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Abstract: Since the development of the polymerase chain reaction (PCR) technique, genomic 
information has been retrievable from lesser amounts of DNA than previously possible. 
PCR-based amplifications require high-precision instruments to perform temperature 
cycling reactions; further, they are cumbersome for routine clinical use. However, the use 
of isothermal approaches can eliminate many complications associated with thermocycling. 
The application of diagnostic devices for isothermal DNA amplification has recently been 
studied extensively. In this paper, we describe the basic concepts of several isothermal 
amplification approaches and review recent progress in diagnostic device development.  
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1. Introduction 

Nucleic acid amplification is one of the most valuable tools in nucleic acid detection because it can 
amplify fewer than 10 target copies, significantly improving assay sensitivity. The polymerase chain 
reaction (PCR) was introduced by Mullis [1] and has since become an indispensable tool in numerous 
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molecular research and diagnostic applications. Related advanced technologies, such as multiplex PCR, 
nested PCR, real-time PCR, and reverse transcription PCR (RT-PCR), have been used for bimolecular 
analysis. However, there are numerous features confining the applicability of PCR. The approach 
requires thermal cycling instrumentation, considerable expertise, and a substantial amount of space in 
routine diagnostic laboratories, thus limiting its use to highly sophisticated facilities. These limitations 
in current PCR-based techniques have spurred the development of a new molecular-biological 
technique known as isothermal nucleic acid amplification. The major difference between PCR and 
isothermal amplification are the temperature reaction condition requirements. Stringent reaction 
conditions, including thermal cycling steps at specific temperatures, are employed in PCR, whereas 
only a single optimal reaction temperature is required for the entire isothermal amplification reaction, 
thus providing simpler and more effective reaction conditions without expensive equipment. 
Additionally, isothermal DNA amplification produces longer DNA fragments than the conventional 
PCR technique. Overall, isothermal nucleic acid amplifications have greater amplification efficiency 
and produce higher DNA yields than PCR owing to their undisrupted and sustained enzyme activity. 

With the advent of microfabrication technology, one of the directions taken to address the future 
needs of bioanalysis and clinical diagnosis is the development of micro total analysis systems (µTAS) 
or labs-on-a-chip (LOC). This scaling down capability supports an exceptional ability to miniaturize 
various functional units such as pumps and reactors, making it possible to integrate and automate 
processes into a microsystem. Additionally, it offers important advantages over bulk or large-scale 
analysis including rapid assay results, high-throughput screening, and low consumption of reagents. 
Further, the energy required for microfabrication and operation is remarkably reduced. Most 
importantly, these benefits make microchip systems amenable to near-patient and point-of-care testing. 
The development of DNA amplification microinstruments began in the 1990s, when the concepts of 
integrated microfluidic devices were introduced to take advantage of microfabrication technology for 
biological and chemical analyses [2]. To establish such a system, it was desirable to create a totally 
integrated device performing a series of specific molecular functions such as nucleic acid extraction 
and purification, nucleic acid amplification and detection, and other supporting analysis techniques, 
with minimal dead volumes. 

Owing to the overwhelming quantity of literature available on isothermal DNA amplification 
devices, we will describe the strategies of five major isothermal techniques. Because several reviews 
have previously focused on isothermal methods in bioanalysis applications [3–5], we focus mainly  
on recent advances in the rational design and fabrication of integrated DNA microchips. The 
measurements of amplified DNA using different approaches will also be reviewed. Finally, future 
challenges and perspectives on diagnostic device construction are described. 

2. Isothermal Nucleic Acid Amplification 

Isothermal approaches can facilitate rapid target amplification through single-temperature 
incubation, reducing system complexity compared to PCR-based methods. Established isothermal 
amplification methods differ in terms of complexity (multiple enzymes or primers), attainable 
sensitivity, and specificity. In this section, we introduce the main isothermal methods used in 
diagnostic systems, including nucleic acid sequence-based amplification, strand displacement 
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from the molecular beacon, and the fluorescence provides a real-time monitoring of NASBA  
progress [5,14,15]. Recent effort has shown that an automated NASBA system, NucliSENS EasyQ, 
can perform simultaneous amplification and detection using fluorescence quantification. The detection 
of amplification products takes place in a single closed tube to significantly reduce contamination risks. 
This platform also helps decrease the hands-on time and provides rapid results (within 4 h), thus 
becoming a potentially suitable device for diagnostic applications [16–19]. 

Although the NucliSENS EasyQ platform can obtain measurements simply and rapidly at central 
laboratories, the system has had limited application outside of this context. With the goal of bedside 
monitoring, many researchers have reported on integrated analysis systems that make it possible to 
shift NASBA applications from high-cost, tabletop systems to low-cost, portable devices. Esch et al. 
developed a NASBA assay in conjunction with fluorescence detection on a microfluidic device [20]. 
This device consisted of a polydimethylsiloxane (PDMS) block with a single channel, placed on a 
gold-coated glass slide at the device’s center to immobilize the probe. Detection was accomplished 
using a sandwich hybridization of the NASBA products between capture probes and reporter probes 
tagged with carboxyfluorescein-filled liposomes. This technique had a detection limit of 5 fmol/L for a 
sample size of 12.5 μL. A later publication by Dimov et al. reported a microfluidic diagnostic device 
that integrated solid-phase extraction, real-time fluorescence detection, and a NASBA assay [21]. The 
integrated microfluidic NASBA chip consisted of two reaction chambers: a silica bead-bed chamber 
for sample purification and concentration, and a NASBA chamber for RNA amplification. To improve 
the efficiency of the NASBA reaction, all chambers were incubated with bovine serum albumin 
overnight before the reaction was started. Adequate amounts of the NASBA product were obtained 
after a reaction time of 30 min. Earlier this year, Zhao et al. introduced the concept of an integrated 
microfluidic chip-based system to monitor pathogens in a water environment with femtomolar 
sensitivity. The system, called immuno-NASBA, combined the versatility of enzyme-linked 
immunosorbent assay (ELISA) with the amplification power of NASBA [22]. The device was modeled 
on a 96-well ELISA microplate with 43 reaction chambers so that it would be fully compatible with a 
conventional reader. Moreover, the chip contained six parallel reaction channels to perform the 
simultaneous detection of six targets. Immuno-NASBA diagnostic devices have powerful potential to 
be applied for the diagnosis of various infectious diseases. 

2.2. Strand Displacement Amplification 

Strand displacement amplification (SDA) was described in 1992 [23] and was improved in the same 
year [24]. There are four sequence-specific primers used in this isothermal amplification. The first set 
of primers (S1 and S2) is designed to have single-stranded restriction enzyme recognition site 
overhangs, and the second set of the primers (B1 and B2) represent the bumper primers. The DNA 
target is first denatured by heat and each strand is allowed to hybridize with two primers (S1 and B1), 
which are annealed to the DNA template. The B1 extended product displaces the extension from the S1 

primer, which can hybridize to the opposite strand primers (B2 and S2). Thus, newly synthesized DNA 
that has been extended from the primers is cleaved by a corresponding restriction endonuclease, and 
the amplification is repeated by the polymerase, thus generating the newly synthesized strands  
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rolling-circle and circle-to-circle amplification and the subsequent microchip electrophoretic analysis 
of bacterial genes (Figure 3(B)) [60,61]. A clinical sample was detectable in less than 65 min after the 
reaction was initiated. 

In addition to single-target detection, RCA is also desirable for multiple-analyte sensing assays 

because amplified products are considered to be localized at the array spot [62]. An array of real-time 
RCA in combination with the parallelism of arrays was developed by Yang et al. for protein quantitation 
down to the low nanomolar range [53]. Konry et al. constructed a two-layer sandwich assay on 
microbead surfaces for the combined detection of DNA and protein molecules in a single  
approach [63]. This array chip achieved detection limits of 1 pM and 10 fM for target DNA and 
proteins, respectively. 

2.4. Loop-Mediated Isothermal Amplification 

Loop-mediated isothermal amplification (LAMP) is one of the DNA amplification technologies that 
employ a constant temperature [64]. The Bst polymerase plays a key role in the LAMP reaction 
process. The Bst polymerase, which is derived from Bacillus stearothermophilus living in hot springs 
with temperature around 70 °C, has polymerize activity, 5’-3’ exonuclease activity, and strand 
displacement ability. At a suitable temperature, Bst polymerase with strand displacement activity can 
separate the non-template strand from the template DNA without the thermal cycles of the PCR 
process, which uses Taq polymerase to synthesize new DNA strands. Subtle primer design is also 
necessary for a successful LAMP reaction. In the first stage of the reaction, the so-called outer and 
inner primer pairs can make dumbbell-like loop DNA strands from the target DNA templates, and the 
dumbbell-like DNA strands become the new template DNA for the next step (Figure 4). The 
dumbbell-like DNA strands then continue replicating to become a flower-like long-chain DNA  
product [65]. In addition to these two primer pairs, a third pair known as loop primers has been 
designed and proven to be beneficial in accelerating the amplification process. A good primer design 
not only ensures successful execution of LAMP, but also increases the sensitivity and specificity of the 
reaction result [66]. Thus, the LAMP reaction is carried out by three pairs of primers in an isothermal 
condition. Compared to the PCR, the reaction time of LAMP is shorter while the sensitivity and 
specificity are almost the same or even better. For fixed temperature heating, the heater component of 
the device can be simpler relative to traditional DNA amplification instruments. These features afford 
LAMP strong potential as a disease screening method based on the economic benefits of clinical 
point-of-care devices with simpler designs. Because of convenience, high efficiency, and the specificity 
of LAMP, it has been applied to many DNA screening tests, especially virus detection. 

Microfluidic chips have been applied to the detection of LAMP reactions in recent years. Some chips 
are used only for guiding the reaction buffer and DNA solution to the reaction chamber, whereas others 
are combined with additional technologies such as nanostructures for sample concentrating, 
electrophoresis, magnetics beads, etc. A microfluidics chip made of PMMA has been used for the 
turbidity detection of the hepatitis B virus (HBV) LAMP reaction by our group [67,68]. With a 
disposable LAMP microreactor and optical fiber-based turbidimetry device, as shown in Figure 4, the 
lowest limitation for detection of the HBV DNA template was 50 copies/25 μL with the critical detecting 
time set at 30 min.  
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2.5. Helicase-Dependent Amplification 

Helicase-dependent amplification (HDA) is based on natural DNA replication mechanisms. Initially, 
the coordinated action of helicases unwinds and separates the template DNA duplex. The primer can 
hybridize with the free single-stranded templates, and the subsequent extension by a DNA polymerase 
will result in DNA amplification (Figure 6(A)). The original reaction reported in the literature is 
performed at 37 °C for the entire process, and more than a million-fold amplification of DNA 
fragments can be achieved from nanogram quantities of genomic DNA [79]. Unlike the PCR, HDA 
uses helicases instead of heat, thus eliminating the need for any denaturation steps. Nevertheless, two 
additional accessory proteins are required in this approach: MutL to stimulate helicase unwinding 
activity and a single-strand binding (SSB) protein to prevent premature re-association of the separated 
ssDNA. A thermostable helicase may be also advantageous for HDA. Recently, a new helicase was 
developed from Thermoanaerobacter tengcongensis, which can be operated at temperatures from  
45 °C to 65 °C [80], so HDA reactions are now generally performed at the higher temperature of 65 °C. 
The use of thermostable helicase led researchers to abandon both the MutL and SSB proteins, while 
simultaneously improving the DNA yield of the reaction [81]. This simple thermal management option 
makes HDA very attractive for the development of simple portable DNA diagnostic devices and 
point-of-care testing. 

Recently, electrochemical methods for the detection of DNA in combination with HDA have been 
developed. A DNA-based sensor for the detection of M. tuberculosis using the electrochemical 
detection of gold nanoparticles was developed [82]. The dextrin-coated gold nanoparticles (AuNPs) 
used as a reporter can be electrochemically detected on a screen-printed carbon electrode chip  
(Figure 6(B)). Kivlehan et al. developed a real-time electrochemical method for HDA using the 
monitoring of intercalating redox probes [83]. The binding of redox probes to the HDA products 
(amplified double-stranded DNA) led to less electrochemically detectability, compared with the probes’ 
free counterpart. This method of electrochemical HDA detection does not require the immobilization 
of the probe on the electrode; real-time isothermal HDA reactions with 48-electrochemical microwells 
can be performed in 1 h. Therefore, it has the potential to be a reliable method for sequence-specific 
DNA detection. 

Lateral flow test strips provide a promising tool for the development of point-of-care nucleic acid 
biosensors. Consequently, HDA has been employed with an embedded lateral-flow DNA detection 
strip for end-point assay to detect HIV-1 in human plasma [84]. The principle of this approach is based 
on a sandwich immunoassay using two probes: a fluorescein isothiocyanate (FITC)-labeled capture 
probe and a biotin-labeled detection probe. The HDA products hybridize with the capture probes and 
detection probes to form the complex. The hybrids are bound to streptavidin-conjugated color particles 
and are captured on the test zone by the interaction between the target DNA-FITC capture probe and 
an anti-FITC antibody. The accumulation of color beads in the test zone of the fiberglass paper is 
visualized as a characteristic red band. This assay provides the satisfactory detection of HIV-1 RNA at 
50 copies/assay. This disposable amplicon detection device based on HDA has also been applied to the 
herpes simplex virus [85] and Mycobacterium tuberculosis diagnosis [86] and shows a performance 
comparable with conventional detection assay. Nevertheless, sample preparation, target amplification, 
and nucleic acid testing are conducted as distinct steps. 
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total detection time including sample preparation was 50 min. Such an integrated microfluidic device, 
with its ease of use and short detection time, can become a portable device for rapid, label-free, 
specific detection. 

2.6. Other Isothermal Amplification of Interest 

Trau’s group has proposed a beacon-assisted detection amplification (BAD-AMP) by DNA 
polymerization in conjunction with the nicking event [90,91]. Two enzymes are used in BAD-AMP: 
the DNA polymerase that replicates the DNA target on the beacon and the nicking endonuclease that 
cuts the replicated single strand at the recognition position. Initially, the reaction can be activated by 
the addition of target DNA to switch the conformation of the beacon. When a new DNA is synthesized, 
the target is displaced by the polymerase with strand-displacement activity. This polymerization 
eventually leads to the newly synthesized DNA strand with a recognition sequence for the DNA 
endonuclease. This allows an enzyme to nick the DNA strand, such that the polymerase can also 
displace the nicked strand. BAD-AMP leads to exponential amplification by repeating cycles of 
polymerase and endonuclease activity. Because this strategy is a relatively simple technique, 
BAD-AMP has also been applied for the construction of molecular logic gates [92]. 

Hybridization chain reaction (HCR) is a short DNA amplification technique that is based on 
hybridization and strand-exchange reactions for selective and specific extension [93]. Two 
complementary, kinetically trapped DNA hairpins coexist in solution until the introduction of target 
strands initiates a cascade of hybridization events. Because there is no requirement for enzyme 
amplification of the signal, HCR can be performed at room temperature. The major drawback of HCR 
is that it provides linear amplification only, compared to the PCR, which produces exponential 
amplification. Various approaches with labeled hairpin probes have been reported to improve the 
sensitivity of targets [94–97]. Although HCR is the simplest method among the isothermal nucleic acid 
amplifications, there are no reports on the development of an integrated HCR chip. 

3. Conclusions 

The aim of this review was to briefly describe the current state of the art of diagnostic devices for 
isothermal nucleic acid amplification. The isothermal strategy has been a versatile and powerful 
technique applied in the detection of microbial and viral pathogens, among many other uses in the 
diagnostic laboratory. The combination of the properties derived from isothermal amplification and 
biosensing platforms proved a valuable strategy for simplifying the analytical science of nucleic acid 
detection. In reviewing the various detection configurations, we observed that integrated microchip 
systems are particularly desirable because these systems provide significant advantages in convenience 
and cost-effectiveness, simultaneously simplifying operational procedures and shortening analysis times. 

To date, the development of chip-based isothermal assay systems has received great attention, 
whereas achieving a higher degree of portability remains a challenge. No device reported thus far is 
clearly superior, resulting in the possibility that sensing platforms based on different isothermal 
amplifications may find their way to market. Commercialization requires further improvement in 
on-chip sample pretreatment, miniaturization of detectors, decrease in power consumption, and the 
establishment of quality control. We can expect the full integration of all components on disposable 
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credit-card-sized systems for isothermal nucleic acid amplification and detection in the near future. 
Given the great effort being invested in isothermal DNA microchip systems, there is no doubt that they 
will provide significant contributions to point-of-care diagnostics and decentralized testing. 
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