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The recent discovery of interconnections between the endoplasmic reticulum (ER)
membrane and those of almost all the cell compartments is providing novel perspectives
for the understanding of the molecular events underlying cellular mechanisms
in both physiological and pathological conditions. In particular, growing evidence
strongly supports the idea that the molecular interactions occurring between ER and
mitochondrial membranes, referred as the mitochondria (MT)–ER contacts (MERCs),
may play a crucial role in aging and in the development of age-associated diseases. As
emerged in the last decade, MERCs behave as signaling hubs composed by structural
components that act as critical players in different age-associated disorders, such as
neurodegenerative diseases and motor disorders, cancer, metabolic syndrome, as well
as cardiovascular diseases. Age-associated disorders often derive from mitochondrial
or ER dysfunction as consequences of oxidative stress, mitochondrial DNA mutations,
accumulation of misfolded proteins, and defective organelle turnover. In this review, we
discuss the recent advances associating MERCs to aging in the context of ER–MT
crosstalk regulating redox signaling, ER-to MT lipid transfer, mitochondrial dynamics,
and autophagy.
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INTRODUCTION

The existence of MT–ER contacts (MERCs) was demonstrated in the late 50s by electron
microscopy (Copeland and Dalton, 1959). Biological functions, for instance modulation of
phospholipid transfer and Ca2+ interchange were the first functions established for MERCs
(Vance, 1990; Rizzuto et al., 1998), but more recently, additional roles, such as the regulation of

Abbreviations: ATG 14/5, autophagy related 14/5; BAP31, B-cell receptor-associated protein 31; BECLIN-1, BCL-2-
interacting protein; Ca2+, calcium; Cer, ceramide; Chol, cholesterol; DFCP1, double FYVE-containing protein; Drp1,
dynamin-related protein; ER, endoplasmic reticulum; Ero1-α, ER oxidoreductase 1 alpha; ETC, electron transport chain; Fis1,
fission 1 protein; Grp75, glucose-regulated protein 75; IM, isolation membranes; INF2, inverted formin 2; IP3R, inositol 1,4,5-
trisphosphate receptor; Mfn1/2, mitofusin-1/-2; MT, mitochondria; OPA1, optic atrophy protein 1; p66Shc, 66 kDa proto-
oncogene Src homologous-collagen homolog; PACS2, phosphofurin acidic cluster sorting protein 2; PC, phosphatidylcholine;
PE, phosphatidylethanolamine; PI3P, phosphatidylinositol 3-phosphate; PINK1, PTEN-induced putative kinase 1; PS,
phosphatidylserine; PTPIP51, protein tyrosine phosphatase interacting protein-51; ROS, reactive oxygen species; Stx17,
syntaxin 17; VAPB, vesicle-associated membrane protein-associated protein B; VDAC, voltage-dependent anion-selective
channel; VPS34/15, vacuolar protein sorting-associated protein 34/15.
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mitochondrial dynamics (Friedman et al., 2011), inflammasome
formation (Zhou et al., 2011), activation of autophagy (Hamasaki
et al., 2013), and redox signaling control (Booth et al., 2016)
have been charged to these structures. To better define the
molecular composition of MERCs different methods, ranging
from subcellular fractionations to proteomics and electron
microscopy, have been deployed. As a result, a structural and
functional equivalence has been established between MERCs and
MT-associated membranes (MAMs) (Giacomello and Pellegrini,
2016). The first refers actually to the ultrastructural architecture
that can be observed by electron microscopy, whereas the
second hints at the molecular composition of fractions derived
from ER–MT membranes isolated by subcellular fractionation,
respectively. Recently, high-electron microscopy and super-
resolution optical microscopy have hugely contributed to the
uncovering of the architectural complexity of MERCs (Csordas
et al., 2006; Sood et al., 2014; Giacomello and Pellegrini, 2016;
Krols et al., 2016; Sezgin, 2017; Chakkarapani et al., 2018). By
these methods, MERCs appear as site of parallel juxtaposition
between MT and smooth or rough ER tubules at a distance
ranging from 10 to 80 nm. In different tissues, the length and the
thickness of the contact zones and the protein composition are
variable and differently tuned by signaling pathways, which are
under the control of apoptosis, ER stress response, or metabolic
dysfunction (Rowland and Voeltz, 2012). In addition to that, the
increasing number of proteomic studies and the new toolkits
utilized have highlighted a novel group of proteins frequently
involved in MERCs (Poston et al., 2013; Hung et al., 2017).
Some of them retain the function of tethering factors that
hold the two organelles in close proximity (Figure 1). The best
established ones include mfn2 (de Brito and Scorrano, 2008;
Cosson et al., 2012; Naon et al., 2016), the PhosphoAcidic
Cluster Sorting protein 2 (PACS2) (Simmen et al., 2005), the
complex formed by VAPB, the PTPIP51 (Gomez-Suaga et al.,
2017), and the association between the subtype 3 of the 1,4,5-
triphosphate receptor (IP3R3) and the mitochondrial VDAC1
(Szabadkai et al., 2006). However, although the growing effort
to define the exact protein composition of MERCs, their high
plasticity represents such a great challenge for modern biology
that their identity in mammalian cells still remains debated
(Rowland and Voeltz, 2012).

ROLE OF MERCS IN
ER-TO-MITOCHONDRIA REDOX
SIGNALING DURING AGING

Abnormal production of ROS, leading to oxidative damage to
DNA, proteins, and lipids, is a key event contributing to aging and
age-associated disorders such as neurodegenerative and motor
disorders (Krols et al., 2016; Bernard-Marissal et al., 2018; Fasano
et al., 2018), cancer (Danese et al., 2017; De Marco et al., 2018;
Iorio et al., 2018; Morciano et al., 2018), metabolic syndromes
(MetSs) (Theurey and Rieusset, 2017), as well as cardiovascular
diseases (CVDs) (Barja, 2014; Holmström and Finkel, 2014;
Wang et al., 2018; De la Fuente and Sheu, 2019). According to
recent discoveries, almost all intracellular compartments produce

ROS, as side effects of metabolic pathways and in a manner
depending on the cell type and/or on the pathophysiological
state (Brown and Borutaite, 2012; Holmström and Finkel, 2014).
When under control, ROS level is important to modulate
many physiological events. Instead, an excessive ROS production
can affect molecular structures and function of intracellular
compartments, ultimately leading to cellular senescence.

Both MT and ER are sites of ROS production, therefore the
communication at MERCs participates to the diffusion of the
harmful effects of ROS production inside the cell.

The involvement of MT in age-related oxidative stress has
been historically assessed by the mitochondrial free radical
theory of aging (Barja, 2014). At mitochondrial level, the
respiratory chain and, in particular, Complexes I and III
components are the main source of superoxide radical anion
(O•−2 ). Together with the ETC Complexes I and III, other
mitochondrial enzymes are known sources of ROS, including
cytochrome b5 reductase, monoamine oxidase, α-ketoglutarate
dehydrogenase, pyruvate dehydrogenase, and the flavoprotein–
ubiquinone oxidoreductase (Balaban et al., 2005). Proteomic
studies allowed the quantification of carbonylated proteins that
are produced by oxidative stress in relation to aging. According
to these analyses, during lifespan, mitochondrial proteins result
the over represented ones and also showed the greatest increase
in carbonylation (Cabiscol et al., 2014).

More recently, several evidences reveal that also the ER is an
important source of ROS even though its impact on intracellular
oxidative stress is less prominent compared to the MT (Amodio
et al., 2011, 2018; Cao and Kaufman, 2014). Within the ER,
ROS is produced predominantly by members of cytochrome
P450, NADPH oxidase 4 (Nox4), and by the process of oxidative
protein folding mediated by the ER oxidoreductin (Ero1) α and β

(Amodio et al., 2018). Little is known about the age-associated
modulation of ROS production in the ER. Nevertheless, as
revealed by some studies looking at the hepatic tissues of aged
mice, there are evidences that ER-resident proteins, such as the
molecular chaperones PDI and Bip/Grp78, undergo oxidative
damage and progressive dysfunction during senescence (Rabek
et al., 2003; Nuss et al., 2008). In any case it is important to point
out that the transmembrane protein protein kinase RNA-like ER
kinase (PERK), a component of the ER stress/unfolded protein
response (UPR) machinery (Cao and Kaufman, 2014; Amodio
et al., 2018), is found abundant in MAMs (Verfaillie et al., 2012).
Curiously, in this contest, PERK would play the role of tethering
factor by making tighter the ER–MT membrane contacts during
ER stress to ease Ca2+ influx and, as a consequence, the
ROS-dependent mitochondrial apoptosis. Thus, this is a further
important example, which suggests that MERCs are decisive to
mediate inter-organelle signaling leading to decision between cell
death or surviving that could take an important part during aging.

Definitely, a large amount of scientific literature demonstrates
the involvement of the ER–MT interplay in redox signaling and
aging, but the role of MERCs in such a mutual dependency
has emerged only in the past years. One example is the redox
crosstalk between the ER and MT described for the regulation
of Ca2+ signaling. In particular, the work by Booth et al. (2016)
demonstrated that Ca2+ fluxes from ER evoke the production
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FIGURE 1 | Overview of the key functions of the MERCs resident proteins. (a) The main ER–MT tethering factors are described from left to right. Although it is mainly
localized at MT, a small amount of Mfn2 is found at ER, where it participates to the tethering of ER to MT through the formation of ER–Mfn2/MT–Mfn2 homodimers or
ER–Mfn2/MT–Mfn1 heterodimers (de Brito and Scorrano, 2008; Cosson et al., 2012; Filadi et al., 2015; Naon et al., 2016). VAPB is an integral ER protein and binds
the mitochondrial PTPIP51 protein. The reduced or increased expression of IP3R decreases or increases, respectively, the number of ER–MT contacts (Stoica et al.,
2014; Gomez-Suaga et al., 2017). The ER-localized IP3R Ca2+ channel forms a tether with the mitochondrial Ca2+ channel VDAC. Their interaction is mediated by
the mitochondrial chaperone 75 kDa Grp75 and modulates Ca2+ fluxes from the ER to the mitochondrial intermembrane space (Mendes et al., 2005; Szabadkai
et al., 2006). The ER protein BAP31 interacts with the mitochondrial fission protein Fis1. The BAP31–Fis1 complex bridges the ER–MT interface and regulates the
mitochondrial induction of apoptosis. The exact function of PACS2 at MERCS is still unknown but its depletion uncouples the ER from MT by inducing the cleavage
of BAP31 and MT fragmentation (Simmen et al., 2005; Iwasawa et al., 2011). (b–e) Key cellular functions handled at MERCs (see the text for details). (b) MERCs are
involved in lipid metabolism through the ER–MT exchange of PS, PE, PC, Cers, and Chol (Vance, 2014). (c) MERCs appear as sites promoting mitochondrial fission
and fusion. During mitochondrial fission, INF2 recruits DRP1 at MERCs mediating the formation of the constriction ring around the mitochondrial outer membrane
(Friedman et al., 2011; Chakrabarti et al., 2018). MFN2, the core component of mitochondrial fusion machinery, was found to localize at MERCs, were, together with
OPA1, promotes the fusion of mitochondrial membranes. (d) ER–MT redox crosstalk occurs at MERCs where different mechanisms are responsible for ROS
production: Ca2+ flux from the ER to MT through the IP3R/VADC Ca2+ channels, the oxidative folding activity of the ER chaperone Ero-1α, and the electron
transport promoted by p66Shc at mitochondrial ETC. The high amount of ROS produced at MERCs generates redox nanodomains at ER–MT interface that

(Continued)
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FIGURE 1 | Continued
modulates ER–MT apposition (Debattisti et al., 2017). (e) MERCs are emerged as important regulators of mitophagy/autophagy. During mitophagy, the MERCs
localized Mfn2 is phosphorylated by PINK1. Phosphorylated Mfn2 recruits parkin that, in turn, mediates MFN2 ubiquitination leading to mitophagy initiation (Bockler
and Westermann, 2014). Concomitantly, MERCs have been proposed as sites of autophagy initiation (Hamasaki et al., 2013; Bockler and Westermann, 2014). Upon
starvation, the ER-resident protein STX17 recruits ATG14 to the MERCs. ATG14, along with other subunits of the Beclin 1/VPS34 complex, became enriched in the
MAM and generates concentrated pools of PI3P necessary for IMs formation and expansion. The omegasome marker DFCP1 was also observed to translocate
onto these PI3P-enriched regions with further associated markers like ATG5 (Axe et al., 2008; Hamasaki et al., 2013) contributing to the first steps of
autophagosomes assembly.

of large amount of ROS from MT cristae that are responsible
for the generation of redox nanodomains at ER–MT interface.
Such a strongly oxidizing environment, found around MERCs,
modulates ER–MT apposition through the mitogen-activated
protein kinase (MAPK)-dependent control of mitochondrial
mobility (Debattisti et al., 2017) and, ultimately, can affect the
function of proteins involved in MERCs.

In our opinion, given the importance of oxidative damage
in senescence, the ER–MT redox crosstalk cannot be separated
by the age-dependent deterioration of proteins. One example
comes from the regulation of ryanodine receptors (RyRs) activity.
RyR is the ER Ca2+ release channel required for skeletal muscle
contraction. Although the localization at MERCs of the RyR has
not been defined yet, in the skeletal muscle of aged mice it has
been reported how the increased carbonylation and oxidation of
RyRs is associated to Ca2+ leak, ROS production, and muscle
weakness (Andersson et al., 2011). Interestingly, the forced
expression of catalase into the MT rescues RyR oxidation and
prevents Ca2+ leak (Umanskaya et al., 2014). These data suggest
the existence of bi-directional communication between the ER-
localized RyR and MT that, not surprisingly, occur at MERCs.

Many other proteins known to be part of the MERCs structure
are directly involved in the ER/MT redox crosstalk in aging and
age-associated diseases.

As an example, a well-established case of MERCs-localized
protein involved in redox signaling and aging is the 66-
kilodalton (66-KDa) isoform of the growth factor adapter Shc
(p66Shc) protein. It is well-known that the 66-KDa Shc isoform,
a negative regulator of the epidermal growth factor (EGF)-
stimulated MAPK pathway, controls oxidative stress and life span
in mammals (Okada et al., 1997; Migliaccio et al., 1999). In
addition, p66Shc catalyses the electron transfer from cytochrome
c to oxygen in the mitochondrial intermembrane space inducing
the formation of H2O2, which in turn triggers the activation of
the mitochondrial dependent apoptotic pathway (Giorgio et al.,
2005). The localization of p66Shc at MT can be induced by
oxidative stress insults that exert its critical phosphorylation to
Ser36 residue and therefore its association to the MT (Migliaccio
et al., 1999; Pinton et al., 2007). Thus, one can envisage a
feedback loop regulation, where p66Shc is firstly activated by
oxidative stress and, in turn, induces mitochondrial oxidative
stress and apoptosis. In this context, the capacity to activate
apoptosis in response to ROS renders p66Shc a potential life-span
determinant. This hypothesis is supported by a large amount of
reports. For example, it is known that the enrichment of Ero1-
α at MAM fractions is modulated by the redox state of MERCs
(Gilady et al., 2010). This event, in turn, can potentiate Ca2+

signaling at MERCs through the Ero1-α-dependent production

of H2O2 and the consequent oxidation of the IP3R (Li et al., 2009;
Anelli et al., 2012). p66Shc has attracted considerable attention
since it was found that p66Shc-knockout mice exhibited extended
lifespan, increased resistance to oxidative and hypoxic stress,
and a reduced amount of atherosclerotic and ischemic lesions
(Trinei et al., 2002; Napoli et al., 2003; Zaccagnini et al., 2004).
Additionally, it was found that primary fibroblasts obtained from
centenarians, as well as liver, heart, lungs, skin, and diaphragm
from adult mice, express higher levels of p66Shc compared to the
younger counterparts (Pandolfi et al., 2005; Lebiedzinska et al.,
2009). Likewise, work by Pinton et al. (2007) reported that the
induced mitochondrial Ca2+ uptake inversely correlates with
the number of passages of cultured mouse embryonic fibroblasts
(MEFs) cells, whereas this was not observed in p66Shc-deficient
cells. On the same line, oxidative stress induced mitochondrial
fragmentation in wild-type MEFs but not in the p66Shc-deficient
cells or in MEFs treated with a blocker of p66Shc phosphorylation
at Ser36 (Pinton et al., 2007).

All together, these data suggest that p66Shc is a key player in
preserving the mitochondrial fitness and, as a consequence, in
regulating cellular physiology and senescence. Nevertheless, it is
important to point out that its exact localization within the cell
is still undefined. Indeed, p66Shc was previously thought to be
a cytosolic protein but, recently, it was found also in different
MT compartments, in the MAM fraction and in the plasma
membrane-associated membranes (PAMs) (Giorgio et al., 2005;
Lebiedzinska et al., 2009). Interestingly, its localization at MAMs
is considered as the origin of the mitochondrial p66Shc pool
(Lebiedzinska et al., 2009). Moreover, the level of p66Shc in the
PAM or in the MAM fractions is a function of the age as reported
in animal models, where higher levels of p66Shc are detected
in the MAM fraction of older animals, indicating a role for
this protein in the “induction” of mitochondrial oxidative stress
correlated with aging and senescence (Lebiedzinska et al., 2009).

All together, these data confirm the detrimental outcome
of redox signaling in aging and strongly indicate that MERCs
take a major part in the accumulation of ROS-induced damages
during senescence.

LIPID TRANSFER AT THE
ER–MITOCHONDRIA INTERFACE AS
LIFESPAN DETERMINANT

Historically, lipid transfer from ER to MT was the first
function ascribed to MERCs (Vance, 1990). In mammalian
cells, the key event in this biological process is the transfer
of PS from ER, where it is synthetized by the PS synthase
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1 and 2 (PSS1 and PSS2), to the outer surface of the inner
mitochondrial membrane. Here, PS-decarboxylase converts PS
in PE, which is transferred back to the ER, where it is
methylated to produce PC, the most abundant phospholipid
in cellular membranes (Flis and Daum, 2013; Vance, 2014).
The transfer of PS from ER to MT, which occurs at
MERCs, is the rate-limiting step and becomes essential
in condition of ethanolamine restriction. Interestingly, new
components involved in the direct transfer of phospholipids
between ER and MT have been recently described in yeast
and defined as ER–MT encounter structures (ERMESs) and
mitochondrial contact site and cristae organizing systems
(MICOSs) (Aaltonen et al., 2016; Kojima et al., 2016). ERMESs
were proposed to facilitate phospholipid transfer between the
ER and MT, while MICOSs appeared to be involved in
the beginning of close contacts between mitochondrial outer
and inner membranes to facilitate mitochondrial PS import
and decarboxylation. Remarkably, homologs of ERMESs and
MICOSs have been identified also in mammalian cells. However,
their role in the lipid transfer at MERCs in mammals is still
under definition.

In addition to phospholipids synthesis, MERCs are involved in
the metabolism of Chol and Cers (Bionda et al., 2004; Fujimoto
et al., 2012). In particular, steroid hormones are produced from
Chol in the MT, where the P450 side chain cleavage enzyme
(CYP11A1) converts it to pregnenolone, the steroid precursor
(Issop et al., 2015). The rate-limiting step in steroid biosynthesis
is the availability of Chol, which is synthetized at the ER level
and then transferred to MT. As such, the MERCs resident
proteins play a pivotal role in dictating and promoting the
Chol efflux to MT.

In this context, very attractive is the observation that
caveolin-1 (CAV1), a protein involved in Chol intracellular
transport and plasma-membrane organization, was found, by
mass spectrometry, as a specific component in MAM fractions.
At this level, CAV1 controls Chol levels (Bosch et al., 2011;
Sala-Vila et al., 2016). Therefore, taking also in consideration
the massive presence of Chol at the ER–MT interface, CAV1
plays a fundamental role. Indeed, the amount of Chol present
in MAMs is particularly elevated compared to the ER and
MT content, so that lipid rafts-like microdomains are present
in MAM (Hayashi and Fujimoto, 2010). Moreover, the level
of Chol at ER–MT interface seems to be critical for the
integrity and function of MERCs. In this regard, it was found
that aberrant Chol accumulation at these ER subdomains,
due to CAV1 genetic deficiency, leads to reduced MERCs
physical extension (Bosch et al., 2011; Sala-Vila et al., 2016).
In agreement with previous data, these observations show that
Chol depletion strengthen ER and MT association and reduce
de novo synthesis of PS in association to the increase of PE
(Fujimoto et al., 2012). Additionally, MERCs also accommodate
enzymes needed for synthesizing Cer (Bionda et al., 2004;
Stiban et al., 2008). Since increased mitochondrial Cer levels are
associated with the permeabilization of the outer mitochondrial
membrane and the initiation of apoptosis (Stiban et al., 2008),
MERCs represent again crucial modulators of cellular lifespan
(Stiban et al., 2008).

Mitochondria–endoplasmic reticulum contacts coordinate
lipid membrane composition that, in turn, is a determining
factor for cellular lifespan and aging as assessed since when the
“membrane theory of aging” was postulated (Zs-Nagy, 1997). In
few words, according to this theory aging is directly correlated
to the membrane level of unsaturated fatty acids that are more
sensitive to peroxidative damage (Pamplona et al., 2002). Indeed,
accumulating evidences corroborate this theory and show that
decreasing lipid unsaturation contribute positively to lifespan
(Puca et al., 2008).

Another effective strategy to control aging and age-
related diseases is the caloric restriction leading to a reduced
peroxidation index of membrane fatty acids (Lambert et al.,
2004; Lopez-Lluch and Navas, 2016).

The best-established example of association between
fatty acids unsaturation and lifespan regulation is provided
by cardiolipin (CL). CL is predominantly present in the
inner mitochondrial membrane, where it governs crucial
mitochondrial functions, including the activity and organization
of respiratory chain, the regulation of mitochondrial dynamics
and apoptosis, through the retention of cytochrome c (Claypool
and Koehler, 2012; Hsu and Shi, 2017). CL is a dimeric
phospholipid consisting of four acyl chains characterized
by mono- or di-unsaturated chains bearing 16–18 carbons,
which predispose CL to be highly susceptible to oxidative
damage (Schlame et al., 2005; Hsu and Shi, 2017). Indeed,
depletion of CL and remodeling of its fatty acids have been
associated to aging. In particular, a significant increase in
more unsaturated CL fatty acids, predominantly arachidonic
and docosahexaenoic acid, was found in the heart of aged,
compared to younger mice (Lee et al., 2006). Interestingly,
one of the CL remodeling enzymes is the MAM-enriched
enzyme acyl-Coa:lysocardiolipin acyltransferase 1 (ALCAT1),
which catalyses the “bad” remodeling of CL, since ALCAT1
incorporates CoA loaded with long-chain highly unsaturated
fatty acyl chains (Cao et al., 2004). This ALCAT1-mediated
pathological remodeling has a broad impact of mitochondrial
function, autophagy, and MAM structure, and has been
implicated in aging and age-related diseases (Lee et al., 2006;
Petrosillo et al., 2008; He and Han, 2014; Hsu and Shi,
2017). Accordingly, ALCAT1-knockout mice have reduced
susceptibility to the onset of age-related diseases including
obesity, diabetes, hepatosteatosis, and brain dysfunction
(Hsu and Shi, 2017). Another MAM-enriched enzyme,
the stearoyl-CoA desaturase 1 (SCD1) is involved in the
regulation of membrane saturated/mono-unsaturated fatty
acids levels and seems to contribute to aging. In particular,
its ER-colocalizing partner diacylglycerol O-acyltransferase
(DGAT2) was found overexpressed in the skin of aged
individuals (Mitchell and Thompson, 1990; Man et al.,
2006). In addition, inhibition of SCD1 was associated to
reduced accumulation, composition, and saturation of cellular
membrane phospholipids, leading to impaired autophagy
and autophagosome formation (Ogasawara et al., 2014;
Janikiewicz et al., 2015).

Moreover, as detailed later on in this review, MERCs
can contribute with an additional mechanism to lifespan
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determination, which is the regulation of lipid composition
(essential) for the autophagy initiation.

MITOCHONDRIAL DYNAMICS AT
MERCS IN AGING

Biological aging is a multifactorial process defined as the time-
dependent breakdown in the ability to efficiently regenerate
tissues and organs. Such a progressive transformation drives
to hypofunctional capacity to counteract cell stress (known as
homeostenosis) consequent to the exposure to environmental or
endogenous agents. Genomic instability, telomere shortening,
epigenetic alterations, impairment of proteostasis, altered
nutrient sensing, mitochondrial dysfunction, cellular senescence,
stem cells depletion, and altered cell-to-cell communication
have been proposed as molecular hallmarks of aging (Lopez-
Otin et al., 2013). All these events are under the influence of
genetic, epigenetic, and environmental factors thus explaining
different course of age-related decline of individuals having
the same chronological age. Hence, mitochondrial dysfunction
is among the acknowledged hallmarks of aging (Lopez-Otin
et al., 2013) and the modulation of mitochondrial fission and
fusion dynamics is crucial mechanisms engaged by the cell to
cope with the decline in mitochondrial activity associated to
mitochondrial DNA damage, accumulation of misfolded protein
aggregates, or exposure to stress (Sun et al., 2016). Recently, a
wide area of research highlights the participation of MERCs to
the regulation of MT dynamics and biogenesis (Friedman et al.,
2011; Westermann, 2011; Korobova et al., 2013), pointing up to
an additional role of MERCs in the biogenesis of aging.

Mitochondria form a highly dynamic network with
morphology varying from fragmented to filamentous as
the result of the combination of fusion and fission events
(Westermann, 2010). Under physiological conditions, the
balance between fusion and fission is necessary to optimize
mitochondrial function and quality control. However, when the
mitochondrial bioenergetic state became critical, fusion or fission
events must be modulated in order to isolate damaged MT or to
maximize mitochondrial function and, therefore, to prevent cell
degeneration and senescence (Twig et al., 2008; Westermann,
2010). Interestingly, proteins involved in mitochondrial fission
and fusion were found significantly enriched in MAM fractions
(Friedman et al., 2011; Schon and Area-Gomez, 2013).

Indeed, the Drp1, a mitochondrial adaptor involved in the
recruitment of the key fission proteins, was found at MERCs
(Arasaki et al., 2015; Elgass et al., 2015). At the molecular
level, Drp1 is the crucial protein promoting mitochondrial
fission, together with its two adaptor proteins, namely the
mitochondrial fission factor (Mff) and the mitochondrial Fis1
(Frank et al., 2001; Westermann, 2010). Interestingly, MERCs
participate directly in the early steps of mitochondrial fission,
by wrapping around the MT and initiating the mitochondrial
constriction required for fission and facilitating the recruitment
of Drp1 on the mitochondrial outer membrane (Westermann,
2010). In addition, later studies have showed that an ER-bound
protein, the INF2 is required for the recruitment of Drp1

(Korobova et al., 2013; Chakrabarti et al., 2018; Steffen and
Koehler, 2018). This event requires two steps: the polymerization
of actin at ER–MT microdomains and the amplification of Ca2+

efflux from the ER to MT. Both mechanisms are crucial to
mediate both the formation of the constriction ring around
the mitochondrial outer membrane and to increase the ER–MT
contact area, which, in turn, is essential to ensure the execution
of mitochondrial fission.

Besides, these observations highlight the existence of a
positive feedback between MERCs and MT during fission and
this crosstalk is essential in critical situations that require the
elimination of MT by mitophagy, as discussed in the next section.

On the other hand, MERCs are equally important for
mitochondrial membrane fusion. The core components of the
mitochondrial fusion machinery are Mfn1 and Mfn2, along
with the OPA1. MFNs are GTPase embedded on the outer
mitochondrial membrane and required for the tethering and
subsequent fusion of the two lipid bilayers constituting the outer
mitochondrial membranes. Following to the realization of the
outer membrane fusion, OPA1 mediates the fusion of the inner
mitochondrial membranes (Chan, 2006; Westermann, 2010).
Interestingly, Mfn2 was found to localize not only at the outer
mitochondrial membrane but also at the ER membrane and at
MERCs (Koshiba et al., 2004).

From the molecular standpoint, the localization of
Mfn2 at MERCs generates multiple effects. As mentioned
above, the MERCs-localized Mfn2 seems to be required for
tethering MT to the ER and to stabilize MERCs structure
through the formation of tight Mfn2–Mfn1 multimer (de
Brito and Scorrano, 2008). In support to this notion, the
ablation or silencing of Mfn2 expression in mammalian cells
disrupts ER morphology and loosens ER–MT interactions
and, as a consequence, mitochondrial Ca2+ uptake (de
Brito and Scorrano, 2008; Naon et al., 2016). However,
there are contrasting reports showing that ablation of
Mfn2 increases ER-to-MT Ca2+ transport (Cosson et al.,
2012; Filadi et al., 2015). These discrepancies are probably
due to the multiple roles played by Mfn2 at MERCs in
different cell types and circumstances and/or to the different
methodologies deployed to analyze ER–MT juxtaposition
(Filadi et al., 2018).

REGULATORY ROLE OF MERCS IN
MITOPHAGY

Autophagy exerts a protective role against cellular senescence
through the elimination of damaged organelles and intracellular
protein aggregates (Rubinsztein et al., 2011; Ranieri et al.,
2018). Interestingly, MERCs have been proposed recently as
platforms for autophagy initiation and function (Hamasaki et al.,
2013; Bockler and Westermann, 2014) on the basis of their
role in modulating lipid composition of ER–MT interface. In
particular, the artificial increase of PE was found to regulate
positively the autophagic flux and, thus, to extend significantly
the lifespan in yeast, mammalian cells, and flies (Rockenfeller
et al., 2015). In addition, MAM lipid-rafts microdomains and
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the GD3 ganglioside were reported to participate in the initial
organelle scrambling activity that finally leads to the formation
of autophagosome (Garofalo et al., 2016).

Besides its role as tethering factor, Mfn2 has emerged as
an important regulator of mitophagy, the selective degradation
of MT during autophagy activation (Chen and Dorn, 2013;
Bockler and Westermann, 2014). In particular, during mitophagy
PINK1-phosphorylated Mfn2 functions as a receptor for parkin
that, in turn, mediates MFN2 ubiquitination, as a signal to
mark damaged MT recruitment and ubiquitination leading
to mitophagy initiation. Thus, giving that Mfn2 localizes at
MERCs, it is conceivable to speculate that MERCs is primarily
involved and participate to mitophagy, rather than to fission and
fusion processes.

Studies performed in yeast have provided an interesting
model for the role of MERCs in the removal of aged MT
from the cell. Indeed, during yeast cells mitosis, tethering
activity of MERCs is essential to segregate maternal MT and
accumulate toxic protein aggregates, separating those from the
MT acquired by the bud, which are largely free of aggregates
(Mogk and Bukau, 2014; Zhou et al., 2014). Interestingly, this
mechanism, which account for a strategy to rejuvenate cellular
environment, involves MERCs and is gradually lost by cells
with advanced replicative age, suggesting the participation of
MERCs in the mitochondrial quality control (Zhou et al., 2014).
More interestingly, in human mammary epithelial cells, a similar
event was observed following cellular division. In mammary
cells, fine-tuned fission events allow daughter cells, which must
maintain stemness properties, to receive newly synthetized
MT, while the daughter cells, undergoing to differentiation,
receive aged MT (Katajisto et al., 2015). As a consequence, this
mechanism is settled to preserve the regenerative capacity of
the tissue and prevent senescence. Similarly, recent works have
revealed how MERCs were spatially linked to the mitochondrial
DNA synthesis both in human and yeast (Murley et al.,
2013; Lewis et al., 2016). In other words, it was found
that MERCs coordinate replication of mitochondrial nucleoids
with mitochondrial fission in order to distribute the proper
nucleoids into the daughter MT. Altogether, these evidences
confirm the involvement of MERCs in the modulation of
mitochondrial fission as a strategy to cope with the establishment
of cellular aging.

Giving the crucial role of Mfn2 in ER–MT tethering,
mitochondrial fusion, and mitophagy, it is not surprising
the increase of experimental evidences and studies linking
Mfn2 to aging and age-related diseases. Notably, all the
processes related to mitochondrial dynamics ascribed to Mfn2
are important to optimize mitochondrial function and avoid
senescence and degeneration. Indeed, Mfn2-knockout in MEFs,
cardiomyocyte, and neurons, impairs mitophagy leading to
damaged MT accumulation, cell death, and tissue degeneration.
Remarkably, these pathological mechanisms involving Mfn2
dysfunction are found in numerous age-related diseases,
such as Alzheimer, Parkinson, diabetes, and cardiomyopathies
(Filadi et al., 2018).

Not by coincidence, a progressive reduction of Mfn2 that
caused impaired mitophagy and accumulation of dysfunctional

MT has been reported in the skeletal muscles of aging mice,
linked to sarcopenia (Sebastian et al., 2016). In the PolG
mice model of premature aging, obtained by expressing a
proofreading-deficient version of mtDNA polymerase gamma
(PolG mice), mouse cells displayed higher level of the
mitochondrial fission protein Fis1, in parallel with increased
mitophagy, which likely contributes to the sarcopenic phenotype
observed in premature aging (Joseph et al., 2013). In contrast,
wild-type aged mice were characterized by higher level of Mfn2
and Mfn1 and reduced levels of Fis1, suggesting increased
mitochondrial fusion and reduced mitophagy, probably in
response to the physiological accumulation of mitochondrial
DNA mutations in the aged muscles. Similarly, increased
mitochondrial fusion was also found in senescent mesenchymal
stromal stem cells that showed higher levels of Mfn1 and OPA1,
together with increased mitochondrial mass and ROS, compared
to younger cells at lower passages (Stab et al., 2016).

To summarize, stimulating autophagy in animal models
can certainly ameliorate several aging-associated phenotypes.
Collectively, these data indicate that the beneficial effects derived
from lifespan extension regimens can (at least in part) be
explained by the induction of mitophagy. Future studies should
provide further insights into how these mechanisms intersect
with the mitophagy pathway in order to maintain mitochondrial
fitness in vivo.

FUNCTION AND DYSFUNCTION OF
MERCS IN AGING-RELATED HUMAN
DISEASES

Aging favors the development of different kind of disorders such
as neurodegenerative (Krols et al., 2016; Bernard-Marissal et al.,
2018), MetS (Theurey and Rieusset, 2017), as well as CVDs
(Barja, 2014; Holmström and Finkel, 2014; Wang et al., 2018;
De la Fuente and Sheu, 2019) and cancer (Danese et al., 2017;
Morciano et al., 2018).

Among neurodegenerative diseases, late onset Alzheimer
and Parkinson’s diseases are the most recurrent age-related
disorders. Deranged ER–MT interplay is a common hallmark
of neurodegenerative disorders and several studies demonstrate
that such pathologies correlate with structural and functional
alterations of MERCs (Area-Gomez et al., 2009; Zampese et al.,
2011; Cali et al., 2012, 2013). More interestingly, many proteins
associated to neurodegenerative disorders are found in the
MAMs fractions, although the significance of their presence in
MERCs is still under investigation (Area-Gomez et al., 2009;
Guardia-Laguarta et al., 2014).

Being the site of β-amyloid peptide (Aβ) production
(Schreiner et al., 2015), MERCs play important role in AD
pathogenesis. The release of Aβ occurs at MERCs throughout
the processing of the amyloid precursor protein (APP) by the
γ-secretase complex, composed by the Presenilin 1 and Presenilin
2. In genetic types of AD, mutated Presenilin 2 proteins affect
ER–MT connections and their related functions (Zampese et al.,
2011). Similar perturbations have been observed also in APP
transgenic mouse models as well as in neuronal cells treated with
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Abβ (Hedskog et al., 2013). In truth, the presence AD-related
proteins at MERCs produces quite self-contradicting effect. As
a matter of fact, in some cases mutant AD proteins generate a
significant up-regulation of MERCs functionality and number
(Cali et al., 2012; Ottolini et al., 2013). Intriguingly, even the
e4 allele of apolipoprotein E (ApoE4), the most common risk
factor for AD-related senile dementia (Liu et al., 2013), has been
shown to upregulate the activity of MERCs (Tambini et al., 2016).
Instead, in other cases AD proteins generate a decrease of ER–MT
tethering (Hedskog et al., 2013).

Analogously, it has been shown that PD-related proteins, such
as α-synuclein, Parkin, and protein deglycase (DJ-1), promote
ER–MT connections (Cali et al., 2012, 2013; Ottolini et al.,
2013; Guardia-Laguarta et al., 2014). In particular, α-synuclein
is among the protein found in MAM fractions, where it binds
very stably to lipid rafts domain of mitochondrial membranes
(Guardia-Laguarta et al., 2014). Likewise, the effect of a-synuclein
mutations on the MERCs structure is contradictory. In fact, at
least one report showed that expression of mutant forms of
α-synuclein decreased ER–MT contacts, whereas another one
the result was an increased number of MERCs in PD cells
(Cali et al., 2012).

In synthesis, the variable response of MERCs to either AD-
or PD-related proteins suggests the requirement of more work to
better define the molecular events underlying MERCs function in
the different pathological circumstances.

Many evidences show that ER stress is a common
hallmark in neuronal diseases such as AD and PD, but
also in Huntington’s disease (HD) and amyotrophic lateral
sclerosis (ALS) (Remondelli and Renna, 2017). Different
conditions can induce the accumulation of unfolded proteins
within the ER lumen leading to ER stress (Amodio et al.,
2011; Wang and Kaufman, 2016). This state initiates an
adaptive response, known as the UPR composed by three
integrated pathways: the PERK, the inositol requiring enzyme
1 (IRE1), and the activating transcription factor 6 (ATF6)
pathways of the UPR (Walter and Ron, 2011). UPR pathways
get started to re-establish proteostasis or, in the case of
an unsuccessful recovery, to induce cell death. Several
evidences demonstrate a tight link between the ER stress
response and neurodegenerative disorders and indicate the
UPR pathways as true therapeutic target for such diseases
(Remondelli and Renna, 2017).

Remarkably, many reports show that MERCs are closely
linked to ER stress and UPR. Indeed, this was shown for MERCs
tethering factors such as MFN-2 and for the VAPB (Kanekura
et al., 2006; de Brito and Scorrano, 2008; Gkogkas et al., 2008;
De Vos et al., 2012; Muñoz et al., 2013; Stoica et al., 2014). In
addition, MERCs accommodate essential ER chaperones such
as GRP78/BiP, calnexin, calreticulin, ERp44, ERp57, and the
Sigma 1 receptor (Mori et al., 2013). Interestingly, along with
ER chaperones, MERCs also host the UPR transducers IRE1 and
PERK. In particular at MERCs, IRE1 interacts with Sig1R to
mediate ER-to-MT survival (Hayashi and Su, 2007; Mori et al.,
2013). Furthermore, at MERCs, PERK acts either as tethering
factor or as a regulator of ROS transport and, as a consequence,
transmission of the apoptotic signaling (Verfaillie et al., 2012).

Remarkably, its activity is negatively controlled by the MERCs
tethering factor Mfn2 (Muñoz et al., 2013).

In recent years, many compounds have been identified for
their ability to reduce or induce ER stress but their effect on
MERCs has not been yet examined (Remondelli and Renna,
2017). As we previously discussed, in many of neurodegenerative
diseases, the PERK signaling pathway is overactive and this
event is considered responsible for neuronal cell death in
either AD or PD models. As a consequence, suppression
of PERK signaling by using specific PERK inhibitors (i.e.,
GSK2606414) has neuroprotective effect (Moreno et al., 2013).
Interestingly, in AD, PERK activation is correlated to enhanced
memory loss and β-amyloidogenesis, which occurs at the ER–
MT interface. Remarkably, in vivo models of AD, memory
impairment is restored by silencing PERK expression (Ma
et al., 2013). Similarly, genetic or chemical inhibition of IRE1
signaling retains a protective role against AD by reducing
the expression of APP and, as a consequence, βA deposition
(Duran-Aniotz et al., 2017).

More interestingly, PERK inhibition was also shown to reduce
the MFN contacts at the ER–MT interface. Recently, in an early-
onset PD model (PARK20) (Fasano et al., 2018), in which PERK
is constitutively activated inhibition of PERK phosphorylation
by GSK2606414 generates beneficial effects on the ER stress
mitochondrial dysfunction (Amodio et al., 2019). Intriguingly,
in pink1 and parkin mutants PD models, suppression of PERK
signaling produces neuroprotective effect, most probably by
reducing the MFN contacts with the ER that cause enhanced ER
stress signaling (Celardo et al., 2016).

All together, these evidences convincingly reinforce the
concept that strategies planned to reduce ER stress levels
may impact positively on neurodegenerative diseases and
strongly stimulate further investigation to identify in MERCs
components the most advantageous molecular targets for
therapeutic intervention.

Another age-related condition is the MetS, a clinical state
affecting about 20% of the aged population in technologically
advanced countries. MetS that is characterized by the
concomitant presence of cardiometabolic risk factors such
as obesity, insulin resistance, dyslipidemia, and hypertension
(O’Neill and O’Driscoll, 2015). Several studies underlined the
effect of such risk factors on the ER–MT membrane connections.
Also in this regard, MERCs organization and function shows
different response. As an example, in animal models of obesity,
liver cells show increased number of MERCs which in turn
causes mitochondrial Ca2+ overload followed by mitochondrial
dysfunction (Arruda et al., 2014). Instead, in hypothalamic cells
the reduction of MERCs obtained by the ablation tethering
factor Mfn2 results in ER stress-induced leptin resistance,
hyperphagia, reduced energy expenditure, and finally obesity
(Schneeberger et al., 2013).

Insulin play essential role in aging and structural integrity
of MERCs is a crucial requirement for efficient insulin pathway
(Tubbs et al., 2014) as revealed by the observation that
depletion of MERCs structural components impairs insulin
signaling. Alternatively, overexpression of MERCs proteins
increases insulin signaling, as well as pharmacologic rescue of
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insulin sensitivity re-establishes ER–MT connections, indicating
the reciprocal control of both processes (Tubbs et al., 2014).
In addition, and as we would expect, ER stress contributes
to impaired insulin synthesis in pancreatic β cells and
insulin resistance (Shang et al., 2014), suggesting that the
pharmacological inhibition of the ER stress pathway could
ameliorate insulin deficiency.

Cardiovascular diseases are often associated to MetS and,
in particular to obesity, insulin resistance and type 2 diabetes
(T2D). In cardiomyocytes, MERCs control of mitochondrial
Ca2+ uptake is essential to guarantee insulin signaling.
As a result, altered cardiomyocyte metabolism and insulin
resistance are associated with cardiac hypertrophy (Kolwicz
and Tian, 2011; Gutiérrez et al., 2014). Interestingly, in
either patients or in animal models of pulmonary artery
hypertrophy (PAH), deficiency of MERCs tethering factor
Mfn-2 disrupts ER–MT membrane contacts and contributes
to pulmonary artery smooth muscle cells hyperproliferation
(Ryan et al., 2013).

Essential hypertension is one of the most frequent disturb
in the aging. One possibility by which hypertension and
other CVDs might arise is the endothelial dysfunction (ED)
associated with aging through enhanced oxidative stress.
Several studies describe the interconnection between ER
stress, UPR, and oxidative stress (OS) in the pathogenesis
of ED-derived CVDs (Amodio et al., 2018). Thus,
in ED, ER stress and the UPR pathways represent a
promising system to test new molecules and develop
new therapeutic methodologies for the treatment of ED
in aged patients.

Finally, the progressive deterioration of physiological organ
function occurring during aging is a primary risk factor for cancer
development. Cancer cells exhibit altered expression of proteins,
including oncogenes that directly affect MERCs functionality
and, in particular, the ER–MT Ca2+ transport (Marchi et al.,
2014; Stewart et al., 2015). This perturbation results in various
characteristics of cancer cells such as resistance to apoptosis,
deregulation of cell proliferation, metastatic activity, and a
metabolic rewiring. Generally speaking, this happens throughout
the expression of oncogenes, such as Mcl-1, Bcl-2, and Bcl-
XL, which, by diverse mechanisms, prevent mitochondrial Ca2+

overload and cancer cell death (Bittremieux et al., 2016). This
event happens by enhancing the IP3R-dependent Ca2+ outflow
and eluding the ER-dependent mitochondrial Ca2+ overload
upon stress conditions. On the other hand, expression of
tumor suppressor genes, encoding for example the protein
phosphatase and tensin homolog (PTEN), PML, BRCA2, favors
Ca2+ transfer from the ER to MT thus having as consequence
pro-apoptotic effects on cancer cells (Bononi et al., 2013;
Marchi et al., 2014).

Thus, MERCs are advantageous sites where chemotherapy,
hormone therapies, targeted cancer drugs, and bisphosphonates
or other anti-tumoral therapies (De Marco et al., 2018; Iorio
et al., 2018) might operate to interfere with the function of
oncogenes or to restore ER–mitochondrial Ca2+ transfer in order
to re-establish apoptosis sensitivity of cancer cells or inhibit
pro-tumorigenic effects.

As a final point, MERCs participate to the regulation of many
functions perturbed in the various age-related diseases. Further
examinations of MERCs alterations in these disorders could
certainly help to discover novel therapeutic targets to restore the
correct ER–MT interplay and prevent the defects by which the
diverse pathological features might develop.

CONCLUDING REMARKS AND
PERSPECTIVES

Despite the fact that all the findings we argued are on their own
significant, the identification of further mechanisms involved
in the control of MERCs function in health and disease
will supply critical information on how such a conserved
function is regulated and will hopefully provide us with an
even more detailed picture of the molecular environment
at MERCs. This could, ultimately, pave the way for the
discovery of novel therapeutic targets. Indeed, the identification
of pharmacological therapies for age-associates dysfunctions
remains an ambitious task in biomedical science and such
a necessity will become even more serious in consideration
of the increased lifespan estimated in the future for the
human population.

Overall, the findings discussed in this review confirm that
aging is indeed associated to mitochondrial dysfunction as
a consequence of the dysregulation of mitochondrial fission,
fusion, and mitophagy. Notably, MERCs, holding many of the
proteins involved in these processes, may participate directly to
the development or prevention of MT-mediated deterioration of
cellular physiology, which is observed during aging.

In this context, the identification of novel components and
additional factors involved in the MERCs dependent control of
cross-talks between ER and MT could be employed to find more
pharmacological approaches to be utilized to attenuate or delay
the onset of age-associated diseases.

Certainly, a better understanding of the molecular events
leading to pathological state for each specific age-related
condition is critical in order to adopt the targeting of MERCs-
dependent pathways for the cure of age-related disorders.
Therefore, additional work should be addressed to identify
putative MERCs targets in order to develop novel drugs
for the treatment of specific clinical conditions. Finally,
identifying cell type-specific regulators of the MERCs could
be another approach to precisely modulate the mitochondrial
fitness in the desired cellular context (i.e., tissue, organ),
without affecting the homeostasis of other cells. For instance,
the identification of the MERCs components selectively
operating in neuronal cells would be helpful to discover
more specific and potentially safe targets in the context of
neurodegenerative diseases.
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