ROS
in response to Leishmania in vitro. Killing of L. major by IFN-
γ-activated macrophages is dependent on NO production,
but not on the production of superoxide or peroxynitrite
[76]. Lesions in Nox2 knockout mice [94] (Nox2 mice are
genetically deficient in the NADPH-dependent phagocyte
oxidase. These mice were originally described as a model for
chronic granulomatous disease and are more susceptible to
bacterial infection, and neither neutrophils nor macrophages
present respiratory burst oxidase activity [94].) infected with
L. major are similar to those in wild-type C57BL6 mice. Nox2
knockout mice control L. major at the site of infection at early
time points, but display an unexpected reactivation of L.
major infection after long periods of observation (more than
200 days of infection). Further, they show deficient control
of parasite replication in draining lymph nodes and spleens,
suggesting that Nox2 is important for the control of L. major
in vivo at later times of infection by preventing visceralization
[54]. The participation of ROS in killing of L. amazonensis
by mouse [95, 96] or human [97] macrophages has been
reported. Our preliminary data suggest that macrophages
from Nox2 knockout mice behave similarly to macrophages
from wild-type mice when infected with L. amazonensis.
Moreover, similar to infection with L. major, Nox2 knockout
mice control parasites at the site of infection as well as
wild-type mice (Figure 2). Surprisingly, at earlier times of
infection, lesions are larger in Nox2 knockout mice, and, at
later times of infection, they become smaller than in wild-
type mice (Figure 2(a)). This indicates that the differences
in Ros activity on macrophage behavior at different stages
of infection may be due to differences in the inflammatory
infiltrate. The contradictions between the in vitro evidence
for a role for ROS in resistance to L. amazonensis and in vivo
data remain to be explained.

Although BALB/c mice are the prototype model of
susceptibility to most species of Leishmania (such as L. major
and L. amazonensis), L. braziliensis [27, 98] and L. guyanensis
[99] do not cause large skin lesions in this mouse strain. Our
studies using L. guyanensis have shown that BALB/c mice
develop minor or no lesions, do not enable parasite repli-
cation, and do not die of the infection. In addition, L. guya-
nensis [99] and L. braziliensis [100], unlike L. amazonensis,
fail to survive within nonactivated peritoneal macrophages
in vitro. In vitro infection of BALB/c macrophages with L.
guyanensis does not activate the production of NO; instead,
it activates a respiratory burst that is exceptionally higher
than that activated by infection with L. amazonensis. We have
further shown that the production of ROS is responsible for
the elimination of L. guyanensis by macrophages. We have
also shown that L. guyanensis amastigotes die inside BALB/c
macrophages through an apoptosis-like process mediated by
parasite-induced ROS [99]. These findings demonstrate an
important killing mechanism of L. guyanensis amastigotes.
ROS are probably involved in resistance to infection with
this species because mice that are unable to activate the
respiratory burst by the regular administration of apocynin,
an inhibitor of NADPH oxidase, do not control the infection
as in untreated animals (our preliminary results). Together,
our results suggest that the elimination of L. guyanensis in
vivo may occur in early infection due to ROS production,
before the development of an adaptive Th response.

There is evidence that peroxynitrite (ONOO−) is not
involved in the killing of L. major [54, 76], but the role of
this important oxidant has not been thoroughly explored.
In contrast, the production of nitric oxide and ONOO− has
been shown during infection with L. amazonensis in BALB/c
(more susceptible to infection) and C57BL/6 mice (more
resistant to infection). The production of nitric oxide in vivo
was detected as the nitrosyl hemoglobin complex by electron
paramagnetic resonance analysis of nitrosyl hemoglobin in
blood drawn from mice and in infected footpads at several
time points, and ONOO− formation was inferred from
immunodetection of nitrotyrosine [101, 102]. C57BL/6 mice
presented higher levels of nitrosyl complexes than BALB/c
mice at 6 weeks of infection, at which point lesions became
chronic in this partially resistant mouse strain. Nitrosyl
complexes increased in BALB/c mice, which was dependent
on lesion size. iNOS and nitrotyrosine-containing complexes
colocalize in lesion macrophages from both mouse strains,
and the most probable agent of protein nitration is ONOO−

[102]. Peroxynitrite killed L. amazonensis axenic amastigotes
in vitro more efficiently than nitric oxide [102]. The authors
proposed that in the susceptible mouse strain, ONOO− is
involved in tissue damage. It is possible that the delayed
production of ONOO− impairs the capacity of BALB/c mice
to control L. amazonensis. Treatment of C57BL/6 mice with
Tempol, a stable cyclic nitroxide radical that protects cells
from damage due to oxidative stress, promoted larger lesions,
parasite growth, and lower levels of nitric oxide products and
nitrotyrosine [103]. Albeit transient, this effect of Tempol
provides further evidence that ONOO− is involved in the
control of L. amazonensis in vivo.
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Figure 2: Course of infection with L. amazonensis in wild-type C57BL/6 and Nox2 knockout mice (a) and parasite quantitation using a
limiting dilution analysis (b). ∗indicates statistical difference by Student’s t test, P < 0.05 (E. H. Roma and J. P. Macedo, unpublished).
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5. Concluding Remarks

The role of reactive oxygen and nitrogen species in killing
of Leishmania has been the subject of many studies, but
there is still much that is not understood. The following
questions remain: why do some species of parasites resist
oxidative stress? Why do cells that can kill parasites with
reactive species harbor live parasites? Is there some attrition
when parasites enter neutrophils and macrophages? What
is the role of peroxinitrite? What is the reason for the
differences in the oxidative responses among different species
of parasites? What is the role of reactive oxygen and nitrogen
species in the inflammatory response? Collective efforts to
fully comprehend the mechanisms that produce disease upon
infection with Leishmania and the strategies hosts employ to
avoid them have been made. However, leishmaniasis persists
without safe treatments or effective vaccines. Perhaps the
recent attention paid to components of the innate immune
system might help to unravel this complex parasite-host
relationship.
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