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Abstract

The N-methyl-D-aspartate (NMDA) receptor, an obligate heterotetrameric assembly organized as a dimer of dimers, is
typically composed of two glycine-binding GluN1 subunits and two glutamate-binding GluN2 subunits. Despite the crucial
role that the NMDA receptor plays in the nervous system, the specific arrangement of subunits within the dimer-of-dimer
assemblage is not conclusively known. Here we studied the organization of the amino terminal domain (ATD) of the rat
GluN1/GluN2A and GluN1/GluN2B NMDA receptors by cysteine-directed, disulfide bond-mediated cross-linking. We found
that GluN1 ATDs and GluN2 ATDs spontaneously formed disulfide bond-mediated dimers after introducing cysteines into
the L1 interface of GluN2A or GluN2B ATD. The formation of dimer could be prevented by knocking out endogenous
cysteines located near the L1 interface of GluN1. These results indicate that GluN1 and GluN2 ATDs form local heterodimers
through the interactions in the L1-L1 interface and further demonstrate a dimer-of-heterodimer arrangement in GluN1/
GluN2A and GluN1/GluN2B NMDA receptors.
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Introduction

The N-methyl-D-aspartate (NMDA) receptor, one subgroup of

the ionotropic glutamate receptor family, plays an essential role in

neurophysiological functions as well as in neuronal disorders [1,2].

NMDA receptors are obligate heteromers consisting of two

essential GluN1 (NR1) subunits with two GluN2 (NR2) or GluN3

(NR3) subunits [3]. Eight splice-variant isoforms of GluN1, four

isoforms of GluN2 (GluN2A–D), and two isoforms of GluN3

(GluN3A–B) have been identified [1,2]. Each subunit shares a

modular domain architecture: an amino terminal domain (ATD)

followed by a ligand-binding domain (LBD), a transmembrane

domain and a carboxyl terminal domain. Although there is a

consensus that the NMDA receptor forms a hetero-tetramer with

subunits arranged as a dimer-of -dimers [4], the subunit

arrangement within a dimer and the organization of the two

dimers are under debate. Two possible arrangements have been

proposed. On the one hand, experiments utilizing fluorescence

resonance energy transfer (FRET) measurements with fluoro-

phore-tagged subunits and cysteine knockout mutants of GluN1

were interpreted in terms of a dimer of homodimers [5,6]. On the

other hand, the crystal structure of a GluN1/GluN2A LBD

heterodimer, FRET measurements with fluorophore-tagged

LBDs, and studies on GluN3 subunits are consistent with a

dimer-of-heterodimer configuration [7,8,9].

To probe the arrangement of NMDA receptor subunits within a

dimer, and to resolve the controversy of homodimer versus

heterodimer, we studied the association of subunits at the level of

the ATD using cysteine-directed chemical cross-linking. The

current model for the NMDA receptor ATD has been derived

from studies on metabotropic glutamate receptors [10], on non-

NMDA ionotropic glutamate receptors, including the GluA2

AMPA receptor and the GluK2 kainate receptor ATD

[11,12,13,14], and on the GluN2B ATD [15]. The structures of

GluA2 and GluK2 ATDs revealed that the ATD forms a

homodimer through the interaction between the L1-L1 domain

and L2-L2 domain interfaces [11,12,13,14]. Do NMDA receptor

ATDs form architecturally similar local dimers? If the NMDA

receptor ATD is indeed a dimer, there are a number of important

questions. First, is the dimer a GluN1-GluN1 or GluN2-GluN2

homodimer or is it a GluN1–GluN2 heterodimer? Second, by

what interactions does the dimerization occur? For example, do

both the L1-L1 and L2-L2 interfaces contribute to the dimeriza-

tion or does one predominate? Moreover, because the dimeriza-

tion of ATDs may be an important initial step along the tetrameric

assembly pathway of the NMDA receptor [16] and because the

ATDs modulate the gating activity of the receptor [17,18],

probing the precise mode of ATD association will help in

understanding the principles of NMDA receptor assembly and

gating. Here we demonstrate that GluN1 and GluN2 ATDs, in the

context of an intact NMDA receptor, form a local heterodimer

and that the L1-L1 interface mediates interactions between the

ATDs of GluN1 and GluN2 subunits.

Results

On the basis of amino acid sequence alignments and the

structures of the GluA2, GluK2 and the GluN2 ATDs

[11,12,13,14,15], we selected several residues in the putative L1-

L1 and L2-L2 ATD dimer interfaces (Fig. S1) for substitution by
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cysteine because we speculated that these residues may be near

each other in an intact NMDA receptor. We asked if any of the

introduced cysteine residues would spontaneously form a disulfide

bond under ambient conditions. Formation of disulfide bonds

would be inferred by the formation of redox-dependent ‘dimer

bands’ at an appropriate molecular mass on a sodium dodecyl

sulfate polyacrylamide gel. We then employed Western blotting

with a GFP antibody to illuminate all NMDA receptor subunits, or

with subunit specific antibodies to unambiguously define a

particular subunit.

Cross-linking between NMDA receptor ATDs in the L1-L1
interface

In the GluA2 and GluK2 ATD structures, the L1-L1 interface is

defined mostly by helices a2 and a3 (or helices B and C)

[11,12,13] with several polar and non-polar amino acids

participating in the inter-subunit contacts. Among them, a

phenylalanine in helix a2, F50 in GluA2 or F58 in GluK2, is

conserved through GluA1–A4 to GluK1–K2 and interacts with

residues on helix a3 of an adjacent subunit. Moreover, when

mutations are introduced into this position, they disrupt the

dimerization of the ATD [13]. We therefore mutated the

equivalent residue in GluN2A, K80, and its possible interacting

partner, to cysteine. When two L1 interface mutants, GluN1

S108C and GluN2A K80C, were coexpressed, a band with higher

molecular weight was detected with a mass approximately

corresponding to two NMDA receptor subunits (Fig. 1A). Coex-

pression of wild-type (WT) subunits did not give rise to a similar

band. Most importantly, the apparent dimer formed spontane-

ously without the need of oxidizing reagents or bifunctional cross-

linkers. We could abolish the dimer formation by incubation with

DTT (Fig. 1A and 1B). The sensitivity of the dimer to reducing

agent suggested that dimerization is likely due to formation of a

redox-sensitive disulfide bond.

To determine whether other amino acids that are predicted to

reside in a putative L1-L1 interface could also spontaneously give

rise to disulfide bond-mediated dimers, we coexpressed a panel of

cysteine mutant combinations (Fig. S1): GluN1(H101C)/Glu-

N2A(A108C), GluN1(H101C)/GluN2A(Q111C), GluN1 (P104C)/

GluN2A(A108C) or GluN1(P104C)/GluN2A(Q111C). Because

none of these cysteine mutant combinations gave rise to a dimer

band on the Western blot (Fig. 1C), we believed that the L1-L1

dimer interface was well defined and only specific cysteine residues

allowed for spontaneous disulfide bond formation.

We next asked whether we could detect subunit-subunit

interactions at the putative L2-L2 dimer interface, drawing upon

the recently determined non-NMDA receptor ATD crystal

structures as guides. For example, in the GluK2 ATD, L151C

on helix F of the L2 interface forms a cross-linked dimer [19]. We

thus examined the equivalent residues on the GluN1 and GluN2A

ATDs (Fig. S1). Intriguingly, no cross-linked dimer was found

when coexpressing GluN1(R174C)/GluN2A(Y180C), GluN1

(R174C)/GluN2A(R181C) (Fig. 1B), GluN1(G173C)/Glu-

N2A(Y180C) or GluN1(G173C)/GluN2A(R181C) (Fig. 1C). We

therefore concluded that there are significant differences between

the L2-L2 interactions in non-NMDA and NMDA receptors.

GluN1 and GluN2A ATD heterodimer
We were interested in whether the formation of the putative

ATD dimer, as defined by the GluN1 S108C and GluN2A K80C

cross-linking, required both engineered cysteine residues. We

therefore coexpressed wild-type and cysteine mutants of GluN1

and GluN2A. Surprisingly, we found that dimer formation did not

depend on the GluN1 S108C mutant, although the presence of a

cysteine residue at S108 modestly enhanced dimer formation. In

fact, the coexpression of GluN1 wild-type with GluN2A K80C was

sufficient for producing cross-linked dimers (Fig. 2A). This

observation suggested two possibilities: either GluN2A K80C

cross-linked with an endogenous cysteine on the GluN1 ATD to

form a GluN1–GluN2A heterodimer, or GluN2A K80C cross-

linked with another GluN2A subunit to form a GluN2A-GluN2A

homodimer. If the former hypothesis was correct, then the GluN1

subunit must be present in the dimer band. On the other hand, if

GluN1 cannot be detected in the dimer band, then the dimer band

was likely the consequence of a GluN2A-GluN2A homodimer. To

distinguish between these scenarios, we probed the blot with a

GluN1 specific antibody and robustly detected the presence of the

GluN1 subunit (Fig. 2B). Furthermore, when the dimer was

formed, depletion of the GluN1 and GluN2A monomer

populations were almost equal. These data support the conclusion

that the GluN1–GluN2A NMDA receptor ATD is a heterodimer

and that the GluN2A K80C mutant can form a disulfide bridge

with an unidentified endogenous cysteine residue in the GluN1

subunit.

Cross-linking partners in the L1-L1 interface
We next sought to identify the cross-linking partner of GluN2A

K80C. In the GluN1 ATD there are three endogenous cysteines:

C22, C79 and C308. Among them, C79 and C308 are within or

near the L1 interface (Fig. S1) and are predicted to form an intra-

subunit disulfide bridge based on the GluA2, GluK2 and GluN2B

ATD crystal structures [11,12,13,15]. Nevertheless, we mutated

these residues to alanine and coexpressed them with the GluN2A

K80C subunit. Neither the C79A nor the C308A single mutant

was sufficient to prevent the dimer formation. However, when

both cysteines were eliminated, GluN2A K80C no longer cross-

linked with GluN1 (Fig. 3A). This suggested that both GluN1 C79

and C308 could serve as a cross-linking partner of GluN2A K80C.

The shift of the dimer band in the GluN1(C79A)/GluN2A(K80C)

combination may reflect a different ATD conformation adopted

by the dimer cross-linked between GluN1 C308 and GluN2A

K80C, leading to a change in mobility. The identification of

partner residues on GluN1 ATD confirmed that GluN2A ATD

associates with GluN1 ATD. We also showed that both GluN1

and GluN2A were present in the cross-linked dimer by probing

with GluN1 and GluN2A antibody (Fig. 3B). Taken together our

data is consistent with the conclusion that the NMDA receptor

ATD forms a heterodimer.

GluN1 and GluN2B ATD heterodimer
Native NMDA receptors are assemblies of the GluN1 subunit

with various GluN2 subunits and the GluN2 ATD is responsible

for determining the distinct receptor properties in different

subtypes of NMDA receptor [17,18]. Thus, we asked whether a

subunit different from the GluN2A could form a similar disulfide

bond-mediated ATD heterodimer with the GluN1 subunit. If it

did, then it would suggest conservation in the L1-L1 heterodimer

interface among different subunit combinations. To test this

hypothesis, we made the GluN2B K79C mutant and coexpressed

it with wild type GluN1. Analyses by Western blotting showed the

formation of a putative GluN1–GluN2B dimer band, similar in

mobility to that formed by the GluN1/GluN2A subunit

combination (Fig. 4A). The putative dimer band was redox-

sensitive, disappearing in the presence of DTT (Fig. 4B) and

consistent with the idea that subunits were linked by disulfide

bonds. This finding supported the notion that both GluN2A and

GluN2B subunits can form a local ATD heterodimer with the

GluN1 subunit through contacts in the L1-L1 interface.

NMDA Receptor ATDs Are Local Heterodimers
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Discussion

The introduction of cysteine residues is a widely accepted

method to probe neighboring molecular contacts of a protein [20].

Two cysteine residues will form a cross-link only when they are in

close proximity [20,21]. We identified a cysteine mutant of GluN2

ATD that was able to spontaneously cross-link with endogenous

cysteines C79 and C308 on GluN1 ATD, uncovering the

interaction between heteromeric ATD subunits (Fig. 4C). When

we mutated residues C79 and C308 to alanine, specific cysteine

residues in GluN2 ATD no longer resulted in inter-subunit cross-

links. Importantly, experiments by other groups have shown that

GluN1 C79A and C308A mutants coexpressed with GluN2A

traffic to the cell membranes, form functional receptors [5,22] and

do not affect receptor oligomerization [9]. Thus, the reason why

we did not observe the formation of disulfide bond-mediated

dimers with GluN1 C79A C308A double mutant (Fig. 3 and 4) is

not due to the impairment of subunit expression, trafficking or

assembly. By contrast, our data strongly suggest that the GluN1

residues C79 and C308 directly participate in forming inter-

subunit disulfide cross-links. The fact that GluN2A K80C or

GluN2B K79C could cross-link with more than one GluN1

residue (Fig. 3 and 4) suggests that the L1-L1 interface is somewhat

dynamic or plastic. This observation opens up the possibility that

rearrangements within the L1-L1 interface occur during gating of

the NMDA receptor. Compared to GluN1(WT)/GluN2A(K80C),

the band shift in the GluN1(C79A)/GluN2A(K80C) complex but

not in the GluN1(C308A)/GluN2A(K80C) combination (Fig. 3

and 4), implies that although both GluN1 C79 and C308 could

serve as cross-linking partners, GluN2A K80C preferentially cross-

links with GluN1 C79 when coexpressed with wild type GluN1

(Fig. 4D). Based on available structural information [15], the

Figure 1. NMDA receptor ATD cysteine mutants in the L1-L1 interface cross-link spontaneously. Western blotting analysis of wild type
(WT) or cysteine mutants of NMDA receptor probed by GFP antibody. (A and C) Non-reducing conditions. (B) Reducing conditions. Open arrowhead
indicates the cross-linked dimer bands (,250 kDa). Filled arrowhead indicates positions of GluN1 or GluN2A monomer bands. The predicted
molecular weights of GluN1 and GluN2A construct are both ,125 kDa. However, occasionally we could separate two discrete monomer bands in our
gels, probably due to differential glycosylation.
doi:10.1371/journal.pone.0019180.g001

NMDA Receptor ATDs Are Local Heterodimers
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NMDA receptor ATD also adopts a ‘‘clamshell’’ conformation. It

has been proposed that NMDA receptor ATD clamshells

spontaneously switch back and forth between open/closed-cleft

conformation and tune the properties of NMDA receptors [17].

The rearrangement of L1-L1 interface may participate in this

process and make it possible for the remaining GluN1 cysteine to

form disulfide bonds with the engineered cysteine on GluN2 when

one of the GluN1 cysteines has been knocked out (Fig. 4E).

Although we did not exclude the possibility that the L2-L2

interface is also responsible for dimerization, our results suggest a

different role for the L2-L2 interface in the NMDA receptor ATD

compared to GluA2 or GluK2 ATD. In non-NMDA receptor

ATD, the dimer is held together by extensive contacts between the

L2-L2 and L1-L1 interfaces [11,12,13]. Indeed, the GluK2 ATD

L2-L2 interface mutant, L151C, forms spontaneous cross-linked

dimers [19], but similar mutants in GluN1 and GluN2A ATD did

not (Fig. 1B and C). The lack of this interaction in the NMDA

receptor may be because NMDA receptor ATD adopts a twisted

conformation, as shown by the structure of isolated GluN2B ATD

[15] and by the cross-linking experiments on GluN2A ATD [23].

At present, there are no specific ligands for the ATDs of non-

NMDA receptors, and the stabilization of L2-L2 interface in

GluK2 ATD by cross-linking has minimal effects on channel

properties [19]. By contrast, the GluN2 ATD is the target for the

physiological ligand Zn2+ or for pharmacological compounds,

which allosterically regulate the function of the receptor [1,2]. We

speculate that the difference in the L2-L2 interface between

NMDA and non-NMDA receptor helps explain how ATD ligands

modulate the functional properties of NMDA receptors.

The GluN1 ATD has been proposed to mask the retention

signal on the GluN2A ATD [24], a conclusion that is in line with

the heteromeric interaction of their respective ATDs. Our results

may also explain why the isolated GluN2B ATD predominately

exists as a monomer when the GluN1 ATD was not coexpressed

[15,25,26]. In fact, the isolated GluN2 ATD could associate with

the isolated GluN1 ATD in solution [25,26]. On the other hand,

several studies have shown that full-length GluN1 subunits or

isolated GluN1 domains, when expressed alone, could form

homodimers [6,9,25,26,27,28,29,30]. This has been used as an

argument supporting the dimer-of-homodimer model for NMDA

receptor. In the present study, upon expression of the GluN1

subunit alone, we also detected a weak band with a size

approximately commensurate with a GluN1 homodimer

(Fig. 1A). We suggest the appearance of this band likely represents

the extent to which GluN1 subunits have a weak propensity to

form homodimers. Even though this observation is consistent with

homodimerization of the GluN1 subunit, it does not mean that the

GluN1 subunits form a homodimer in an intact NMDA receptor.

Here we studied the association of ATDs within intact NMDA

receptors and we found that ATDs form local heterodimers.

The heteromeric NMDA receptor ATD is reminiscent of

the GluA2 ATD in the GluA2 full-length structure [14]. The

Figure 2. Cross-linking suggests heterodimer formation
between GluN1 and GluN2A ATD. Western blotting analysis of
GluN2A K80C mutant coexpressed with GluN1 WT or GluN1 S108C
mutants. (A) The blot probed by GFP antibody. (B) The blot probed by
GluN1 antibody. Open arrowhead indicates the cross-linked dimer
bands. Filled arrowhead indicates positions of GluN1 or GluN2A
monomer bands.
doi:10.1371/journal.pone.0019180.g002

Figure 3. Cross-linking partners on the GluN1 ATD at the L1-L1 interface. Western blotting analysis of GluN1 cysteine knockout mutants
coexpressed with GluN2A WT or GluN2A cysteine mutants. (A) The blot probed by GFP antibody. (B) The blot probed by GluN1 and GluN2A antibody.
Open arrowhead indicates the cross-linked dimer bands. Filled arrowhead indicates positions of GluN1 or GluN2A monomer bands.
doi:10.1371/journal.pone.0019180.g003

NMDA Receptor ATDs Are Local Heterodimers
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full-length structure revealed two ‘‘non-equivalent’’ pairs of

subunits, A/C and B/D where the two GluA2 ATD dimers are

composed of two conformationally distinct subunits A–B and C–

D. Based on the GluA2 full-length structure, a model of NMDA

receptor architecture has been proposed which suggested a dimer-

of-heterodimer assembly with a GluN1–GluN2-GluN1–GluN2

orientation [14]. Our results are in harmony with this model in

regard to the heterodimeric feature of NMDA receptor; however,

our results were not restricted to the GluN1–GluN2-GluN1–

GluN2 orientation proposed by the model. In the NMDA

receptor, ATD heterodimers could also be arranged in a

GluN1-GluN1-GluN2-GluN2 manner, although in this case the

two ATD heterodimers will be arranged ‘in parallel’, an

arrangement that precludes an overall two-fold axis of symmetry.

Further experiments, such as the cross-linking of residues in the

inter-heterodimer interface [14,19], are needed to clarify this issue.

Materials and Methods

Receptor expression
We used the rat GluN1a splice variant construct (accession

number NP_058706, hereafter referred to as GluN1) with a

deletion from M848 to S938 [31], the rat GluN2A construct

(NP_036705) with a deletion from I867 to V1464, and the rat

GluN2B construct (NP_036706) with a deletion from I868 to

V1482 [32]. These carboxyl terminal truncations reduce non-

specific cross-linking yet when coexpressed they assemble to a

receptor with wild type function [33,34,35,36,37]. All constructs

have green fluorescent protein (GFP)-tags at their carboxyl

termini. The constructs were expressed in tsA201 cells (HEK

293T, ATCC CRL-11268) plated in 40 mm dishes at a density of

56105 cells/ml the night before the transfection. Cells were

transfected with lipofectamine 2000 (Invitrogen) according to the

manufacturer’s instruction. For expression of a single subunit, 1 mg

of DNA per dish was used for transfection; for the co-expression of

GluN1 and GluN2 subunits we employed a total of 2 mg of DNA

with a GluN1:GluN2 plasmid ratio of 1:1. The DNA concentra-

tion was estimated by absorbance at 260 nm (A260). At 5 hours

post-transfection, the Opti-MEM medium (Invitrogen) was

replaced with fresh medium containing 200 mM of dichloroky-

nurenic acid and 2-amino-5-phosphonopentanoic acid. Cells were

harvested at 24 hours post-transfection. The efficiency of trans-

fection was estimated by GFP-dependent epifluorescence.

Site-directed mutagenesis
The carboxyl terminal-deleted ‘wild type’ rat GluN1, GluN2A

and GluN2B subunits were used as templates and mutations were

introduced into desired positions by QuikChange II site-directed

mutagenesis kit (Agilent) and confirmed by DNA sequencing of both

strands of the entire NMDA receptor open reading frames. Here,

the numbering of amino acid residues starts at the position of the

initiation methionine. When referring to other studies, however, the

numbering follows the original, cited literatures and, in some cases,

the numbering may start at the first residue of the mature protein.

Western blotting
Transfected tsA201 cells were solubilized in 200 ml of lysis

buffer (150 mM NaCl, 20 mM Tris, 40 mM n-dodecyl-b-D-

maltoside, 1 mM phenylmethylsulfonyl fluoride, and a protease

inhibitor cocktail composed of 2 mg/ml leupeptin, 0.8 mM

aprotinin, and 2 mM pepstatin A, pH = 8.0) for 1 hr. These

whole-cell extracts were centrifuged for 40 minutes at 40000 rpm

at 4uC and the supernatants were collected. The proteins in the

collected supernatants were separated by sodium dodecyl sulfate

Figure 4. GluN2B ATD forms a heterodimer with GluN1 ATD. Western blotting analysis of GluN1 cysteine knockout mutants coexpressed with
GluN2B WT or GluN2B cysteine mutants probed by a GFP antibody. (A) Non-reducing conditions. (B) Reducing conditions. Open arrowhead indicates
the cross-linked dimer bands. Filled arrowhead indicates positions of GluN1 or GluN2B monomer bands. The predicted molecular weights of GluN1
and GluN2B construct are both ,125 kDa. (C) Cartoon model of NMDAR ATD heterodimer. In wild-type subunits, the endogenous cysteines form
intra-subunit disulfide bonds. Interactions between the L1-L1 interface are emphasized by thin lines. (D and E) A summary of cross-linking results in
the current study. GluN1 C79A and GluN2A K80C residues are colored in orange. The disulfide bond between endogenous cysteines of GluN1 and
engineered cysteines of GluN2 is represented by thick orange lines. For clarity, in (C and E) only GluN2A is drawn, but our results suggest that GluN2B
shares a similar orientation in terms of ATD heterodimer. The equivalent residue of GluN2A K80 in GluN2B is K79.
doi:10.1371/journal.pone.0019180.g004

NMDA Receptor ATDs Are Local Heterodimers
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polyacrylamide gel electrophoresis and approximately 4–6 mg of

total protein from whole-cell extracts were loaded onto 4–15%

gradient gel per lane. The protein concentration was estimated by

absorbance at 280 nm (A280) and corrected by the equation:

protein concentration (mg/ml) = (1.556A280)2(0.766A260) [38].

For reducing conditions, a final concentration of 100 mM

dithiothreitol (DTT) was added to samples before they were

loaded onto the gels. Proteins were then transferred to a

nitrocellulose membrane and probed with primary antibodies.

The anti-GFP (Invitrogen, A11122), anti-GluN1 (Millipore,

MAB1586) and anti-GluN2A antibody (Invitrogen, 480031) were

used at dilutions of 1:5000, 1:500 and 1:1000, respectively. The

secondary antibodies (LI-COR IRDye 680, 926-32220 and IRDye

800CW, 926-32211) were used at a dilution of 1:10000.

Supporting Information

Figure S1 ATD residues studied in this work. Here we

mapped GluN1 and GluN2A residues onto the GluN2B ATD

structure [15] based on a multiple amino acid sequence alignment.

This figure is for the demonstrative purpose to show the possible

location of these residues and it does not represent an accurate

structural model. Endogenous cysteines of GluN1 are dark blue

and the residues studied in this work are orange.

(TIF)
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