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Introduction
Gliomas are the most common type of primary intracranial 
tumor. They represent 81% of malignant brain and central 
nervous system tumors.1 Glioblastoma multiforme (GBM) 
accounts for roughly 75% of all high-grade gliomas2 and repre-
sents the most aggressive subgroup of malignant gliomas, with 
a median survival of 6 months following surgical resection 
alone and about 14 to 17 months in patients who undergo the 
most aggressive combined modality treatments.3 Principles of 
treatment revolve around cytoreduction via multimodality 
treatment: surgical resection, radiation, and chemotherapy. 
These survival rates are to be correlated with systematic relapses 
that might arise from remaining glioblastoma stem cells left 
behind after surgery.4 Glioblastomas nearly always recur near 
the resection cavity or radiotherapy volume; a small percentage 
recur more distantly.5

Magnetic resonance imaging (MRI) is the current clinical 
criterion standard for the assessment of intracranial pathol-
ogy, but it is limited by the fact that the origins of its signal 
are merely surrogate markers of tumor presence.2 A consider-
able part of GBM cells diffused within a large volume of the 
brain are not tomographically imageable. Tissue invasion is a 
hallmark of most human cancers and remains a major source 
of treatment failure in patients with glioblastoma (GBM).6 

Glioblastoma multiforme is one of the most diffusive and 
invasive cancers in humans.

Crucial aspects of the interaction of cancer cells with the 
host being locally represented by several microscopic structures 
are taken into account in the model presented. Glioblastoma 
cell migration is greater in white than in gray matter, and the 
proposed model accounts for cell diffusion into the cerebrospi-
nal fluid (CSF) even though it appears that tumor cells rarely 
enter the CSF.5 Invading glioma cells seem to follow distinct 
anatomic structures within the central nervous system. Tumor 
cell dissemination may occur along structures, such as the base-
ment membranes of blood vessels or the glial limitans externa, 
that contain extracellular matrix proteins. Frequently, invasive 
glioma cells are also found to migrate along myelinated fiber 
tracts of white matter. This behavior is most likely a conse-
quence of using constitutive extracellular ligands expressed 
along the pathways of preferred dissemination.7

For an accurate and reliable simulation outcome, consid-
eration of the actual physical boundary of the cranium is 
important. An improper handling of the boundary condi-
tions may lead to an unnatural behavior of the simulated sys-
tem. The process of understanding the phenomenon of 
diffusion-invasion taking place inside the brain has attracted 
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considerable attention by researchers because it may have 
important therapeutic implications. In this context, 2 major 
cancer modeling schools of thought have developed. The 
continuous entity school of thought largely adopts the diffu-
sion-reaction equation at its core.8–26 The discrete entity-
discrete event school of thought relies on the use of discrete 
constructs, such as cellular automata, and considers discrete 
mitotic potential cell categories, discrete phases of the cell 
cycle, and differing radiosensitivities and chemosensitivi-
ties.27–34 A combination of both mathematical approaches 
would eventually lead to a better understanding of both  
glioma invasion and its response to treatment even in the 
context of complex experimental therapies.

The practical goal of this work is to develop a “bottom-up” 
multiscale (triscale) mathematical model of glioma growth and 
invasion that would serve as the core of the “continuous math-
ematics-based GBM Oncosimulator.” The triscale character of 
the model refers to the concurrent consideration of the cell 
scale (tumor cell birth and death rates, tumor cell diffusion 
coefficient), the tissue scale (white matter, gray matter, CSF, 
bone), and the organ scale (brain, skull). The purpose of the 
oncosimulator is to simulate, investigate, better understand, 
and explore the natural phenomenon of tumor growth and 
response to treatment. Following a rigorous clinical validation, 
the oncosimulator under discussion is meant to support the cli-
nician in patient-specific tailoring and optimizing cancer treat-
ment through in silico (ie, on the computer) experimentation.

From the mathematical perspective, tumor growth and 
invasion of cancer cells into the surrounding tissue can be 
described as a boundary value problem which strongly depends 
on the actual values assigned on the physical boundary of the 
domain in which the problem is defined. This article provides 
a synthesis and extension of previous efforts35 concerning the 
numerical treatment of the adiabatic Neumann boundary con-
ditions imposed by the physical boundary of cranium on the 
growth of GBM. The main theme of the article is the numeri-
cal handling of the diffusion-reaction equation applied on an 
inhomogeneous model of brain subject to Neumann boundary 
conditions for which an explicit numerical treatment is  
provided (section “Materials and Methods—Mathematical 
Model”). The Crank-Nicolson method in conjunction with  
the biconjugate gradient BiCG system solver is used. Several 
in silico experiments are conducted for validity checking pur-
poses referring to both the numerical method and the model 
and illustrate the practical applicability of both (section 
“Generic Error Estimation Checks”). Good qualitative and 
even semiquantitative agreements between the simulated and 
the clinically manifested courses of the disease have been 
observed and are presented in section “Numerical Experiments.” 
The concept of tumor volume doubling time, Td, which is 
defined as the time for the tumor volume to double,36 is widely 
used for quantification of the growth rate of a tumor. The 
potential of the model and the next planned steps are discussed 
in section “Discussion.”

Materials and Methods—Mathematical Model
Glioblastoma multiforme cell invasion into the brain appears 
to follow the general reaction-diffusion law. The related diffu-
sion phenomena can be described by Fick’s second law of dif-
fusion, which is mathematically expressed in the form of a 
second-order partial differential equation, generally referred to 
as the diffusion equation. Tumor growth and invasion includ-
ing the effect of treatment can be expressed by the following 
statement37,38:

Rate of tumor cell population
change tumor cell diffusion motilit= ( yy

tumor cell net proliferation
tumor cell loss due to treatment

)+
−

The boundary value problem under consideration can be 
expressed by a differential equation in conjunction with a set of 
additional constraints, the boundary conditions. A solution to a 
boundary value problem is a solution to the differential equation 
which also satisfies the boundary conditions. The region of 
interest in our case may include part of or the cranium. In the 
3-dimensional (3D) case of GBM, the skull acts as an adiabatic 
boundary for the diffusion of the tumor. The Neumann bound-
ary conditions corresponding to no net flow of tumor cells out of 
or into the brain region across the brain-skull boundary have 
been adopted. In the simplest case of 1-dimensional problem, 
the formulation described in a study by Sharma et al39 has been 
proposed. Thus, if Ω is the brain domain, the previous statement 
can be translated into the following differential equation8(pp536–613):

 
∂ ( )

∂
= ∇ ⋅ ( )∇ ( )  +

( ) − ( )

c x y z t
t

D x y z c x y z t
c x y z t G t c x

, , ,
, , , , ,

, , ,ρ ,, , ,y z t( ) in Ω
 (1)

with the initial condition

 c x y z f x y z, , , , ,0( ) = ( )  (2)

and the Neumann boundary condition

 n D x y z c x y z t ⋅ ( )∇ ( ) = ∂, , , , , 0 on Ω  (3)

The parameter c  stands for the cell concentration at time t  
and at any spatial point x x y z= ( , , ). The term ρ  represents 
the net tumor growth rate which includes cell proliferation, cell 
loss, and cell death. The latter includes cell loss due to sponta-
neous apoptosis and necrosis induced by the lack of oxygen and 
nutrient provision. The unit normal vector on the surface of the 
boundary ∂Ω  of the domain Ω is denoted by n . The term f 
stands for a known function expressing the initial spatial distri-
bution of glioma cells. The term G t( )  denotes the temporal 
profile of treatment (eg, chemotherapy, radiotherapy, targeted 
therapies, and combined therapies) and as a first approximation 
is assumed to be constant. The brain domain is a subdomain of 
the simulation domain R, which is defined as follows:
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 R x a x b s y d e z f= < < < < < <{ } | , , .  (4)

The diffusion coefficient D  is a measure of the active 
motility of glioma cells which depends on position. In the 
inhomogeneous case where the diffusion coefficient is a de 
facto function of position, 3 kinds of D  have been considered 
depending on the local structure of the human brain (Figure 1): 
the diffusion coefficient Dg  if ( ) ( , , )x x y z=  pertaining to 
gray matter, the diffusion coefficient Dw  if ( , , )x y z  pertaining 
to white matter, and the diffusion coefficient DCSF  if ( , , )x y z  
pertaining to CSF:
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for in white matter
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rr inx CSF( )



















 (5)

In diffusing gliomas, tumor cells preferentially invade along 
myelinated fibers in white matter tracts. For this reason, diffu-
sion in white matter has been set to a value greater than its 
counterpart in gray matter. In the clinical GBM case where a 
space-dependent diffusion coefficient is involved (inhomoge-
neous diffusion), closed-form solutions are not available, and 
therefore, resorting to a numerical solution of the diffusion-
reaction equation is mandatory. To this end, the finite-differ-
ence method has been recruited. The involvement of the 
spatially variable diffusion coefficient D leads to the following 
expression of the general form of equations (1), (2), and (3):

 

∂ ( )
∂

= ∇ ( )( ) ⋅ ∇ ( )( ) +
( ) ∇

c x y z t
t

D x y z c x y z t

D x y z c x y z t

, , ,
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, , , , ,2 (( )( ) +
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 (6)

with the initial condition

 c x y z f x y z, , , , ,0( ) = ( )  (7)

and the Neumann boundary condition

 n D x y z c x y z t ⋅ ( )∇ ( ) = ∂, , , , , 0 on Ω  (8)

It is noted that the boundaries between the white and the 
gray matter are not ideally sharp due to the interweaving 
between the cellular structures of the 2 matters and the gradual 
transition from gray matter to white matter, and vice versa. The 
spatial discretization of the problem, partly dictated by the 
actual digital tomographic data, leads to a noncontinuous and 
subsequently a nonstrictly differentiable D  function. But cal-
culating derivatives in discrete meshes under such circum-
stances is an important part of numerical analysis.

A system of Cartesian coordinates and a cubic discretization 
grid have been selected for the simulation domain. The differen-
tials involved have been discretized on the computational mesh 

of space and time. It is noted that the skull geometry is very com-
plicated. Cartesian grids may not capture such geometry very 
accurately. For example, the boundary may have a zigzag shape. 
Subsequently, a Cartesian grid may bring some errors into the 
simulation. However, due to the fact that the available imaging 
data make use of Cartesian grids of which the elementary voxel is 
of the order of 1 mm3 (equal to the voxel dimensions adopted in 
the numerical treatment executions), adoption of a Cartesian grid 
is a plausible and realistic approach to the discretization of the 
problem. Having defined the computational grid, equations (6), 
(7), and (8) can be rewritten equivalently as follows:
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with the initial condition

 c x y z f x y z, , , , ,0( ) = ( )  (10)

and the boundary condition
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Applying the Crank-Nicolson scheme41 leads to

 ∂
∂

→
−+c

t
c c

t
i j k
t

i j k
t

, , , ,
1

∆
 (12)

  ∂
∂

→
−

+
−



+
+

−
+

+ −c
x

c c
x

c c
x

i j k
t

i j k
t

i j k
t

i j k
t

1
2 2 2

1
1

1
1

1 1, , , , , , , ,

∆ ∆









  (13)

   ∂
∂

→
−

+
−



+
+

−
+

+ −c
y

c c
y

c c
y

i j k
t

i j k
t

i j k
t

i j k
t

1
2 2 2

1
1

1
1

1 1, , , , , , , ,

∆ ∆









   (14)

Figure 1. T1-weighted magnetic resonance image of a coronal section 
through the brain. Gray matter and white matter are indicated, as well as 
the ventricles and the corpus callosum.
Adapted with permission from Fieremans.40
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where ci j k
t
, ,  stands for the finite-difference approximation of c  

at the point ( , , )x y zi j k  at time t , ∆t  denotes the time step 
size, and ∆x, ∆y, ∆z are the space step sizes along each axis of 
the gridding scheme for the discretization in space. In the case 
that ρ,G  are time independent and ∆ ∆ ∆x y z h= = = , the 
following equation is obtained:
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To apply the boundary condition in the numerical sense at 
any given grid point ( , , )x y zi j k , “fictitious nodes” are intro-
duced. Their number is equal to the number of the adjacent 
nodes belonging to the boundary material (eg, skull). Evaluating 
the boundary condition at the point ( , , )x y zi j k  in the positive 
y direction yields the following equation:

 
∂
∂
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where Fi j k, ,  stands for a fictitious node.
In theory, each node of the computational mesh may have a 

number of combinations of neighbors belonging to the adiaba-
tic boundary material which is calculated by all combinations 
of x +  and x − , y +  and y − , and z +  and z −  directions as 
6
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= 63. However, to end up 

with a manageable but still realistic number of combinations, 
those combinations for which the node lies next to the bound-
ary material in both the x +  and x −  directions and/or in both 
the y +  and y −  directions and/or in both the z +  and z −  
directions have not been taken into account. These extreme 
cases do not appear to be of practical applicability in the prob-
lem addressed because the inner skull surface appears to be 
fairly smooth in the spatial discretization scale considered. 
Therefore, the total number of different node neighborhood 
topologies—referring to the existence of adjacent nodes in the 
boundary material—that have been considered is 26. For the 
boundary point in the negative z and positive y directions, 
equation (23) can be written in the following form:
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The system of equations resulting from equation (1) through 
the previous processing can be equivalently written in the fol-
lowing form:

 A x b
��� � �

=  (27)

where x  represents a vector containing an approximation of 
the concentration c  at the mesh nodes at time t . It should be 
noted that the symbol x  in equation (27) does not represent 
the generic spatial vector as used, eg, in equation (1). It 
should be pointed out that the coefficient matrix 



A  in equa-
tion (27) is a nonsymmetric and nonpositive definite sparse 
matrix. A vast array of variants of the conjugate gradient 
method have been developed for general linear systems, 
including the generalized minimal residual method, the 
quasiminimal residual method, the squared conjugate gradi-
ent method, the BiCG biconjugate gradient method (BiCG) 
method, and the stabilized biconjugate gradient (BiGSTAB) 
method. The technique selected for the solution of equation 
(27) is the BiCG method which replaces the orthogonal 
sequence of residuals by 2 mutually orthogonal sequences.42

It is worth noting that an alternative approach to the 
numerical solution of the main equation (1) could be the 
omission of the application of the chain rule in the con-
tinuous context and the direct discretization of the same 
equation.43 In a study by LeVeque,43 it is noted that the 
matrix corresponding to 



A  in equation (27) has certain 
advantages, such as being symmetric. Therefore, it seems 
worth exploring this alternative approach. The latter will be 
addressed in future work.

Generic Error Estimation Checks
Several quantitative checks have been performed to estimate 
the accuracy of the numerical approaches implemented for 
solving equation (1). It is noted that pure diffusion, ie, zero 

tumor cell birth and death rates, has been considered in all 
computational scenarios performed in the rest of this particular 
section. Alternatively, the reaction-diffusion aspects of the 
model could be validated through the use of traveling wave 
solutions of the Fisher-Kolmogorov equation. The latter will 
be part of future work. Exact traveling wave solutions in the 
1-dimensional reaction-diffusion models of glioblastoma 
growth are introduced in a study by Harko and Mak.44 
Publication by Gerlee and Nelander45 analyzes the behavior of 
glioblastoma growth focusing on the properties of traveling 
wave solutions whose wave speed depends on the rates of phe-
notypic switching.

Comparison of the numerical with the analytical 
solution for a particular case

To partly validate the numerical approach of the model, a com-
parison between the numerical and analytical solutions for a 
simplified homogeneous initial value problem has been con-
ducted. The analytical solution for the problem described 
below is available in a study by Khan and Liu.46 Thus, if R = Ω  
is the domain and ∂ = ∂R Ω  is the boundary, then the initial 
concentration c at any spatial point x  for the special case under 
consideration is supposed to be as follows:
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where σ0  is the standard deviation of the Gaussian function. For 
a domain without boundaries, the analytical solution of Gaussian 
distribution in 3 dimensions for pure diffusion is as follows:
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For σ0 3= h  and t n t= ∆ , where h  is the nodal spacing, ∆t  
is the time step, and n  is a counter for the time step, x x y z= ( , , )  
stands for the spatial coordinates of the node, ( , , )x y z0 0 0  is 
the center of the cubic grid, D  stands for the diffusion coef-
ficient, c x t( , )  denotes the concentration at the time point t  
and at the spatial point x, and λ = D t h∆ / ( )2 2 . For the com-
parison of the analytical solution with the numerical solution, 
the size of the computational domain has been supposed to be 
large enough so that the application of the boundary condi-
tions will not significantly affect the computations. Simulations 
have been performed for ∆t = 0 5. day, h = 0 1. cm, and 
D = 0 0065. cm /d2 . The cancer cell concentration on the cen-
tral axis of the discretizing mesh has been sampled at various 
time points, and the results of the comparison with the analyti-
cal solution are depicted in Figure 2. Obviously, there is 
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excellent agreement between the numerical and the analytical 
predictions.

Convergence and stability

This section deals with an investigation of the stability and the 
convergence characteristics of the Crank-Nicolson method 
that has been used for the numerical solution of the GBM 
tumor growth and invasion model. For the initial value prob-
lem described in section “Comparison of the numerical with 
the analytic solution for a particular case,” the cell density dis-
tribution in space and time has been calculated using the  
same value for the diffusion coefficient D  in gray matter, 
white matter, and CSF, which is equal to 0 0065. cm /d2 . The 
simulations have been executed for different values of the time 
step ∆t and the spatial step h, and the size of the computa-
tional domain has been assumed to be large enough so that the 
application of the boundary conditions will not significantly 

affect the computations. At the end of each simulation, the 
mean percentage error of the relative percentage error e  has 
been calculated. The relative percentage error is calculated by 
comparing the predicted values of c  generated by the model, 
with capprox, ie, the ones obtained with the analytical solution. 
The relative error has been computed according to the follow-
ing formula:

 Relative error = −1
c
c

approx
 (31)

Figure 3A summarizes the mean percentage error in the 
approximate solution at t =100days  for different values of h  
and fixed time step of ∆t = 0 5. days . Figure 3B presents the 
error of the approximate solution at t =100days  for different 
values of ∆t, with h  fixed at 0 1. cm. The total simulated time 
has been assumed to be 100 days. It is noted that the analytical 
solution does not take into account the boundaries, and conse-
quently, a slight cell loss is expected to be observable after sev-
eral days. Second-order accuracy of the method in both space 
and time has been achieved.

According to Figure 3, after 100 simulated days, the discrep-
ancy between the numerical and analytical results is less than 
1% for a temporal discretization unit equal to 1day  and about 
0.65% for a space discretization of 0 1. cm. For the case of 
h = 0 75. cm, the mean percentage error reaches the value of 
11%, which is reasonable because the spatial discretization 
of the domain that includes the tumor is too sparse. In the rest 
of the article and for the simulations performed, the values 
0.5 day and 0.1 cm have been used for the time and space dis-
cretizations, respectively, so that reasonable levels of precision 
and accuracy can be achieved.

Linearity checks

An initial ideal spherical tumor of diameter equal to 4 cm has 
been assumed inside a mesh of 101 mm × 101 mm × 101 mm. 
The initial cell concentration is assumed 106 cells/mm3  inside 

Figure 2. Comparison between the numerical solution (using the 

biconjugate gradient [BiCG] method) and the analytical one for the pure 

diffusion scenario. The concentration on the central axis of the 

discretizing mesh has been sampled at several time points ( t = 25days , 

t = 50days, and t =100days ). The results have been obtained for the 

following parameter values: ∆t = 0 5. day, h = 0 1. cm, D = 0 0065. cm /d�2 . 

Clearly, the numerical results are in excellent agreement with the 

analytical solution.

Figure 3. Error analysis of the model. The simulated domain has been assumed sufficiently large such that the application of the boundary conditions 

does not practically affect the computations in the region of interest. The diffusion coefficient D  has been assigned the value of 0 0065. cm /d2 . (A) Mean 

percentage error for a range of values of nodal spacing h. For all calculations, a constant/fixed time step of ∆t = 0 5. day  has been used and the 

approximate solution has been obtained at t =100days. (B) Mean percentage error for a range of values of time step ∆t.For all calculations, a constant 

nodal spacing h = 0 1. cm  has been used and the approximate solution has been obtained at t =100days .
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the sphere and 0cells/mm3  outside the sphere. Two cases of 
pure diffusion (no sources, no sinks) have been considered: 
homogeneous and inhomogeneous. In the first case, the diffu-
sion coefficient D  has been assigned the value 0 0065. cm /d2 . 
In the second case, the diffusion coefficient D  has been assigned 
the values 0 00051. cm /d2  in white matter, 0 000102. cm /d2  in 
gray matter, and 0 000001. cm /d2  in CSF.

For the extreme hypothetical scenario of pure diffusion 
(absence of both sources and sinks), it has been ensured that if 
the initial cancer cell concentration is doubled at all points of 
the discretizing mesh, ie,

 c x c x2 10 2 0
 , ,( ) = ( )  (32)

the cancer cell concentration at any spatiotemporal point 
( , ) ( , , , )x t x y z ti j k=  is doubled regarding its value correspond-
ing to the reference initial cancer cell concentration. Hence, the 
updated tumor cell concentration value at point ( , , , )x y z ti j k  
is given by the following equation:

 c x t c x t2 12
 , ,( ) = ( )  (33)

The concentration ratio c x y z t c x y z ti j k i j k2 1( ) ( ), , , / , , ,  is 
shown in Figure 4. Clearly, the ratio c x y z t c x y z ti j k i j k2 1( ) ( ), , , / , , ,
equals the ratio c x y z c x y zi j k i j k2 10 0( ) ( ), , , / , , , . This observa-
tion serves as a validation of the purely diffusive linear part of 
the simulation code.

Mass conservation

In the following nonbiologically relevant scenario where pure 
glioma cells diffuse within an isolated domain in which tumor 
cells can neither be generated nor disappear, mass conserva-
tion applies. The computational domain has been taken to be 
equal to 168 mm × 114 mm × 114 mm so that it may roughly 
correspond to realistic dimensions of the human head but 
with a much simpler geometry. The diffusion coefficient D  
has been assumed to be equal to 0 00051. cm /d2  in white 
matter, 0 000102. cm /d2  in gray matter, and 0 000001. cm /d2  
in CSF.

Two cases have been considered. In the first one, an initial 
ideally spherical tumor of diameter equal to 1.4 cm has been 
located inside the discretizing mesh. The initial cell concentra-
tion is assumed to be 106 cells/mm3  inside the sphere and 
0cells/mm3  outside the sphere. In the second case, one single 
node of dimension 1 mm3, with initial cell concentration equal 
to 106 cells/mm3, has been assumed. Simulation code runs have 
indicated that the total number of cancer cells inside the mesh 
remains practically stable with only minor deviations because 
of the accumulation of minimal numerical errors for a substan-
tial time interval of 180 days. The relative percentage error of 
the total number of cancer cells in relation to the initial number 
of cancer cells is shown in Figure 5. It is pointed out that after 
180 simulated days, the relative percentage error remains less 
than 0.08%.

Numerical Experiments
Several in silico numerical experiments have been executed 
with the aim of checking the validity of the model presented. A 

Figure 4. Checking linearity over a central axis of the discretizing mesh for (A) a homogeneous and (B) an inhomogeneous brain scenario. It is 

established that if the initial cancer cell concentration is doubled at all points of the discretizing mesh, the cancer cell concentration at any spatiotemporal 

point under consideration ( , , , )x y z ti j k  is doubled in relation to its value that corresponds to the reference initial cancer cell concentration.

Figure 5. Relative percentage error of the total cancer cell population 

relating to its initial number for 2 cases in a closed and isolated system. 

In the first case, a fictitious growing glioblastoma tumor of spherical 

shape with a diameter equal to 1.4 cm has been virtually placed inside the 

cranial cavity. The initial cell concentration is assumed to be 

106 cells/mm3  inside the sphere and 0cells/mm3  outside the sphere. In 

the second case, 1 single node of dimension 1 mm3, with initial cell 

concentration equal to 106 cells/mm3 , has been assumed. Pure diffusion 

is considered for validation purposes only. The percentage error of the 

total number of tumor cells, which is principally the result of the 

replacement of the continuous expressions with their numerical 

counterpart, is less than 0.08% for a simulation time equal to 180 days.
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3D brain geometry has been considered. The data set used has 
been acquired from an open-source software (3D Slicer) freely 
available on the Internet.47,48 The resource is an application for 
image analysis and automatic segmentation of brain structures 
from MRI data. A 3D rendering of the data set is depicted in 
Figure 6.

In the proposed model, the diffusion coefficient is a func-
tion of position x , and subsequently, there has been a need to 
create virtual regions with different diffusivities. The struc-
tures/regions that have been segmented are white and gray 
matter, CSF, and skull (cranium). The 3D Slicer software has 
been used to superimpose the results of the segmentation on 
the original T1 images (Figure 7). Different colors correspond 
to different segmented structures. The acquired 3D Slicer tuto-
rial data set consists of 124 slices of 1.5 mm thickness, with a 
voxel dimension of 0.9375 mm × 0.9375 mm × 1.5 mm and a 
resolution of 16 bits per pixel.

To accelerate the calculations without any loss of informa-
tion, part of the image corresponding to air surrounding the 
skull has been cropped. Furthermore, because the discretization 
of the problem assumes a cubic lattice, a new cubic discretiza-
tion of the data set–based anatomic region of interest has been 
performed. The new cubic voxel has a dimension of 
1 mm × 1 mm × 1 mm. In addition, the resolution has been 
reduced to 8 bits per pixel using the ImageJ software.49 
Indicative sections of the reconstructed anatomic region of 
interest in gray scale are depicted in Figure 8. Because only the 
inner surface of the skull is used in the simulation executions, 
the 3D flat bone structure of the skull has been removed.

As a first approximation, and for cases where the primary 
glioblastoma tumor lies away from foramen magnum and other 
skull foramina, the latter are assumed to act as boundaries. This 
is justified by the very small expected number of GBM tumor 
cells lying close to them due to diffusion.

Model parameters

A list of parameters serves as the input of the model. The typi-
cal values of the parameters that have been used for the pro-
duction of the results have been carefully selected from 
pertinent literature so as to best reflect experimentally and 
clinically observed aspects of glioblastoma dynamics in both 
microscopic and macroscopic scales. Because GBM is a highly 
inhomogeneous tumor, the parameter values considered refer 
to a hypothetical “mean GBM cell.”

Each value of the diffusion coefficient D  shown in Table 1 
has been estimated as the average value of the migrating and 
the growing diffusion coefficient for each brain region.5 The 
diffusion coefficient for corpus callosum and white matter has 
been considered the same. The latter has been estimated to be 
5 times greater than for gray matter according to Swanson 
et al50 because of the different motility of tumor cells in gray 
and white matter. According to Baldock et al,51 malignant gli-
oma cells can migrate up to 100-fold faster in white matter 
than in gray matter characterizing the extent of invisible sub-
clinical disease. It is noted that the values of D for both white 

Figure 6. (A) Indicative (coronal) slice of the T1 head and brain image data set used in the in silico experiments of this article. The data set originates 

from the open-source software 3D Slicer freely available on the Internet. (B) Three-dimensional rendering of the data set used in the simulations. (C) 

Three-dimensional rendering of the same data set without the skull.

Figure 7. Indicative results of structure/region segmentation for a normal 

human head. Pink-colored regions represent background (air and skull), 

yellow-colored regions represent white matter, blue-colored regions 

represent gray matter, and red-colored regions represent cerebrospinal 

fluid.

Figure 8. Indicative results of the segmentation in gray scale. Black color 

(red, green, blue [RGB] [0, 0, 0]) corresponds to anything outside the inner 

surface of the skull that defines the cranial cavity. This implies that black 

color can represent cranial bones, air, etc. White color (RGB [255, 255, 

255]) corresponds to white matter, RGB (128, 128, 128) corresponds to 

gray matter, and RGB (160, 160, 160) corresponds to cerebrospinal fluid.
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and gray matter appearing in Table 1 are considerably lower 
than the corresponding values reported in a study by Swanson 
et al.50 Using the computational approach presented and exper-
imenting in silico could contribute to the optimal selection of 
diffusion coefficient values by comparing the predictions of the 
model with actual clinical data.

The abrupt and frequent changes of the value of D  between 
the different brain matters (gray and white) and CSF, as well as 
the unavoidable quantization/discretization errors created dur-
ing the numerical solution of the problem, have led to certain 
negative values of the computed tumor cell concentration. It 
should be noted that the problem of handling negative concen-
trations which appear during the numerical solution of partial 
differential equations is still an open issue. Several approaches to 
alleviate this problem have been suggested (ie, Discussion 
Forum52). We have tried a number of them but without any sig-
nificant and staying improvement, apparently due to the fact that 
the value of the diffusion coefficient D between 2 adjacent nodes, 
one of which lies within the CSF, changes sharply. Therefore, we 
have resorted to the simple solution proposed by John et al,53 and 
the negative concentrations have just been cut off.

It is also noted that the percentage of the sum of the tumor 
cell concentration negative values per node per execution cycle 
(that have been cut off ) over the total number of tumor cells 
corresponding to the same execution cycle, in the simulations 
of section “Numerical Experiments” and for a total simulation 
time equal to 180 days, varies between 0.00106% and 0.0022%. 
This means that the overall error due to the cutting off of nega-
tive values is negligible.

The net tumor growth rate ρ  refers to the resultant of 
tumor cell proliferation, loss, and death. Different combina-
tions of D  and ρ  values can simulate multiple tumor grades. 
High ρ  and high D  refer to a high-grade tumor, (high ρ  
and low D ) or (low ρ  and high D ) refer to an intermediate-
grade tumor, and low ρ  and low D  refer to a low-grade 
tumor.50 It has been suggested in a study by Swanson37 that a 
typical value of ρ  is 0.012 units/d. It has also been reported in 
a study by Stein et al54 that the maximum growth rate for gli-
oma cells is 0.3 units/d. Because there appears to be a contro-
versy regarding the most plausible values of the parameters D  
and ρ , several combinations of the values mentioned above 
have been considered in this article. Glioblastoma diagnosis is 

practically possible after the tumor has reached a tomographi-
cally imageable size equivalent to a sphere with an average 
diameter of 3 cm.55

Following the completion of the data set image segmen-
tation, cubic voxel resampling, and 3D reconstruction of the 
anatomic region of interest, we have proceeded to in silico 
experimentation. A hypothetical glioblastoma tumor of ideally 
spherical shape with a diameter equal to 1.4 cm has been 
located inside the cranial cavity (Figure 9). Such a relatively 
large initial spherical tumor has been assumed to accelerate the 
simulation execution process. To achieve a more refined simu-
lation of the time course of glioblastoma, one could start the 
simulation by placing an initial tumor of a smaller diameter of 
about 1 3mm  at the same position. In such a case, the comput-
ing requirements would obviously be considerably higher.

For the sake of simplicity, during the process of the in silico 
model validation, the cancer cell concentration within the ini-
tial tumor has been arbitrarily hypothesized uniform and equal 
to 106 cells/mm3. This concentration value is a realistic esti-
mate for at least a small avascular glioma tumor of volume 
equal to 1mm3  according to the literature.36 Regarding the 
parameters associated with the numerical methods used, the 
following values have been selected. The convergence tolerance 
for the BiCG method has been chosen to be equal to 10 6− . The 
treatment loss rate has been assumed to be equal to 0 implying 
that no therapy is administered. Before the start of the simula-
tion, diffusion phenomena are not taken into account. The 
longest simulated time considered has been 180 days.

Results

First, to validate the pure diffusion component of the proposed 
model as well as the accuracy of the numerical implementation of 
the Neumann boundary conditions, both the net tumor growth 
rate ρ  and the treatment loss rate G t( )  have been assumed to be 
equal to 0. In such a scenario within a hypothetically closed 

Table 1. Values of the diffusion coefficient D for the different structures 
of the human brain.

STRUCTURE/REGION OF THE  
HUMAN BRAIN

DIFFUSION 
COEFFICIENT D (CM2/D)

White matter 0.00051

Gray matter 0.000102

Cerebrospinal fluid 0.000001

Corpus callosum 0.00051

Figure 9. A virtual glioblastoma tumor of spherical shape with a diameter 

equal to 1.4 cm has been assumed inside the cranial cavity. For simplicity 

and clarity reasons, only the brain is shown. Before the start of the 

simulation, diffusion phenomena are not taken into account The 

concentration threshold for tumor visualization when the tumor has been 

virtually extracted from the brain (for improved visualization) has been 

taken equal to 1cell/mm3 .
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cranial cavity, tumor cell mass conservation must apply. It should 
be stressed that this biologically impertinent scenario has been 
considered exclusively for the needs of partial mathematical vali-
dation of the analysis presented. Numerical code runs have shown 
that the total number of cancer cells inside the discretizing mesh 
remains practically stable with only minor deviations due to the 
piling up of minimal numerical errors for a substantial time inter-
val (Figure 10). This is an important indication of the correctness 
of the purely diffusive part of the model.

In a second numerical experiment, the value of the net 
tumor growth rate has been taken to be equal to ρ = 0 012. / d
. The predicted number of total tumor cells as a function of 
time, as well as the spatial distribution of the tumor material 
after a simulated time interval of 180 days, is depicted in Figure 
11. The concentration threshold for tumor visualization when 
the tumor has been virtually extracted from the brain for 
improved visualization purposes has been taken to be equal to 
1 cell/mm3.

A typical coronal slice of the virtual tumor at different time 
points is depicted in Figure 12.

The simulated tumor cell density (cells per mm3) along the 
x axis (the horizontal axis of the coronal plane) passing through 
the center of the initial tumor for the time points of 60, 120, 
and 180 days is depicted in Figure 13.

Due to the infiltrating nature of malignant gliomas, diag-
nostic tools such as computerized tomography (CT) and MRI 
cannot detect the outer tumor border with accuracy. According 
to Swanson et  al,55 the threshold of tumor detection for the 
enhanced CT corresponds to 8000 tumor cells/mm3. For the 
simulations performed in this article, the above-mentioned 
threshold value has been assumed as a first approximation for 
T1 gadolinium–enhanced MRI. Figure 14 provides a visualiza-
tion of the growth of a virtual glioblastoma tumor on the simu-
lation starting day, the 60th day, the 120th day, and the 180th 
day. It is noted that the strongly pseudocolored part of the 

tumor is delimited by the CSF which lies between the gray 
matter and the skull. Diffusion within the CSF is small accord-
ing to Table 1.

To estimate the accuracy of the approach, the error of the 
aforementioned example referring only to the predicted num-
ber of cancer cells and not their spatial distribution has been 
calculated. An estimate of the error has been produced by com-
paring the total number of cancer cells as predicted by the pro-
posed model with the corresponding prediction of exponential 
growth. The latter is the simplest proliferation law and was 
proposed by Malthus in 1798. The Malthus law in our case 
provides the cancer cell population P t( )  within a hypotheti-
cally “closed” skull cavity at any time t  as a function of the 
initial cancer cell population P( )0  and the constant growth 
rate k , which in the tumor growth framework addressed 
depends on the intrinsic net tumor growth rate (aggressiveness 
of the tumor), ie,

 P t P ekt( ) = ( )0  (34)

The computational error of the numerical method is 
obtained using equation (31) where c  is the concentration cal-
culated using exponential growth and capprox  is the numerically 

Figure 10. Time course of the total cancer cell population corresponding 

to the case of pure diffusion. The time step ∆t and the space step size h 

have been assumed to be equal to 0 5. day  and 0 1. cm, respectively. At 

the start of the simulation, an initial fictitious growing glioblastoma tumor 

of spherical shape with a diameter equal to 1.4 cm and uniform tumor cell 

concentration equal to 106 cells/mm3  has been virtually placed inside the 

cranial cavity. The total number of cells remains practically unchanged 

with only slight fluctuations across computer simulations. This implies 

good accuracy of the diffusive component of the model.
Figure 11. Predicted number of total tumor cells as a function of time and 

spatial distribution of the tumor material after a simulated time interval of 

180 days ( ρ = 0 012. / d, the values assigned to the rest of the parameters 

are reported in the main text). For simplicity and clarity reasons, only the 

brain is shown. The size of each voxel is 1 mm × 1 mm × 1 mm. The initial 

condition of Figure 9 is considered. The threshold for tumor visualization 

when the tumor has been virtually extracted from the brain has been 

taken equal to 1 cell/mm3. The color bar on the right-hand side refers to 

the tumor cell concentration c (cells per mm3). Denoting the color 

intensity–level function of c by I(c), the corresponding equation is 

I k c= log10 , where the constant k c= 255 10/ log max  and cmax
 stands for 

the maximum value of tumor cell population which is observed during the 

experiment. It is assumed that I = 0  for cell concentration less than 
1cell/mm3 .
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calculated concentration. Figure 15 shows the error variation 
for different values of dt . For all ∆t  values, the error is essen-
tially the same. It should be noted that the complexity of the 
brain structures bounded by the skull is very high. This una-
voidably leads to spatial discretization errors. The latter can 
explain an error of approximately 5% after the relatively large 
time interval of 180 simulated days.

The simulated tumor cell density for different values of net 
tumor growth rate (including 2 values reported in literature as 
well as 2 hypothetical values) is depicted in Figure 16. Panel (A) 
shows the total number of tumor cells obtained 180 days after 
the start of the simulation. Panel (B) shows the density of tumor 
cells (number of tumor cells per mm3) along the x axis (the hori-
zontal axis of the coronal plane) passing through the center of 
the initial tumor. The diffusion coefficient values adopted for the 
various structures/regions of the brain are shown in Table 1.

According to Swanson et  al,50 the following estimates of 
typical glioblastoma doubling time, Td, and growth rate have 
been reported in the literature:

1. Doubling times for gliomas range from 1 week to 12 months 
covering the range of high- to low-grade gliomas.56

2. For glioma with growth rate equal to 0.012/d, the dou-
bling time is expected to be equal to 2 months.

For the assessment of clinical validity, 2 clinically measured 
values of doubling time have been used. Therefore, no claims 
for a statistical validation of the model can be made in this 
article. However, the article does outline a realistic procedure 
for a possible partial clinical validation of the model in the 
future. For the calculation of the doubling time, the latter being 
a quantity of critical importance in the course of the disease, 2 
cases of combining values of parameters D,ρ  have been con-
sidered, as shown in Table 2.

It appears that the value combinations for D,ρ  appearing 
in Table 2 are quite realistic choices based on the literature. The 
calculated doubling time as a function of simulated time is 
depicted in Figure 17. It is more usual to find that Td increases 
progressively as the tumor becomes bigger.36 It can be readily 
noticed that in all simulated cases, the calculated values of dou-
bling time are in agreement with those reported in the litera-
ture for high-grade gliomas.

A typical value for the doubling time, for ρ = 0.012/day, is 
2 months.50 In the first case, this is observed on the 33th 
simulated day. It is noted that the doubling time which 
spans between the initial simulated time point and the time 
point at which the tumor has doubled is assumed to corre-
spond to the initial simulated time point. The graphs of 
Figure 17 constitute parts of typical Gompertzian growth 
curves. Gompertzian growth is well known to be able to 
model macroscopic tumor growth in a phenomenologic 
context. This can explain the increasing doubling time as a 
function of time.

Finally, for the scenario described above, a comparison of 
the results for the homogeneous and inhomogeneous cases has 
been undertaken. For the homogeneous case, the diffusion 
coefficient Dwa  has been calculated as the weighted average 
value of D taking into account the volume for which each dif-
fusion coefficient value holds true and has been found to be 
equal to 0.00038cm /day2 . In symbols,

 D
D N D N D N

N N Nwa
w w g g CSF CSF

w g CSF
=

⋅ + ⋅ + ⋅

+ +
 (35)

Figure 12. Typical contour plot (coronal section) of the tumor cell density (concentration) corresponding to the initial virtual glioblastoma multiforme tumor 

of Figure 9 of radius equal to 0.7 cm at different time points of the simulated tumor growth (20, 60, 120, and 180 days). Zero and maximum cell 

concentration in this figure correspond to dark blue and dark red, respectively. The color bar scale is logarithmic and corresponds to the tumor cell 

concentration (cells per mm3). The value of the net tumor growth rate is 0.012 units/d. The threshold of tumor cell detection and visualization has been 

taken to be equal to 1cell/mm3 .

Figure 13. Tumor cell density (number of tumor cells per mm3) along the 

x axis (the horizontal axis of the coronal plane) passing through the 

center of the initial tumor for different simulated time points (60, 120, and 

180 days) and a spatially dependent diffusion coefficient. The initial 

condition of Figure 9 is assumed.
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where Nw  is the number of (discretizing mesh) nodes which 
belongs to the white matter region, N g  is the number of nodes 
which belongs to the gray matter region, and NCSF  is the num-
ber of nodes which belongs to the CSF region of the CT 
imageable part of the simulated tumor on the 180th day using 
the inhomogeneous model.

The above weighted average has also been calculated by tak-
ing into account the part of the tumor for which the cell con-
centration is greater than 8000cells/mm3. In that case, its  
value has been found to be equal to 0.00034 cm /d2 . The dou-
bling time for the homogeneous and inhomogeneous cases and 
for net tumor growth rate equal to 0.012 units/d is depicted in 
Figure 18. Three cases of combinations of D  values have been 
considered, as shown in Table 3.

The in silico simulation results for the scenarios considered 
(Figure 18) indicate that using the homogeneous normal brain-
based model may produce an error of up to 10% for the first 
25 simulated days in relation to the predictions of the inhomo-
geneous model. This observation suggests that even by using a 

homogeneous brain-based model in conjunction with an ade-
quately weighted average value of its diffusion coefficient, a 
rough but nonetheless informative estimate of the expected 

Figure 14. Visualization of a virtual glioblastoma tumor growth in vivo on a coronal slice at various time points. For simplicity and clarity reasons, only the 

brain is shown. The initial condition of Figure 9 is considered. Denoting the color intensity–level logarithmic function of c by I(c), the corresponding 

equation is I k c= log10 , where the constant k c= 255 10/ log max  and cmax
 stands for the maximum value of tumor cell population which is observed during 

the experiment. The threshold for tumor visualization has been taken to be equal to 1cell/mm3 . The bright contour loop generated on the upper raw 

corresponds to the tomographically detectable tumor boundary at a detection level of 8000cells/mm3 .

Figure 15. Error variation for different values of ∆t at 180 simulated days 

after the start of the simulation by comparing the results from the 

proposed model with those obtained through the use of exponential 

growth (golden standard). The initial condition of Figure 9 is assumed. 

The space step size has been taken equal to 0.1 cm.

Figure 16. Effect of varying the net tumor growth rate on the growing and 

diffusive behavior of glioblastoma multiforme. The initial condition of 

Figure 9 is assumed. The values 0.012 and 0.2 units/d have been 

reported in the literature. Two additional hypothetical values have been 

considered. In panel (A), the total cell population at the 180th day of 

simulation is depicted. It is noted that the value of the total cell population 

for ρ = 0.2 units/d on the 180th simulated day may have only theoretical 

meaning because it cannot be physically accommodated within the 

cranial cavity. The patient must have already died in such a case. Panel 

(B) shows the density of tumor cells (number of tumor cells per mm3) 

along the x axis passing through the center of the initial tumor.
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tumor doubling time can be achieved. It is pointed out that the 
values of the diffusion coefficients and the cell birth and death 
rates of the model can undergo substantial refinement and per-
sonalization through the exploitation of histologic and molec-
ular data of the patient. This kind of work undertaken by our 
research group is in progress.

A visualization of the virtual glioblastoma tumor growth is 
depicted in Figure 19.

For further validation of the model presented, additional 
scenarios regarding the initial virtual glioblastoma tumor con-
dition have been considered. The results of the simulation are 
presented in Figure 20. It is noted that on the first, third, and 
fourth columns of Figure 20, the initial tumor has been assumed 
to be the same (ie, a hypothetical spherical tumor with cell den-
sity equal to 106 tumor cells/mm3). The rest of the parameter 
values adopted in all cases of Figure 20 (D, ρ, h, Δt) are the 
same. However, the spatial GBM tumor cell distribution as 
time passes differs considerably among cases 1, 3, and 4. This 
can be readily explained by taking into account the differing 
nearest inner skull surface curvature in conjunction with the 
differing detailed local geometry of the regions occupied by 
white matter, gray matter, and CSF.

Execution of the computer code for 6 simulated months and 
a discretizing mesh of 178 × 178 × 178 nodes, each one of 
dimensions 1 mm × 1 mm × 1 mm on a 32-bit Windows Vista 
Platform machine (4 GB RAM and processor Intel Core 2 
Duo CPU P8600@2.4 GHz), takes about 10 minutes. Use of 
more processors is expected to improve this time.

Discussion
The major highlight of the article is the numerical handling of 
the Neumann boundary conditions imposed by the cranium 
on an inhomogeneous diffusion-reaction model of glioma 
growth and invasion in 3 dimensions. If the adiabatic Neumann 
boundary conditions are not properly applied to GBM inva-
sion modeled by reaction-diffusion, it is almost certain that 
there will be artificial loss of tumor cells. This is, eg, the case 
when the much simpler to apply Dirichlet boundary condi-
tions are adopted as a crude (and admittedly much less 
demanding) substitute for the correct Neumann conditions. 
An application of Dirichlet boundary conditions may lead to a 
lower predicted probability for tumor regrowth following 
treatment (ie, chemotherapy, radiotherapy, and combined 
therapy). Such a scenario may subsequently lead to more opti-
mistic expectations regarding tumor growth or regrowth than 
what happens in reality. Exploratory in silico experimentation 
by the authors has supported the above remarks. Therefore, we 
think that it is important not to bypass an explicit and correct 
application of the Neumann boundary conditions to the prob-
lem under consideration.

From a different perspective, GBM growth, invasion, and 
response to treatment are clearly multiscale phenomena. In this 
context, an in-depth theoretical analysis of tumor dynamics 
should not be constrained to a small number of biocomplexity 

Table 2. Combinations of values for the parameters D,ρ.

CASE DIFFUSION COEFFICIENT (CM2/D) NET TUMOR GROWTH RATE (UNITS/D)

1 D D Dw g CSF= = =0 00051 0 000102 0 000001. , . , . 0.012

2 D D Dw g CSF= = =0 00051 0 000102 0 000001. , . , . 0.2

Figure 17. Doubling time as a function of simulated time. The initial 

condition of Figure 9 is assumed. In case 1, the value of net tumor growth 

rate has been assumed to be equal to 0.012 units/d. In case 2, the value 

of the same parameter has been assumed to be equal to 0.2 units/d. In 

both cases, the diffusion coefficient values adopted for the various 

regions of the brain are as follows: 0 00051. cm /d2  for the diffusion 

coefficient in white matter, 0 000102. cm /d2  for the diffusion coefficient in 

gray matter, and 0 000001. cm /d2  for the diffusion coefficient in 

cerebrospinal fluid.

Figure 18. Doubling time as a function of simulated time for a 

homogeneous and an inhomogeneous brain model and for net tumor 

growth rate equals 0 012. units/d. The initial condition of Figure 9 is 

assumed. Three cases of combinations of D values have been 

considered. The first case corresponds to an inhomogeneous model. The 

values used for D in white matter, gray matter, and cerebrospinal fluid are 
0 00051 0 000102 0 000001. , . , .and cm /d2 , respectively. The second and third 

cases correspond to a homogeneous model. The values for the diffusion 

coefficient are 0 00034 0 00038. .and cm /d2 , respectively.
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levels. Because, however, the model presented focuses on the 
spatiotemporal characteristics of glioblastoma invasion, a cel-
lular-, tissue-, and organ-scale (or level) approach appears to be 
a good basis for modeling the involved biomechanisms. The 
effects of subcellular molecular mechanisms could also be sum-
marized as perturbators of the population-based average values 
of the parameters ρ, D, and G(t). Because the exact microscopic 
structure of neovasculature is unknown, considering a mean 
neovasculature density throughout the brain is a plausible mes-
oscopic assumption. The term tumor cell loss rate indirectly 
involves insufficient and inadequate angiogenesis. In addition, 
the diffusion coefficient summarizes inter alia the microscopic 
chemotactic and haptotactic interactions of normal nerve fibers 
and tumor cells. In this framework, all biochemical and molec-
ular mechanisms have been implicitly “summarized” and only 
their final outcome has “jumped” onto the upper cellular level 
through the use of more macroscopic parameters. This means 
that an adequate adaptation of the parameters ρ, D, and G(t) to 

the particular molecular profile of the GBM of a patient could 
eventually lead to a high patient individualization of the model 
predictions. Summarizing several microscopic phenomena into 
a few parameter constitutes a pragmatic and usual approach 
which is partly dictated by the strongly multiscale character of 
tumor dynamics because tumor dynamics and in particular 
invasion are modeled primarily on the cellular level. The 
approach proposed in this article can be recruited to simulate 
the effect of treatment (such as radiotherapy, chemotherapy, 
immunotherapy, combined, and experimental therapies) in a 
rather gross way. The parameter G(t) which describes the tem-
poral profile of treatment can vary enormously depending on 
the treatment scheme administered.

To demonstrate the workflow of a possible clinical valida-
tion procedure, a clinical case/scenario is addressed. Using 
appropriate imaging data sets of real tumors for comparison 
with the model simulation results would be particularly useful. 
However, this is a difficult task due to a number of limitations 
including pertinent legislation. Nevertheless, use of appropri-
ate imaging data has been made in this article. Significantly, 
the proposed approach could be applied to mathematically 
similar phenomena within the fields of physics, chemistry, and 
biology, such as chemical reactors, embryology, and, more gen-
erally, growth and differentiation of human tissue.

Conclusions
A novel explicit numerical treatment of the Neumann boundary 
condition problem of glioma growth and infiltration into the 
surrounding inhomogeneous brain tissue has been proposed. 
Our approach has been based on the 3D reaction-diffusion 
equation solved by the finite-difference method and especially 
the Crank-Nicolson scheme in conjunction with the BiCG 
method. A series of numerical experiments has been conducted 
to study the behavior of the proposed treatment and to check its 
validity. Based on the in silico experimentation presented, the 
model has proved to satisfy several natural conditions including 
the blocking of tumor cell diffusion toward the skull without any 
artificial loss of glioma cells in the skull-brain barrier. A prelimi-
nary theoretical exploration suggests that a rough but nonethe-
less informative value of the doubling time may be calculated 
based on a homogeneous brain model for the same clinical con-
text. The results obtained support the potential of the presented 
biomodel to serve as the main component of a continuous 
mathematics-based GBM oncosimulator. Following a future 

Table 3. Combinations of D values considered.

CASE DIFFUSION COEFFICIENT (CM2/D) APPROACH

1 D D Dw g CSF= = =0 00051 0 000102 0 000001. , . , . Inhomogeneous

2 D D Dw g CSF= = = 0 00034. Homogeneous

3 D D Dw g CSF= = = 0 00038. Homogeneous

Figure 19. Coronal view of simulated magnetic resonance images of the 

growth of a fictitious glioblastoma multiforme tumor in vivo generated on 

the 180th simulated day for the inhomogeneous (left panel) and 

homogeneous cases (right panel) at a detection level of 1cell/mm3. For 

simplicity and clarity reasons, only the brain is shown. The initial 

condition of Figure 9 is assumed. The color intensity level is a logarithmic 

function of c. The outer bright contours of the slices correspond to the 

tomographically detectable tumor boundary at a detection level of 
8000cells/mm3 .
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Figure 20. Schematic representation (coronal slice) of the growth of different cases of initial virtual glioblastoma. For simplicity and clarity reasons, only 

the brain is shown. (A) Four different cases of initial virtual glioblastoma. The threshold for tumor visualization has been taken to be equal to 1cell/mm3. In 

the panel columns, from left to right, the diameter of the spherical glioblastoma corresponds to 1.5, 3, 1.5, and 1.5 cm, respectively. (B) and (C) On the 

180th simulated day, the tumor has diffused theoretically over the entire brain. (D) The outer green contour of the slices corresponds to the 

tomographically detectable tumor boundary at a detection level of 8000cells/mm3. The color bar corresponds to the tumor cell concentration scale 

considered (cells per mm3).

thorough clinical validation, such oncosimulator could also be 
used as an individualized treatment planner through in silico 
experimentation and using the multiscale data of the patient. 
Given that in most cases GBM tumors are at least partly excised, 
the model could be used to simulate the response of the eventual 
tomographically imageable leftovers of the tumor surgical exci-
sion. It could also be used to study and quantify the possible 
natural history of a newly diagnosed GBM tumor.
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