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Heat shock proteins (HSPs) are molecular chaperones produced in response to oxidative stress (OS). These proteins are involved in
the folding of newly synthesized proteins and refolding of damaged or misfolded proteins. Recent studies have been focused on the
regulatory role of HSPs in OS and ischemia/reperfusion injury (I/R) where reactive oxygen species (ROS) play a major role. ROS
perform many functions, including cell signaling. Unfortunately, they are also the cause of pathological processes leading to
various diseases. Biological pathways such as p38 MAPK, HSP70 and Akt/GSK-3β/eNOS, HSP70, JAK2/STAT3 or
PI3K/Akt/HSP70, and HSF1/Nrf2-Keap1 are considered in the relationship between HSP and OS. New pathophysiological
mechanisms involving ROS are being discovered and described the protein network of HSP interactions. Understanding of the
mechanisms involved, e.g., in I/R, is important to the development of treatment methods. HSPs are multifunctional proteins
because they closely interact with the antioxidant and the nitric oxide generation systems, such as HSP70/HSP90/NOS. A
deficiency or excess of antioxidants modulates the activation of HSF and subsequent HSP biosynthesis. It is well known that
HSPs are involved in the regulation of several redox processes and play an important role in protein-protein interactions. The
latest research focuses on determining the role of HSPs in OS, their antioxidant activity, and the possibility of using HSPs in the
treatment of I/R consequences. Physical exercises are important in patients with cardiovascular diseases, as they affect the
expression of HSPs and the development of OS.

1. Introduction

HSPs were accidentally discovered in 1962 by Italian scientist
Ferruccio Ritossa who showed an elevated expression of HSP
in Drosophila [1]. Initially, the manuscript was rejected by a
respected journal, which indicated that Ritossa’s research
was irrelevant to the development of science. Today, we
know that it was one of the most important discoveries in
the biology. HSPs are the most highly conserved proteins of
stress response during evolutionary history and as molecular
chaperones are involved in folding of newly synthesized pro-
teins and refolding of damaged or misfolded proteins [2].
HSPs are synthetized in response to different stressors such
as heat shock, hypothermia, free radicals, ischemia, hypoxia,

ultraviolet radiation, and viral infection [2]. The induction of
proteins is remarkably rapid and intense [3, 4].

The major functions of HSPs are assistance in folding of
nascent polypeptides [2], prevention of misfolding and
aggregation, and protection against apoptotic exchanges [5]
as well as participation in suppressing proinflammatory cyto-
kines [6], in intracellular transport [7], and in the modulation
of protein expression and cell function [2, 8]. OS is a phe-
nomenon caused by an imbalance between production and
accumulation of ROS in cells and tissues and the ability of a
biological system to detoxify these reactive products. The
concept of OS has been introduced for research in redox biol-
ogy and medicine in 1985 [9]. OS is of great importance for
many life processes and pathophysiology of diseases, e.g.,
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ischemia-reperfusion injury [10]. More and more publica-
tions indicate a significant association of HSPs with OS.
Molecular and cellular mechanisms are not fully under-
stood. The aim of this review is to present the latest
reports on the mechanisms linking the expression of
HSPs and the development of OS. We also particularly
emphasise its role in I/R injury and the role of exercise
on HSP expression recommended especially for patients
with cardiovascular diseases.

2. Oxidative Stress and Heat Shock Factor:
Cellular and Molecular Mechanisms

Increasing ROS levels (and associated development of OS)
are counteracted by antioxidant systems including nonenzy-
matic and enzymatic mechanisms [11]. HSPs are multifunc-
tional proteins that closely interact with the antioxidant [12]
and the nitric oxide generation systems [13]. Nitric oxide
(NO) is an essential molecule since the excessive formation
of NO and generation of peroxynitrite can lead to matrix
metalloproteinase-2 (MMP-2) activation, which degrades
contractile heart proteins during I/R injury. The administra-
tion of MMP-2-inhibitor-NO-donor hybrid normalizes the
levels of MMP-2 and peroxynitrite and ameliorates the
impact of I/R on the heart [14]. A deficiency or excess of anti-
oxidants modulates the activation of heat shock factor (HSF)
and subsequent HSP biosynthesis [15]. The cell protective
mechanism called the heat shock response (HSR) maintains
protein homeostasis in all eukaryotic cells. HSFs are a family
of DNA-binding proteins that regulate gene expression at the
level of transcription. The human genome encodes six HSF
proteins: HSF1, HSF2, HSF4, HSF5, HSFX (located on the
X chromosome), and HSFY (located on the Y chromosome)
[16]. HSF1 is the main regulator of expression of protein
quality control machinery in response to proteotoxic stress
conditions in a multistep activation cycle [17]. HSF1 is con-
stitutively expressed in most tissues and cell types, but it is
kept inactive in the absence of stress stimuli [17, 18]. HSF2
is highly expressed during early development of the organism
[19]. HSF4 is primarily required in the development of eye
lens and is also expressed in the heart, brain, and pancreas
[20]. HSF5 function is not exactly known; however, its
expression is restricted to spermatocytes [21]. The role of
HSFY and HSFX is not fully understood and still poorly
characterized. HSFs are highly versatile transcription factors,
and HSF1 plays a central role in the HSR as an evolutionarily
conserved master transcriptional regulator, which upregu-
lates genes encoding molecular chaperones. HSP expression
depends on the transcription factor HSF1, and HSP40,
HSP70, and HSP90 prevent this transcription factor from
entering the cell nucleus [22]. Recent evidence indicates addi-
tional functions of HSF1 and highlights diverse roles such as
differentiation, multidrug resistance, and immune response
[23]. Oxidative damage of proteins and lipids is also involved
in HSP expression, and the OS is considered a key mediator
of HSP induction. In eukaryotic cells, HSFs act as transcrip-
tional activators for heat shock genes; HSF1 can be activated
by OS and increases the synthesis of protective HSPs [9, 23].

3. HSF Activation and Nrf2 Pathway

There is an association between redox homeostasis and HSP
expression. A crucial indirect pathway through which ROS
activate HSF1 is via oxidation of protein thiols, resulting in
the activation of Keap1/Nrf2-Kelch-like ECH-associated
protein 1/nuclear factor erythroid 2-related factor 2 and
HSP90/HSF-1 transcriptional pathways. Activation of HSF1
or Nrf2 affects the cellular redox state by promoting more
reduced environment [24, 25]. Transcription of heat shock
genes requires the formation of a homotrimeric HSF1 com-
plex that directly binds to the heat shock promoter element
(HSE) present in the promoters of the HSP genes [26].
HSF1 and Nrf2 are critical for adaptation and survival. Both
transcription factors participate in the regulation of HSP32
and HSP70 gene expression [27]. HSP70 and HSP90, which
are negative regulators of HSF1, inhibit the transcriptional
capacity of HSF1 [28]. HSP and HSF1 form a negative feed-
back loop in which HSP70 expression is induced by HSF1,
and HSP70 represses HSF1 activity. Recent research revealed
that HSP90 represses HSF1 independently of HSP70 [29],
but the mechanism by which HSP90 regulates HSF1 remains
unknown. HSP modification may trigger HSF1 release and
activation of HSR. Importantly, current reports indicate that
the Keap1/Nrf2 pathway is activated first and the HSR sec-
ond [25]. Klumpen et al. suggested that an early expression
of HSP is primarily mediated by ROS and later HSP expres-
sion is mainly triggered by protein damage and heat shock
factor 1 [22]. Extremely interesting is that HSF1 and Nrf2
may compensate for each other—for example, methionine
deprivation was shown to increase the HSP70 expression in
an Nrf2-dependent mechanism but independently of HSF1
[30]. This suggests that antioxidant response mediated by
the Nrf2 pathway may be a substitute for HSF1-related path-
way dysfunction. Lazaro et al. showed that HSP90 inhibition
is induced by HSP70 as a result of the activation of its tran-
scriptional regulator and direct association between HSP70
upregulation and Nrf2 activation. It was an important factor
related to OS [31]. Nrf2 can also be activated by small HSPs
to promote reducing environment.

A direct mechanism indicates that ROS could initiate the
formation of disulfide bonds to trigger HSF1 homomultimer-
ization and activation. It is clear that redox regulation of
HSF1 multimerization is early and tightly linked stages in
HSF1 activation, but the process is dramatically inhibited
under conditions of hypoxia or in the presence of reducing
agents [32]. The direct activation of HSF1 by H2O2in vivo
strongly suggests that HSF1 directly senses these stresses via
changes in redox state, and activation of Nrf2 involving
Cys35 and Cys105 strongly suggests that these two cysteine
residues are engaged in disulfide bonds, the formation of
which is essential for HSF1 homomultimerization [32]. This
supports a mechanistic relationship between changes in cel-
lular redox state and conditions that cause activation of the
HSR. Nrf2 can also be activated via HSF1-mediated induc-
tion of p62, a classical receptor of autophagy, because p62
can displace Nrf2 from Keap1 [33]. From a different point
of view, activating mutations in Nrf2-Keap1 are frequently
found in human cancers which are associated with aggressive
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growth and resistance to therapies. Baird et al. showed that
Nrf2 target genes metabolize the quinone-containing gelda-
namycin compounds into more potent HSP90 inhibitors.
They can enhance their cytotoxicity while simultaneously
restricting the lethal effect on cells with aberrant Nrf2 activ-
ity, resulting in cell death [34]. This is a different approach
to understanding the interaction network between HSP and
OS. An association between HSF1, Nrf2, and the redox state
is very strong. In the absence of HSF1, expression of several
HSPs is downregulated, simultaneously with an increased
level of OS and ROS-induced oxidative damage [9]. HSF1
can also induce sets of genes to protect against the OS caused
by peroxides, but the exact mechanism is unknown [35].
Thus, HSF1 is an important element of the antioxidant sys-
tem. By increasing detoxification pathways and antioxidant
potential, Nrf2 is involved in the protection of cardiac fibro-
blasts and cardiomyocytes against OS [36]. The cardiopro-
tective function of Nrf2 in I/R injury results from an
activation of the prosurvival PI3K/Akt kinase (phosphoinosi-
tide 3-kinase/protein kinase B) pathway which was shown to
play a role in mechanisms of increased myocardial tolerance
[37]. Wang et al. have also reported that the regulation of
redox imbalance induced by I/R injury was associated with
modulation of Nrf2 [38].

4. HSF Activation through Hypoxia-
Induced Factor

Another mechanism of HSF activation involves hypoxia-
induced factor (HIF). HIF-1α is one of the critical regulators
of HSF1 and is essential for the activation of HSR [39]. Hyp-
oxia response elements for the HIF-1α and HIF1β in the pro-
moter region of the HSF1 gene are observed. This strongly
suggests a regulatory role for HIF-1α in HSF1-mediated
HSR [39] and may be especially important in the aspect of
I/R. HSF1 level showed a reduction in cells transiently
silenced for HIF-1α, suggesting a significant role for HIF-1α
in the expression of HSF [39].

5. Heat Shock Proteins and Oxidative Stress

The function of HSP in maintaining the oxidative-
antioxidant balance seems to be multidirectional. Nowadays,
the effect of HSP on OS has been considered in the aspect of
cellular homeostasis [40], atherosclerosis/oxLDL (oxidized
low-density lipoproteins) [41], pollution [42], hearing loss
[43], and many others. Interestingly, HSPs have been
reported to work hand in hand with the antioxidant system
to inhibit or neutralize the cellular effects of ROS [44]. For
example, the best known HSP70 family promotes an increase
in free 20S proteasome and therefore increases the capability
to degrade oxidized proteins. It prevents the accumulation of
oxidized proteins and directly promotes their degradation by
the 20S proteasome [12]. HSP70 plays an important role in
the pathophysiology of diseases related to air pollution and
OS. Baldissera et al. showed that exposure to air pollution
causes significant increase in plasma HSP70, marked by
29% higher levels of the HSP72 form. An increase in the
extracellular-to-intracellular HSP70 ratio (H-index) was

related to elevated activity of superoxide dismutase (SOD)
and increased content of the carbonyl group [45]. Data also
showed a redox imbalance in the plasma that occurs concom-
itantly with increased levels of extracellular HSP70 (eHSP70).
Another important link between HSP and OS is that the
HSP70-2 polymorphism is related to ROS levels and appears
to have a role in the different expressions of HSP70-2 (a sen-
sor for the redox status of the cells) under oxidative stimulus
[46]. HSP and OS interaction can even be related to a pineal
hormone—melatonin—which is considered a potent candi-
date in the regulation of oxidative damage [47]. After melato-
nin treatment of H2O2-stressed fish hepatocytes, a significant
decrease in SOD and catalase (CAT) activity, glutathione
(GSH), and malondialdehyde (MDA) level, as well as in
HSP70 and HSP90 level, was observed [48]. The level of
Akt and ERK1/2 (extracellular signal-regulated kinase 1/2)
in hepatocytes was increased, and a positive correlation with
H2O2 concentrations was reported [48]. This indicated the
protective efficacy of melatonin against OS. HSP can regulate
ERK1/2 in the MEK-ERK (mitogen-activated protein kinase)
pathway [49] and can also interact with Akt [50]. Formation
of the Akt-HSP complex stabilizes Akt that protects the cells
from apoptosis [51]. There is a strong relationship between
OS and activation of the ERK1/2 or Akt pathway [52]. Very
interesting work of Klumpen et al. concluded that elevated
ROS formation and/or reduced GSH buffer capacity (which
caused higher fluctuation frequencies of ROS) accelerate the
expression of HSPs for earlier cell component protection
[22]. It is known that HSPs may be involved in regulating
the function of SOD1. Mutations in HSP27 may be related
to the inability to prevent SOD1 aggregation [53]. Similar
relationship may exist for the HSP70/HSP40/HSP110
machinery in aggregate disassembly in reference to SOD1
[54]. Xia et al. showed valuable data from gasoline filling sta-
tion workers [55]. Workers exposed to benzene, toluene, eth-
ylbenzene, xylene, and manganese presented decreased
activity of SOD and glutathione peroxidase (GPx) but signif-
icant increase in the level of MDA compared with the control
group [55]. Authors indicated that lower levels of SOD and
GPx might be an early warning signal of oxidative damage.
At the same time, plasma HSP70 was significantly higher in
the exposed group than in the control. A positive correlation
between MDA and HSP70 concentration and a negative cor-
relation between HSP70 and SOD/GPx activity were
observed [55]. The authors concluded that OS may damage
the normal antioxidant enzyme system and induce an
increase in HSP70 to prevent cells. On the other hand,
HSP70 regulates the cellular redox status. Blocking the
JAK2/STAT3 (Janus kinase 2/signal transducer and activator
of transcription 3) signaling pathway promotes OS and cell
apoptosis via the downregulation of HSP70 [56]. HSP27
has many additional functions. Overexpression of HSP27
and αB-crystallin induces a dose-dependent increase in glu-
tathione levels. Small HSPs have been also correlated with
an increased level of iron, a catalyzer in the Fenton reaction
[57]. Other small HSP—HSP20 (HSPB6)—shows multifunc-
tional protective roles in multiple organs [58]. The protective
role of HSP20 as an antioxidant agent [59] was illustrated
among others in cardiovascular diseases and I/R injury
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[60]. HSP22 was induced by OS and was drastically elevated
in airway epithelial cells (AECs) after ozone exposures, thus
protecting AECs from oxidative injuries through the Nrf2-
NQO-1 (NADPH quinone acceptor oxidoreductase 1) [61].
Similarly, OS-induced expression of HSP20 in AECs
enhanced the translocation of Nrf2 and subsequently
increased the expression of NQO-1 [61]. HSP90 plays impor-
tant roles in cell survival as an inhibitor of programmed cell
death during OS [62]. Since iron plays a role in the develop-
ment of OS in the Fenton reaction, HSP90 has been identified
as iron-binding protein in the HeLa cell membrane [63].
HSPs have been also shown to interact with lipids. The latest
research indicates that the HSP90 is able to bind to oxidized
phospholipid and prevent their further oxidation to second-
ary products, functioning as a scavenger of oxidation prod-
ucts. Zhang et al. showed that (i) HSP90 prevents
phospholipids and oxidized phospholipids from further oxi-
dation to more pathogenic and reactive end products [64],
(ii) HSP90 can scavenge the DPPH-(1,1-diphenyl-2-picryl-
hydrazyl) and ABTS-radical (2,2′-azino-bis-3-ethylbenzthia-
zoline-6-sulphonic acid), wherein the scavenging ability of
HSP90 for DPPH is higher than that of the glutathione
[65], and (iii) HSP90 was effective in the scavenging of
hydroxyl radical—a highly reactive molecule, one of the
major causes of OS [65]. HSP90 and HSP70 can also bind
with oxidation products of arachidonic acid (polyunsatu-
rated fatty acid present in the phospholipids of cell mem-
branes) which play a role in the development of several
diseases [66, 67]. OS alters HSP90 expression in endothelial
cells, inducing its surface localization, and promotes the
upregulation of HSP90 surface expression on cells, thus ren-
dering the protein a possible target of autoimmune reactions
[68]. Therefore, HSPs play a wide role, positively or nega-
tively depending on their involvement in various cellular
pathways.

6. Heat Shock Proteins in
Ischemia/Reperfusion Injury

ROS are key players in normal cardiovascular physiology and
cell signaling, but the OS plays an important role in the devel-
opment of cardiovascular diseases [69]. The possible role of
HSPs in the protective mechanisms of I/R injury has been
postulated for a long time. Cardiac pathologies induce
changes such as cellular redox status or calcium homeostasis
impairment, which in turn can induce misfolding of proteins.
This can lead to the formation of proteotoxic soluble peptides
[70]. The cardioprotective effect of HSPs is manifested in an
increased cell resistance to hypoxia [71] and oxidative stress
[72] and in increase in functional recovery with a decreased
infarction size after experimental induction of I/R [73, 74].
The restoration of blood flow after ischemia leads to massive
production of ROS, which generate severe damage to biomo-
lecules—a phenomenon called myocardial reperfusion injury
[10]. Most studies concern two main families of HSPs:
HSP70 and HSP90. Animal models demonstrated an
increased expression of HSF1, resulting in an increase in
HSP70 and HSP90 mRNA levels, wherein the maximum

level was detected during reperfusion and the increase in
HSP70 was much higher than that in HSP90 [74]. HSP90
has recently been investigated as a novel target to reduce
I/R injury. A very interesting work concerns the use of the
HSP90 inhibitor (HSP90i) in cardioprotection in heart trans-
plantation. Heart pretreatment with HSP90i during cardio-
plegia reduced infarct size, fibrosis, and macrophage
infiltration in a nonreperfused cardiac ischemia model [75].
In a circulatory death model of donation, HSP90i protected
against functional loss, reduced infarct size and cell damage
following warm ischemia, reduced cellular stress (as indi-
cated by the Bax/BCL-2 ratio), and induced the expression
of key antioxidant enzymes such as SOD1 and CAT [76].
At this point, it should be mentioned that CAT is a major
enzyme involved in the detoxification of hydrogen peroxide.
It has been reported that in rats, exposure to heat shock leads
to an increase in myocardial CAT activity and this observa-
tion correlated with an improvement in function of the rat
heart after low- and no-flow ischemia [77]. One of the first
studies (1988) indicated that hyperthermic treatment may
be therapeutic for salvaging an ischemic myocardium during
reperfusion, through a mechanism involving increased levels
of myocardial catalase [77]. Similar relationships were dem-
onstrated a few years later by Wall et al. [78]. Current
research confirmed previous observation and was carried
out, e.g., on a liver and lung model where direct delivery of
polyethylene glycol-catalase (PEG-CAT) during normother-
mic ex vivo lung perfusion significantly reduced I/R injury
[79] and intrahepatic delivery of PEG-CAT during I/R signif-
icantly reduced the activity of alanine aminotransferase and
aspartate aminotransferase and concentration of MDA and
GSH [80]. Interestingly, the activity of CAT in the heart is
very low, and this may be a factor responsible for high sensi-
tivity of this organ to I/R injury [81]. In turn, CAT, as an anti-
oxidant enzyme, can protect against I/R injury. It seems that
there are no reports describing a clear relationship between
HSPs and CAT activity in humans in terms of I/R injury.
An increase in HSP expression and CAT and SOD activity
in response to ischemia in a partial hepatectomy rat model
[82] or in Drosophila melanogaster in response to stress fac-
tors has been observed [83]. It is difficult to refer to studies
describing a relationship between two parameters and the
direct molecular mechanism in I/R injury in humans.
HSP90 inhibitors activate Nrf2 transcription and induce
antioxidant response element activity that reduces cellular
OS [76]. As indicated by the authors of the study, it is also
necessary to investigate the electrophysiological effects.
HSP70 also shows a strong cardioprotective effect, and it
can become a promising therapeutic target [84]. Song et al.
indicated that rat cardiomyocytes subjected to oxygen-
glucose deprivation/reperfusion showed increased expres-
sion of HSP70 and p-p38 MAPK; the same observation
applies to increased HSP70 expression and phosphorylated
p38 MAPK during I/R-induced myocardial injury, and inhi-
bition of HSP70 by quercetin significantly increased myocar-
dial infarct size [85]. It is very important that HSP70
inhibition led to upregulation of p-p38 MAPK and p-
STAT3 and downregulation of SERCA2 (sarco/endoplasmic
reticulum Ca2+-ATPase) during myocardial I/R injury, and
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inhibition of p38 MAPK phosphorylation attenuated effects
induced by HSP70 inhibition [85]. In contrast to inhibition
of HSP90, inhibition of HSP70 aggravates [Ca2+]i overload,
apoptosis, and inflammation through regulating p38 MAPK
signaling during I/R cardiac injury. Other studies point to
the involvement of other pathways, e.g., HSP70 and
Akt/GSK-3β (glycogen synthase kinase 3)/eNOS (endothelial
nitric oxide synthase) [86], protection by regulating HSP70
expression via activation of the JAK2/STAT3 pathway [87],
or activation of the PI3K/Akt/HSP70 signaling axis [88]. This
data indicates that the HSP interaction network is extremely
complex (Figure 1). Both HSP70 and HSP90 directly interact
with hERG (the human ether-á-go-go-related gene) whose
disorders can lead to long-QT syndrome and sudden cardiac
death [89]. Disturbances in the stability of the cell membrane
can occur during myocardial ischemia in the course of myo-
cardial infarction. HSPs modulate mitochondrial function as
well as ROS generation during OS. As now known, OS may
also play a significant role in the occurrence of cardiac
arrhythmias affecting biomolecules and ion channels, lead-
ing, e.g., to atrial fibrillation [90]. HSP22 plays an important
role in the adaptation of the myocardium in response to OS.
It was found to be very increased in the cardiac OS condi-

tions, and the overexpression of this protein protects the
heart against ischemic damage by inducing the expression
of inducible nitric oxide synthase (iNOS) [91]. This is an
extremely important observation, as indicated by the authors
of the latest work of Wu et al. The authors pointed that car-
dioprotection by NO donor drugs (like nitroglycerin) has
been limited and stimulating the formation of NO through
endogenous iNOS might have a better biological effect than
that provided by NO donors [92]. Beyond ROS inhibition,
HSP27 interacts with Akt maintaining the kinase in an active
conformation state and decreases the mRNA levels of tumor
necrosis factor-α and interleukin-1β [93, 94]. Increased
HSP20 expression protected against I/R injury in animal
studies of an isolated rat heart at a Langendorff apparatus,
resulting in full functional recovery, reduced infarction, and
protection against myocardial apoptosis by regulating the
B-cell lymphoma-2 (Bcl2)/Bcl2-associated X (Bax) ratio and
inhibiting caspase-3 activation. These implicate this HSP20
as a potential therapeutic target for ischemic heart disease
[60, 95]. HSPs can also form a complicated network of path-
ways that contributes to the reduction of ROS accumulation
and improvement of calcium homeostasis [84]. The mecha-
nisms of HSP70 action are related to inhibition of apoptosis

Coronary arteries

Area of ischemia/reperfusion injury

ROS HSF1 Keap1 Nrf2

HSP70

HSP90

Keap1

SOD
CAT

HIF-1𝛼

Akt kinase 

PI3K

ERK1/2 

p38
MAPK 

HSP20/ 27

Figure 1: The role of HSPs in oxidative stress and I/R injury—selected signal pathways. Ischemia/reperfusion (I/R) leads to the production of
large amounts of reactive oxygen species (ROS), which can lead to further cellular damage. Both ROS and hypoxia (through hypoxia-induced
factor) can activate the transcription factor HSF1 (heat shock factor 1). Activation of HSP gene expression involves the stress-inducible
conversion of HSF1 from the inactive monomer to the DNA-binding competent homotrimer. HSF1 activates Nrf2 (nuclear factor
erythroid-derived 2-like 2) through increased expression of p62 (p62 not shown). The cardioprotective function of Nrf2 in I/R injury
results from an activation of the prosurvival PI3K/Akt (phosphoinositide 3-kinase/protein kinase B) kinase pathway but also from
activating antioxidant systems. New data revealed a potential crosstalk between Keap1/Nrf2 (Kelch-like ECH-associated protein 1) and
Hsp90/HSF1 cytoprotective pathways and the possibility of their comodulation. Other cellular pathways involved in ROS-HSPs-I/R
interactions are ERK1/2 (extracellular signal-regulated kinase 1/2) and p38 MAPK (p38 mitogen-activated protein kinases). In addition,
HSPs may interact with antioxidant systems or function “hand in hand”. Physical exercises increase both the expression of HSPs and, on
the one hand, the formation of ROS and affect the oxidative-antioxidant balance. SOD: superoxide dismutase; CAT: catalase.
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and OS [84]. Myocardial HSP70 activates mitochondrial Mn-
SOD, which is associated with mitochondrial protection and
reduction of apoptosis [96]. In addition, HSP70 is expressed
in the brain in the early stages of ischemic injury which indi-
cates an important protective mechanism [97]. It has been
also suggested that HSP70 decreases ROS level in cardiomyo-
cytes resulting in an inhibition of the activation of the down-
stream TAK1/AMPK (transforming growth factor-β-
activated kinase 1/AMP-activated protein kinase) cell death
pathway [98]. It is very important that HSPs are released into
the extracellular environment or enter the systemic circula-
tion under stress conditions. Extracellular HSPs can act as a
form of communication during injury and as immunological
regulators that potentiate the innate immune response [99].
Extracellular HSPs may have the potential as diagnostic bio-
markers of myocardial infarction. Modulation of the protein-
protein interactions between HSP complexes is a promising
therapeutic strategy against myocardial infarction (MI). Dur-
ing MI, HSPs participate in the protection of cardiac tropo-
nin I and T from degradation, stabilization of the
mitochondrial membrane, and protection of cardiomyocytes
from I/R injury [94]. It seems that HSPs play an important
role in the treatment of myocardial ischemia, and their action
is multidirectional and complicated. HSPs are also crucial for
renal cell response to ischemic injury, and HSP70 is a highly
sensitive marker of I/R injury [100]. There are some interest-
ing reports on the use of hyperbaric oxygen therapy (HBOT)
in the treatment of ischemia, describing the role of HSP
expression and reduction of ROS biosynthesis during reper-
fusion. HBOT promotes protection by upregulating HSPs
via an increase in Nrf2-mediated antioxidant gene expression
and upregulates essential proteins involved in intracellular
GSH production and transport [101, 102]. The findings have
provided new evidence to support that HBOT induces toler-
ance to I/R injury by upregulating HSP activity. HSPs are also
involved in the proper function of the endothelium and the
development of inflammatory response. It is extremely
important to know the details of these interactions and use
them, e.g., in the treatment of COVID-19 [103, 104]. It is also
well demonstrated that I/R injury is associated with increased
activity of MMP-2 during OS. Therefore, modulation of HSP
expression (as above), together with interference in the
expression of iNOS and eNOS during OS, may provide ben-
efits in the prevention of I/R injury [105].

It has been confirmed that plasma exosomes contain
HSP70, indicating its role in the modulation of ROS [106].
HSPs play a vital role in ameliorating ROS-dependent dam-
age in neurodegenerative disorders [107, 108] and I/R injury.
Exosome-mediated specific delivery of HSP70 attenuated I/R
injury by reducing generation of ROS through the increase in
SOD activity, enhanced mitochondrial membrane potential,
and restored mitochondrial function, inducing overexpres-
sion of HSP70 in the ischemic region and maintaining the
integrity of mitochondria [109]. Recently, much attention
has been paid to the ratio of iHSP to eHSP (intracellular-
to-extracellular HSP). Given the anti-inflammatory nature
of iHSP70 and inflammatory nature of eHSP70, it is assumed
that the ratio R = ½eHSP70�/½iHSP70� = 1 for the controls of a
given condition and values higher than 1 indicate a greater

proinflammatory response [110]. In diabetes mellitus,
eHSP72 levels appear to be elevated due to adiposity and
inflammation, whereas iHSP72 levels appear to be decreased
[111] while intensifying OS [112]. The role of ROS in the
development of the inflammatory process is well established.
ROS activates nuclear factor kappa B (NF-κB) via extracellu-
lar signal-regulated kinases, c-Jun N-terminal kinases
(JNKs), p38 MAPK, PI3K/Akt, and others [113, 114], which
in turn lead to increased expression of matrix metallopro-
teinase-9, cyclooxygenase 2, IL-1, and IL-8. HSP70 and
HSP32 (heme oxygenase 1) can protect cells and tissues from
the deleterious effects of inflammation [115].

7. Heat Shock Proteins, Oxidative Stress, and
Physical Exercise

There are numerous reports, including meta-analysis, on the
influence of exercise on the oxidative-antioxidant balance
and the expression of HSPs. They indicated that exercise
training reduces cardiovascular mortality [116–118] and
has been frequently attributed to the reduction of classical
cardiovascular risk factors including OS [119, 120]. The effect
of exercise on HSPs depends on age [121], sex [122], and
HSP subtype [123]. Physical exercise exerted potent impacts
on the myocardial antioxidant defense system and decreased
cardiac damage [124]. Aerobic exercise is associated with a
cardioprotective phenotype, but the exact mechanisms
responsible for this phenomenon remain unclear. Exercises
induce increase in antioxidant capacity of cardiomyocytes
through upregulation of SOD and catalase, as well as overex-
pression of HSP70 [125]. Endurance exercise training ele-
vates myocardial HSP72 by even 400-500% in young adult
animals and is associated with a reduction in I/R injury in
the heart [126]. Chronically elevated basal levels of HSP70
were found in cardiac tissue of trained mice, and what is
interesting, an acute treadmill running did not induce a fur-
ther increase [127]. Animals that have been submitted to 40
minutes of physical activity showed increased expression of
HSP70 in the heart [128]. L-Arginine (biological precursor
of NO) and a treadmill exercise program exerted more potent
increase in the expression of HSP70; an increase in the total
antioxidant capacity (TAC) and SOD and CAT content in
the L-arginine and exercise group was also observed [129].
Elevated cellular HSP72 can protect the myocardium against
I/R injury by repairing unfolded proteins (chaperoning activ-
ity) and by stabilizing the function of the endoplasmic retic-
ulum via HSP70-related autophagy [130]. Exercise-induced
increase in Mn-SOD activity attenuated I/R-induced oxida-
tive modification of Ca2+-handling proteins and resulted in
decreased cardiomyocyte death [131]. Ahn showed that after
a 12-week exercise program, HSP70 and SOD1 expressions
in the myocardium were significantly higher in the exercise
group compared to the control group [132]. Wang et al.
showed that HSP70 expression level in the brain of rats from
the 5-week long aerobic exercise group was 52% higher than
that in the control group [133]. Hydroxyl radical scavenging
capacity, SOD, and GPx were also significantly higher than
those in the control group [133]. The authors concluded that
HSP70, similar to other powerful antioxidant and repair
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proteins, can intervene in the oxidative damage caused by
oxidative radicals. Another study indicated that exercise
training for 14 weeks reduced MDA and carbonyl protein
concentrations but HSP70 and TAC were increased signifi-
cantly after exercise training [134]. During acute exercise,
various HSPs are upregulated in organs and tissues. Apart
from activating the HSF1, exercise can induce activation of
the adrenergic receptor-mediated signaling kinase which
inhibits the ERK1/2 pathway and leads to the increase in
HSP70 concentrations [135]. Apart from interacting with
the antioxidant system, HSPs exert their direct anti-
inflammatory effect through interaction with NF-κB and
blocking its activation, which may be important in I/R injury
[136]. Elevation in iHSP70 may inhibit JNK-dependent sig-
nal transduction therefore promoting cell survival [137].
The balance between iHSP70 and eHSP70 (i.e.,
iHSP70/eHSP70 ratio) will modulate NF-κB translocation
capacity and then the inflammatory level [110]. Exercise
training did however induce the interaction between
HSP90, 5′AMP-activated protein kinase (AMPK), and eNOS
in the hearts, and this network is complicated; HSP90 is a
regulator of eNOS activity and promoted eNOS coupling
while AMPK influenced the coupling of eNOS by promoting
its interaction with HSP90 [138, 139]. Considering the above,
it can be concluded that physical exercise plays an important
role in the prevention of cardiovascular diseases by induction
of HSP expression and modulation of OS, including the
NOS/NO-related system.

8. Conclusion

Heat shock proteins play a cytoprotective role under patho-
logical conditions such as cardiovascular diseases. The
knowledge about cellular and molecular mechanisms under-
lying ROS-mediated modulation of HSP expression can help
to better understand the pathophysiology of OS, which is
associated with the development of many diseases (cardio-
vascular, neurodegenerative, etc.). I/R injury is considered a
major contributor to tissue damage in multiple clinical situa-
tions such as myocardial infarction, stroke, and organ trans-
plantation. Oxidative damage is a key factor in the initiation
of I/R. HSP expression is highly sensitive to I/R injury.
Understanding the exact mechanisms of HSP and the struc-
ture of the protein interaction network can help to better
understand the pathophysiology and treatment of many dis-
eases, as well as to develop new drugs. There is a need to
understand the relationship between cell pathways—signal-
ing, metabolism, etc. The relationships between HSP and
OS discussed in this work seem to be very complicated and
not yet fully understood. Data showed that modulation of
HSP expression in reperfusion injuries may result in better
treatment of myocardial infarction. This can also help to pre-
pare organs for the transplantation.
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