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Abstract: Vitamin D deficiency has been associated with increased colorectal cancer (CRC) incidence
risk and mortality. Vitamin D mediates its action through the binding of the vitamin D receptor
(VDR), and polymorphisms of the VDR might explain these inverse associations. The aim of the
study was the investigation of the relevance of rs731236; Thermus aquaticus I (TaqI), rs7975232;
Acetobacter pasteurianus sub. pasteurianus I (ApaI), rs2228570; Flavobacterium okeanokoites I (FokI)
and rs1544410, Bacillus stearothermophilus I (BsmI) polymorphisms of the VDR gene to colorectal
carcinogenesis (CRC) and progression. Peripheral blood was obtained from 397 patients with early
operable stage II/III (n = 202) and stage IV (n = 195) CRC. Moreover, samples from 100 healthy donors
and 40 patients with adenomatous polyps were also included as control groups. Genotyping in
the samples from patients and controls was performed using polymerase chain reaction-restriction
fragment length polymorphisms (PCR-RFLP). A significant association was revealed between all
four polymorphisms and cancer. Individuals with homozygous mutant (tt, aa, ff or bb) genotypes
were more susceptible to the disease (p < 0.001). All of the mutant genotypes detected were also
significantly associated with stage IV (p < 0.001), leading to significantly decreased survival (p < 0.001).
Moreover, all four polymorphisms were significantly associated with KRAS (Kirsten ras oncogene)
mutations and Toll-like receptor (TLR2, TLR4 and TLR9) genetic variants. In multivariate analysis,
tt, aa and ff genotypes emerged as independent factors associated with decreased overall survival
(OS) (p = 0.001, p < 0.001 and p = 0.001, respectively). The detection of higher frequencies of the VDR
polymorphisms in CRC patients highlights the role of these polymorphisms in cancer development
and progression.

Keywords: colorectal cancer; vitamin D receptors; toll-like receptors; polymorphisms

1. Introduction

Colorectal cancer (CRC) is the third leading cause of cancer both in men and women [1]. CRC is
of major importance to public health, with increased mortality rates worldwide and accounting for
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9% of all cancers [1]. CRC is a multifactorial disease and involves complex interactions between
environmental and genetic factors [2,3]. However, understanding all of the mechanisms and the
associations between these factors is not an easy task. In the past, it has been hypothesized that higher
incidence rates of CRC in areas with low sunlight exposure might be attributable to lower levels of
vitamin D [4]. Indeed, it has been reported that vitamin D deficiency is a common phenomenon in
Saudi Arabia, especially among women [5]. Nowadays, a large number of candidates’ genes have
been identified as responsible for their potential role in tumorigenesis.

The importance of vitamin D for bone health is well established, but lately its role beyond the
skeletal system has gained scientific attention [6]. Vitamin D regulates cellular differentiation and
proliferation in normal and malignant tissues, regulates proliferation, apoptosis and cell adhesion
in tumor cells and modifies tumor angiogenesis, invasion and metastasis, along with reducing
oxidative DNA damage [7]. Vitamin D deficiency has been associated with various cancer types [8,9],
whereas, increased vitamin D serum levels play a role in decreased colorectal adenoma risk [9].
Vitamin D mediates its action by binding to the vitamin D receptor (VDR), a member of the nuclear
receptor superfamily, and is expressed on various cell types, including colorectal epithelial cells,
enabling the transactivation of target genes [10,11]. Thus, the VDR gene has been implicated in CRC.
Over 60 single nucleotide polymorphisms (SNPs) of the VDR gene, located in the promoter region
in exons 2–9, both in their proximity and in the 3’-UTR (3’-untranslated) region, have been studied
in relation to cancer occurrence and prognosis [12,13]. However, only a few of them are potentially
functional and affect the expression of the VDR gene in relation to CRC risk. These include TaqI
(rs731236; Thermus aquaticus I), located in exon 9 [9,14], ApaI (rs7975232; Acetobacter pasteurianus sub.
pasteurianus I) and BsmI (rs1544410, Bacillus stearothermophilus I), located in the intron between exons
8 and 9 [14–16] and FokI (rs2228570; Flavobacterium okeanokoites I), located in exon 2 [15,17].

To this end, we aimed to investigate four single nucleotide polymorphisms (SNPs)—TaqI, ApaI,
FokI and BsmI—of the VDR gene within patients with sporadic CRC, for the first time in the Greek
population, and to evaluate their association with the risk of cancer development and progression.
The selection of these SNPs was based on the common VDR SNPs sites examined in other populations
in previous genetic epidemiological studies. In addition, the correlation of the expression of these
molecules and previously genotyped Toll-like receptor (TLR) variants (TLR2: 196-to-174 del; TLR4:
Asp299Gly and Thr399Ile; TLR9: T1237C and T1486C) in the same patients’ and controls’ samples [18]
was also investigated.

2. Results

2.1. Patients’ Demographics and Molecular Characteristics

From 09/2003 to 11/2013, 397 patients were recruited in the study and presented newly diagnosed
CRC and histologically documented disease. The patients’ characteristics are listed in Table 1.
The median age of the patients was 65 years, 246 (62.0%) were males, 202 (50.9%) were of stage II/III,
372 (93.7%) had PS-ECOG (Performance Status according to the Eastern Cooperative Oncology
Group) 0–1, 205 (47.4%) had a high tumor grade and 279 (70.3%) had a colon/sigmoid tumor location.
Moreover, 230 (58.7%) patients had early operable stage II/III disease, 64 (27.8%) of whom relapsed,
whereas 223 (56.2%) patients had stage IV disease, 197 (88.3%) of whom relapsed, as shown in Table 1
and Table S1.

The VDR gene TaqI t allele (silent T→ C transition in exon 9), ApaI a allele (T→ G transition in
intron 8), FokI f allele (C→ T transition at the junction of intron 1 and exon 2) and BsmI b allele (G→ A
transition in intron 8) genotypes and allele frequencies were investigated in all 397 patients and are
shown in Table 1 and Table S1; whereas KRAS (Kirsten ras oncogene) mutations were investigated in
245 patients due to there being no sample availability, shown in Table 1 and Table S1.
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Table 1. Patients’ demographics and characteristics.

Characteristics Frequency (n = 397) %

Age (range) 65 (18–88)
<70 260 65.5
≥70 137 34.5

Gender
Male 246 62

Female 151 38
Stage

IIA–IIIC 202 50.9
IV 195 49.1

Location
Colon/Sigmoid 279 70.3

Rectum 118 29.7
PS (ECOG)

0–1 372 93.7
≥2 25 6.3

Surgery
Yes 347 87.8
No 50 12.2

Radiotherapy
Yes 80 20.4
No 313 79.6

Adjuvant Treatment
Yes 230 58.7
No 162 41.4

First Line Treatment
Yes 223 56.2
No 174 46.8

Grade
High 205 47.4
Low 228 52.6

TaqI (T to C)
Wt (TT) 125 31.5

Hetero (Tt) 129 32.5
Homo (tt) 143 36

ApaI (T to G)
Wt (AA) 145 36.5

Hetero (Aa) 122 30.7
Homo (aa) 130 32.7

FokI (C to T)
Wt (FF) 122 30.7

Hetero (Ff) 147 37
Homo (ff) 128 32.2

BsmI (T to C)
Wt (BB) 75 18.9

Hetero (Bb) 191 48.1
Homo (bb) 131 33

KRAS
Mutant 104 42.4

Wild type 141 57.6
ND 152

2.2. Analysis of the VDR Gene Polymorphisms

The VDR gene TaqI, ApaI, FokI and BsmI polymorphisms amplification products were expected
to be 740 bp, 740 bp, 265 bp and 825 bp, respectively. The PCR products were digested by the TaqI,
ApaI, FokI and BsmI enzymes, respectively. Following electrophoresis, 143 (36.0%), 129 (32.5%) and
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125 (36.5%) patients presented the homozygous mutant (tt), the heterozygous (Tt) and the wild type
(TT) genotypes, respectively, for TaqI polymorphisms, as shown in Figure 1A, Table 1 and Table S1.
Similarly, 130 (32.7%), 122 (30.7%) and 145 (36.5%) patients presented the homozygous mutant (aa),
the heterozygous (Aa) and the wild type (AA) genotypes, respectively, for ApaI polymorphisms,
as shown in Figure 1B, Table 1 and Table S1. Moreover, 128 (32.2%), 147 (37.0%) and 122 (30.7%)
patients presented the homozygous mutant (ff), the heterozygous (Ff) and the wild type (FF) genotypes,
respectively, for FokI polymorphisms, as shown in Figure 1C, Table 1 and Table S1. Finally, 131 (33.0%),
191 (48.1%) and 75 (18.9%) patients presented the homozygous mutant (bb), the heterozygous (Bb) and
the wild type (BB) genotypes, respectively, for BsmI polymorphisms, as shown in Figure 1D, Table 1
and Table S1.

The results showed that the allelic frequencies of all four polymorphisms were significantly
associated with the patient group compared to the control groups (TaqI, p > 0.001; ApaI, p > 0.001;
FokI, p > 0.001; BsmI, p > 0.001), thus highlighting the role of these polymorphisms in the disease.
More specifically, it was shown that both the healthy donors and the adenomatous polyps controls
presented mainly the wild type and the heterozygous genotypes, and this was observed in all four
(TaqI, ApaI, FokI and BsmI) polymorphisms, as shown in Table 2.

Figure 1. PCR-RFLP representative agarose gels of different SNPs of the (A) TaqI (TT, Tt, tt), (B) ApaI
(AA, Aa, aa), (C) FokI (FF, Ff, ff) and (D) BsmI (BB, Bb, bb), respectively.
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Table 2. Association of VDR polymorphisms between patients and control groups (healthy donors and
adenomatous polyps) and between different patients’ stages (II/III and IV).

SNP Genotype Patient
No (%)

Healthy
No (%)

Adenomatous
Polyps No (%) p-Value Stage II/III

No (%)
Stage IV
No (%) p-Value

TaqI
Wt (TT) 125 (31.5) 71 (71) 24 (60.0)

<0.001
108 (51.9%) 17 (9.0%)

<0.001Hetero (Tt) 129 (32.5) 26 (26.0) 11 (27.5) 75 (36.1%) 54 (28.6%)
Homo (tt) 143 (36.0) 3 (3.0) 5 (12.5) 25 (12.0%) 118 (62.4%)

ApaI
Wt (AA) 145 (36.5) 56 (56.0) 22 (55.0)

<0.001
120 (57.7%) 25 (13.2%)

<0.001Hetero (Aa) 122 (30.7) 40 (40.0) 17 (42.5) 74 (35.6%) 48 (25.4%)
Homo (aa) 130 (32.7) 4 (4.0) 1 (2.5) 14 (6.7%) 116 (61.4%)

FokI
Wt (FF) 122 (30.7) 55 (55.0) 21 (52.5)

<0.001
98 (47.1%) 24 (12.7%)

<0.001Hetero (Ff) 147 (37.0) 40 (40.0) 16 (40.0) 89 (42.8%) 58 (30.7%)
Homo (ff) 128 (32.2) 5 (5.0) 3 (7.5) 21 (10.1%) 107 (56.6%)

BsmI
Wt (BB) 75 (18.9) 55 (55.0) 13 (32.5)

<0.001
55 (26.4%) 20 (10.6%)

<0.001Hetero (Bb) 191 (48.1) 43 (43.0) 24 (60.0) 116 (55.8%) 75 (39.7%)
Homo (bb) 131 (33.0) 2 (2.0) 3 (7.5) 37 (17.8%) 94 (49.7%)

2.3. Association of VDR Variants and Disease Stage

Table 2 shows the association observed between the VDR polymorphisms and disease stage
of the patients. The tt genotype was more prevalent in stage IV patients, whereas the Tt and TT
genotypes were mostly seen in stage II/III patients (62.4% vs. 12.0%, 28.6% vs. 36.1% and 9.0% vs.
51.9%, respectively; p < 0.001), as shown Table 2 and Table S1. The aa genotype was more prevalent in
stage IV patients, whereas the Aa and AA genotypes were also mostly prevalent in stage II/III patients
(61.4% vs. 6.7%, 25.4% vs. 35.6% and 13.2% vs. 57.7%, respectively; p < 0.001), as shown in Table 2 and
Table S1. Moreover, the ff genotype was also more prevalent in stage IV patients, whereas the Ff and
the FF genotypes were mostly met in stage II/III patients (56.6% vs. 10.1%, 30.7% vs. 42.8% and 12.7%
vs. 47.1%, respectively; p < 0.001), as shown in Table 2 and Table S1. Similarly, the bb genotype was
more prevalent in stage IV patients, whereas the Bb and BB genotypes were mostly prevalent in stage
II/III patients (49.7% vs. 17.8%, 39.7% vs. 55.8% and 10.6% vs. 26.4%, respectively; p < 0.001), as shown
in Table 2 and Table S1.

2.4. Correlation of VDR and Toll-Like Receptor Variants

The correlation between the different VDR and TLR variants was analyzed and is presented
in Table 3. When analyzing the whole group of patients, a statistically significant coexistence was
observed both between all the different VDR combinations and between the VDR and TLR genotype
combinations, shown in Table 3 and Table S1. When patients were analyzed according to their
disease stage, it was observed that stage II/III patients had a significant coexistence of only: TaqI-FokI,
p = 0.005; TaqI-BsmI, p < 0.001; ApaI-BsmI, p = 0.014; FokI-BsmI, p < 0.001; FokI-Asp299Gly, p = 0.035;
FokI-Thr399Ile, p = 0.035, as shown in Table 3 and Table S1. Similarly, in stage IV patients, a significant
coexistence was observed in: TaqI-ApaI, p < 0.001; TaqI-BsmI, p < 0.001; ApaI-BsmI, p < 0.001; FokI-ApaI,
p = 0.001; FokI-BsmI, p < 0.001; TaqI-T1237C, p = 0.042; TaqI-T1486C, p = 0.042; FokI-Asp299Gly, p = 0.037;
FokI-Thr399Ile, p = 0.037, as shown in Table 3 and Table S1.
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Table 3. Correlation of various VDR and TLR polymorphisms. All values presented correspond to p-values.

All patients

TaqI ApaI FokI BsmI TLR4 (Asp299Gly) TLR4 (Thr399Ile) TLR9 (T1237C) TLR9 (T1486C) TLR2 (196-to-174 del)

TaqI - 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
ApaI 0.000 - 0.000 0.000 0.000 0.000 0.000 0.000 0.000
FokI 0.000 0.000 - 0.000 0.000 0.000 0.002 0.002 0.000
BsmI 0.000 0.000 0.000 - 0.004 0.004 0.026 0.026 0.009

Adjuvant

TaqI ApaI FokI BsmI TLR4 (Asp299Gly) TLR4 (Thr399Ile) TLR9 (T1237C) TLR9 (T1486C) TLR2 (196-to-174 del)

TaqI - 0.301 0.005 0.000 0.803 0.803 0.388 0.388 0.346
ApaI 0.301 - 0.588 0.014 0.733 0.733 0.944 0.944 0.148
FokI 0.005 0.588 - 0.000 0.035 0.035 0.808 0.808 0.272
BsmI 0.000 0.014 0.000 - 0.966 0.966 0.905 0.905 0.266

Metastatic

TaqI ApaI FokI BsmI TLR4 (Asp299Gly) TLR4 (Thr399Ile) TLR9 (T1237C) TLR9 (T1486C) TLR2 (196-to-174 del)

TaqI - 0.000 0.203 0.000 0.874 0.874 0.042 0.042 -
ApaI 0.000 - 0.001 0.000 0.295 0.295 0.023 0.023 -
FokI 0.203 0.001 - 0.000 0.037 0.037 0.973 0.973 -
BsmI 0.000 0.000 0.000 - 0.703 0.703 0.814 0.814 -
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2.5. Association of TaqI, ApaI, FokI and BsmI Variants and KRAS Status

The VDR variants and KRAS statuses of the CRC patients presented a significant association,
as shown in Table 4. The tt genotype was more prevalent in patients with a mutant KRAS status,
whereas the Tt and the TT alleles were mostly seen in KRAS wild type patients (53.8% vs. 39.0%,
24.0% vs. 34.8% and 22.1% vs. 26.2%, respectively, p = 0.041). The aa genotype was also more frequent
in KRAS mutants, whereas Aa and AA genotypes were more frequent in patients with KRAS wild type
status (55.8% vs. 36.9%, 19.2% vs. 34.8% and 25.0% vs. 28.4%, respectively; p = 0.007). Similarly, the ff

genotype was more prevalent in KRAS mutants, whereas the Ff and FF genotypes were more frequent
in KRAS wild type patients (59.6% vs. 27.7%, 25.0% vs. 42.6% and 15.4% vs. 29.8%, respectively;
p < 0.001). Finally, the bb genotype was also more frequent in KRAS mutants, whereas Bb and BB
genotypes were more frequent in patients with KRAS wild type status (65.4% vs. 27.7%, 24.0% vs.
55.3% and 10.6% vs. 17.0%, respectively; p < 0.001), as shown in Table 4 and Table S1.

Table 4. Association of VDR gene polymorphisms and KRAS status.

KRAS

SNP Genotype Wt (%) Mutant (%) p-Value

TaqI
Wt (TT) 37 (26.2) 23 (22.1)

0.041Hetero (Tt) 49 (34.8) 25 (24.0)
Homo (tt) 55 (39.0) 56 (53.8)

ApaI
Wt (AA) 40 (28.4) 26 (25.0)

0.007Hetero (Aa) 49 (34.8) 20 (19.2)
Homo (aa) 52 (36.9) 58 (55.8)

FokI
Wt (FF) 42 (29.8) 16 (15.4)

<0.001Hetero (Ff) 60 (42.6) 26 (25.0)
Homo (ff) 39 (27.7) 62 (59.6)

BsmI
Wt (BB) 24 (17.0) 11 (10.6)

<0.001Hetero (Bb) 78 (55.3) 25 (24.0)
Homo (bb) 39 (27.7) 68 (65.4)

2.6. Association of VDR Variants and Clinical Outcome

Sixty-four (27.8%) adjuvant and 197 (49.7%) metastatic patients presented a disease progression
following their adjuvant and first-line treatment, respectively, as shown in Table S1. The median
disease-free survival (DFS) was 19 months (95% confidence interval (CI): 15.5–22.5) and the median
overall survival (OS) was 155 months (95% CI: 59.1–250.9), respectively for stage II/III patients.
According to the presence of different VDR genotypes, no significant differences were observed in
DFS, whereas only a significant shorter OS in patients with the aa genotype (p < 0.001) was observed,
as shown in Figure 2A.

For the case of stage IV patients, the median progression-free survival (PFS) was 8 months
(95% CI: 7.1–8.9) and the median OS was 31 months (95% CI: 25.2–36.8), respectively, as shown in
Table S1. Again, there was no difference in PFS, according to the presence of different VDR genotypes,
whereas only a significant decrease in OS in patients with TaqI homozygous mutant or heterozygous
alleles (p = 0.037) was observed, as shown in Figure 2B. The analysis of all patients presented a median
OS of 75 months (95% CI: 56.8–93.2) prevailing a significantly decreased OS in patients with TaqI, ApaI,
FokI and/or BsmI homozygous mutant alleles (p < 0.001, p < 0.001, p < 0.001 and p < 0.001, respectively),
as shown in Figure 2C–F and Table S1.
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Figure 2. Overall survival according to the detection of (A) ApaI polymorphisms and (B) TaqI
polymorphisms in stage II/III patients, and (C) TaqI polymorphisms, (D) ApaI polymorphisms, (E) FokI
polymorphisms and (F) BsmI polymorphisms in stage IV patients.

2.7. Univariate and Multivariate Analysis Cox Regression Analysis

Univariate analysis revealed that PS (ECOG) and TLR2 polymorphisms were significantly
associated with a shorter PFS and PS (ECOG) tumor grade, and all TLR and VDR polymorphisms were
significantly associated with shorter OS, as shown in Table 5. In multivariate analysis, adjusting for
these factors, PS (ECOG) and TLR2 polymorphisms emerged as independent factors associated with
decreased PFS (HR: 1.6, 95% CI: 1.0–2.6, p = 0.04 and HR: 2.2, 95% CI: 1.2–4.0, p = 0.013, respectively).
Moreover, PS (ECOG), tumor grade, TLR2 196-to-174 del, TaqI, ApaI and FokI variants emerged as
independent factors associated with decreased OS (HR: 3.7, 95% CI: 2.4–5.9, p < 0.001; HR: 1.8, 95% CI:
0.7–5.1, p < 0.001; HR: 2.1, 95% CI: 1.3–3.4, p = 0.003; HR: 1.3, 95% CI: 1.0–1.5, p = 0.029; HR: 1.6, 95% CI:
1.3–2.0, p < 0.001; HR: 1.4, 95% CI: 1.1–1.8, p = 0.005), as shown in Table 5.
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Table 5. Univariate and multivariate Cox Regression analysis.

Univariate Analysis Multivariate Analysis

PFS OS PFS OS

HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value HR (95% CI) p-Value

Gender (Male vs. Female) 1.0 (0.8–1.4) 0.986 0.9 (0.7–1.2) 0.411 - - - -
Histology (Colon/Sigmoid vs. Rectum) 1.2 (0.9–1.6) 0.267 1.2 (0.9–1.7) 0.172 - - - -

PS ECOG (≥2 vs. 0–1) 2.6 (1.6–4.2) <0.001 4.4 (2.8–6.9) <0.001 1.6 (1.0–2.6) 0.04 3.7 (2.4–5.9) <0.001
Age (≥70 vs. <70) 1.1 (0.8–1.4) 0.652 1.3 (1.0–1.8) 0.06 - - - -

Grade (High vs. Low) 1.4 (0.6–3.4) 0.493 4.4 (1.8–11.0) 0.001 - - 1.8 (0.7–5.1) <0.001
KRAS 1.0 (0.8–1.4) 0.787 1.2 (0.8–1.6) 0.362 - - - -

TLR2 196-to-174 del (homozygous mutant vs. others) 2.1 (1.2–3.9) 0.016 3.7 (2.4–5.9) <0.001 2.2 (1.2–4.1) 0.013 2.1 (1.3–3.4) 0.003
TLR4-Asp299Gly (homozygous mutant vs. others) 1.2 (0.9–1.7) 0.259 2.3 (1.7–3.3) <0.001 - - 1.4 (1.0–1.9) 0.095
TLR4-Thr399Ile (homozygous mutant vs. others) 1.2 (0.9–1.7) 0.259 2.3 (1.7–3.3) <0.001 - - 1.4 (1.0–1.9) 0.095
TLR9-T1237C (homozygous mutant vs. others) 1.0 (0.7–1.4) 0.928 1.7 (1.3–2.3) <0.001 - - 1.1 (0.8–1.6) 0.336
TLR9-T1486C (homozygous mutant vs. others) 1.0 (0.7–1.4) 0.928 1.7 (1.3–2.3) <0.001 - - 1.1 (0.8–1.6) 0.336

TaqI (homozygous mutant vs. others) 1.2 (0.9–1.2) 0.783 2.2 (1.8–2.7) <0.001 - - 1.3 (1.0–1.6) 0.029
ApaI (homozygous mutant vs. others) 1.1 (0.9–1.3) 0.46 2.6 (2.1–3.1) <0.001 - - 1.6 (1.3–2.0) <0.001
FokI (homozygous mutant vs. others) 1.1 (0.9–1.2) 0.768 2.2 (1.9–2.6) <0.001 - - 1.4 (1.1–1.8) 0.005
BsmI (homozygous mutant vs. others) 0.1 (0.9–1.3) 0.616 1.7 1.4–2.2) <0.001 - - 1.0 (0.7–1.6) 0.644



Cancers 2020, 12, 1379 10 of 16

3. Discussion

Undoubtedly, the risk of sporadic CRC has been linked to environmental and genetic factors [2,19]
and more recently to gut microbiota. The microbiota influences both human health and disease by
affecting the development of the host immune system and by maintaining homeostasis to influence
diseases and allergies that cannot simply be parsed into strict pathogenesis and commensalism [20,21].
Chronic infection and inflammation are the most important epigenetic factors contributing to
tumorigenesis and tumor progression [22]. Moreover, vitamin D deficiency has been implicated,
among other diseases and metabolic syndromes, in human malignancies [23,24]. Since vitamin D
mediates its action by binding to the VDR gene, the suboptimal responsiveness of the VDR can
be manifested as vitamin D deficiency. Furthermore, the VDR gene, as part of innate immunity,
is responsible for the prevention and elimination of infection and the determination of the gut
microbiome [25–27]. Thus, polymorphisms in the human VDR gene may play an important role
in the structure of the gut microbiome. Interestingly, it has been reported previously that VDR
conditional knockout (vdr∆IEC) in the intestinal epithelial or low intestinal VDR protein levels may lead
to dysbiosis [25] and reduced autophagy, accompanied by a reduction in ATG16L1 (autophagy-related
16 like 1), an inflammatory bowel disease risk gene [27]; whereas, the absence of intestinal VDR
leads to a susceptibility to colon cancer via reducing JAK/STAT (Janus kinases/signal transducer and
activator of transcription proteins) signaling, which is a pathway with a critical role in intestinal
and microbial homeostasis and in dampening inflammatory responses [27]. Therefore, the vitamin
D/VDR pathway may significantly influence homeostasis, signaling between the microbiota and
host in intestinal inflammation and tumorigenesis [27]. It is worth mentioning that, despite the fact
that the VDR gene polymorphisms (TaqI, ApaI, FokI and BsmI) are considered to be non-functional,
they might be linked to other functional polymorphisms elsewhere in the VDR gene, thus participating
in a more complex gene network, enhancing or inhibiting the expression of VDR target genes.
Such VDR gene polymorphisms are likely to affect transcriptional regulation, mRNA stability or
protein translational efficiency, thus affecting the structure and functioning of VDR protein [9,28–30].
It has also been suggested that VDR gene polymorphisms define differential transcriptional VDR
activity or mRNA stability in vitro [31]. Moreover, vitamin D is considered as an immunomodulatory
molecule, which can modulate cytokine responses through T cells, thus representing an important
link between TLR activation and innate immunity against microorganisms [32,33]. Others have
described the TLR activation of human macrophages upregulating VDR gene expression, leading to
the induction of cathelicidin and the consequent killing of intracellular Mycobacterium tuberculosis [34].
Moreover, the authors further analyzed Cyp27B1 (cytochrome P450 family 27 subfamily B member
1), which catalyzes the conversion of the inactive provitamin D3 hormone into its active form, and it
was found to be significantly upregulated. Furthermore, the VDR and Cyp27B1 in monocytes and
macrophages were also found to be upregulated. Thus, the authors concluded that the TLR induces
the upregulation of the VDR and Cyp27B1 gene expressions in such cell types [34]. They also
performed functional tests on the VDR and it was demonstrated that the VDR is functional in
primary human monocytes and, when activated, it triggers the stimulation of antimicrobial peptides.
Finally, the authors demonstrate that TLR activation in monocytes might lead to the activation of
a microbicidal pathway, which depends on the production and action of vitamin D through VDR.
Overall, the authors provided a potential explanation of how vitamin D may act as a key link between
TLR activation and antimicrobial responses in innate immunity [34]. The aim of the current study was
to evaluate the detection of VDR (TaqI, ApaI, FokI and BsmI) polymorphisms in adjuvant and metastatic
CRC patients.

A number of studies on VDR polymorphisms have been performed in patients with sporadic CRC.
Some studies reported contradictory results between various VDR genetic variants and CRC [35,36],
or even no association [13,37], probably due to limitations such as the recruitment of patients with
different characteristics, such as ethnicity, among these studies and the small sample size. However,
many of these studies presented significant associations [35,38]. Indeed, in a meta-analysis conducted
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by Serrano et al., [39] the authors presented a significant increased risk for CRC in the presence
of tt and aa genotypes, with strong frequency variations present among different ethnic groups.
Moreover, Gandini et al., [24] reviewed 79 studies with more than 52,000 cancer cases, including CRC
patients, and 62,000 controls, and demonstrated that BsmI, FokI and TaqI polymorphisms are associated
with CRC. Additional studies reported that the bb genotype of the BsmI polymorphism are more
susceptible to CRC, whereas BB, Bb, TtFf and TTFf genotypes are significantly associated with a
decreased risk of CRC [14,35,40,41]. Our results are in accordance with these findings. In fact,
we demonstrate a higher frequency of the tt, aa, ff and bb genotypes in CRC patients compared to
the control groups, thus highlighting the role of these polymorphisms in colorectal carcinogenesis.
Moreover, higher frequencies of the tt, aa, ff and bb genotypes were detected in metastatic CRC patients
compared to stage II/III patients, emphasizing the role of these polymorphisms in CRC progression
and in patients’ overall survival.

The Ras/MAPK (Ras/mitogen activated protein kinases) pathway and its continuous activation,
due to mutations presented in codon 12 of the KRAS gene, plays an important role in treatment
resistance in patients with various carcinomas, including CRC [42]. To this end, we also aimed to
associate the frequency of VDR polymorphisms in patients with different KRAS statuses. Despite the
fact that approximately 40% of the enrolled patients were not evaluated for their KRAS statuses,
a significant association was demonstrated between the tt, aa, ff and bb genotypes with the KRAS
mutant patients.

The TLR pathway increases the risk of colitis-associated CRC due to commensal gut microbiota [43,44].
TLRs play an important role in immunity and are expressed in various cell types, including tumor
cells [45,46]. Since TLR polymorphisms have been associated with changes in susceptibility to many
diseases, including cancers [47] and TLRs promote the survival of cancer cells [48], we also correlated
the coexistence of previously genotyped TLR (TLR2, TLR4 and TLR9) polymorphisms [18] with the
VDR polymorphisms. It has been previously reported that human TLRs are considered to be regulators
in vitamin D/VDR signaling. In humans, when a pathogen is detected by TLRs, gene expressions of
VDR and Cyp27B1 are induced [34,49].

Herein, we demonstrated that both TLR [18] and VDR polymorphisms are associated with an
increased risk of CRC development and progression, with an impact on patients’ survival, and also
demonstrated a significant correlation between TLR and VDR gene polymorphisms.

To our knowledge, this is the first time VDR gene polymorphisms have been investigated in
the Greek population to evaluate their role in CRC risk and patients’ survival. The strength of
the present study includes careful clinical and epidemiological data collection in combination with
genotyping. Such data collection allowed us to investigate gene-to-gene or other interactions. Moreover,
the relatively large sample size and the 10-year follow-up of the enrolled patients provided enough
strength to discriminate significant interactions that have an impact on CRC risk and the survival of the
patients. An additional strength is that the enrolled cases and controls were from the same ethnicity
and were age and gender matched. A limitation of the study is the lack of vitamin D measurements in
the plasma or sera of the enrolled patients and controls, due to the retrospective nature of the study.
However, despite this limitation, the results of this study provide significant information regarding the
association between TaqI, ApaI and FokI polymorphisms and susceptibility to CRC and its progression.

4. Materials and Methods

4.1. Patients’ Population

In total, 397 patients with colon adenocarcinoma were enrolled in the study, between 2003 and
2013, from the Department of Medical Oncology, University Hospital of Heraklion.
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4.2. Ethics Approval and Consent to Participate

The study has been approved by the Ethics Committee/Institutional Review Board of the University
Hospital of Heraklion (Number 7302/19-8-2009), and all patients signed a written informed consent
form for their participation. All of the procedures performed were in accordance with the ethical
standards of the institutional and/or national research committee and the 1964 Helsinki declaration,
and its later amendments or comparable ethical standards

4.3. Blood and Tissue Samples from Control Groups

In parallel to patients’ samples, blood samples and formalin-fixed paraffin embedded (FFPE)
tissues were also obtained from 100 healthy blood donors and from 40 patients with colon adenomas
in the absence of CRC disease, respectively, which were used as controls in the study.

4.4. Genomic DNA Extraction

Peripheral blood mononuclear cells (PBMC) from all individuals (patients and healthy donors)
were obtained using the Ficoll–Hypaque density gradient (d = 1077 g/mL; Sigma-Aldrich, GmbH,
Darmstadt, Germany), as described previously [18]. Representative formalin fixed paraffin embedded
(FFPE) specimens from the primary tumor were examined by an experienced pathologist and the
appropriate area for microdissection was defined. Microdissection and malignant cells collection
were performed using a piezoelectric microdissector (Eppendorf, Hamburg, Germany), as described
previously [50].

The DNA extraction of all samples was performed using the MasterPure™ Complete DNA and
RNA Purification Kit (Epicenter, Madison, WI, USA), according to the manufacturer’s instructions.
NanoDrop ND-1000, version 3.3 (ThermoFisher Scientific, Waltham, MA, USA) was used for
DNA quantification.

4.5. VDR and TLR Genotyping

For the genotyping of the SNPs at the TaqI, ApaI, FokI and BsmI positions of the VDR gene,
polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP) methods were
used. The sequences of the primers used for the PCR amplification of the fragments are provided in
Table 6. Allele types, SNP reference numbers and PCR conditions for all the analyzed polymorphisms
are shown in Table 7.

TaqI (Minotech Biotechnology, IMBB-FORTH, Heraklion, Greece), ApaI (ThermoFisher Scientific,
MA, USA), FokI (ThermoFisher Scientific) and BsmI (ThermoFisher Scientific) restriction enzymes
were used to digest the amplified products of the VDR gene, according to manufacturer’s instructions.
Briefly, 10 µL of each related PCR product was mixed with 1 µL of each restriction enzyme and 2 µL of
10× buffers. Diethyl pyrocarbonate (DEPC) treated water was added to a final volume of 20 µL (for
TaqI) or 30 µL (for ApaI, FokI and BsmI). After incubation at 65 ◦C for 15 min (TaqI) or at 37 ◦C for 5 min
(ApaI, FokI and BsmI), the restriction fragments were separated by electrophoresis on a 2% agarose
gel, stained with Sybr Safe DNA Gel Stain (ThermoFisher Scientific), and were visualized with the
AlphaImager ultraviolet transilluminator (Alpha Innotech Corp., San Leandro, CA, USA). The usual
nomenclature for restriction fragment length polymorphism alleles was used in this study [51,52].
The lowercase (t, a, f, b) alleles represent the presence of the restriction site and the uppercase alleles
(T, A, F, B) represent the absence of the restriction site.

Accordingly, TLR genotyping was performed as previously described by our group [18]. In brief,
the determination of TLR2 196-to-174 Ins/Del polymorphism was performed by PCR, whereas the
determinations of TLR4 and TLR9 were performed by PCR-RFLP. The PCR and PCR-RFLP conditions
and primers sets that were used have been previously reported by our group [18].
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Table 6. PCR primers designed to amplify fragments harboring the VDR single nucleotide
polymorphisms.

SNP Primer Sequence Fragment Size

TaqI Forward 5′-CAG AGC ATG GAC AGG GAG CAA-3′ 740 bp uncleaved
Reverse 3′-GCA ACT CCT CAT GGC TGA GGT CTC-5′ 495 bp, 245 bp or 290 bp, 245 bp, 205 bp

ApaI Forward 5′-CAG AGC ATG GAC AGG GAG CAA-3′ 740 bp uncleaved
Reverse 3′-GCA ACT CCT CAT GGC TGA GGT CTC-5′ 530 bp, 210 bp

FokI
Forward 5′-AGC TGG CCC TGG CAC TGA CTC TGC TCT-3′ 265 bp uncleaved
Reverse 3′-ATG GAA ACA CCT TGC TTC TTC TCC CTC-5′ 196 bp, 69 bp

BsmI
Forward 5′-CAA CCA AGA CTA CAA GTA CCG CGT CAG TGA-3′ 825 bp uncleaved
Reverse 3′-AAC CAG CGG GAA GAG GTC AAG GG-5′ 650 bp, 175 bp

Table 7. Allele types, single nucleotide polymorphism (SNP) reference numbers and PCR conditions.

SNP Allele Type Ref. Number PCR Conditions

TaqI t allele: silent T→ C
transition in exon 9 rs731236

Initial heating at 94 ◦C for 2 min, followed by 30 cycles
of denaturing (at 94 ◦C for 30 s), annealing (at 57 ◦C for
30 s) and chain extension (at 72 ◦C for 1 min), followed

by a final extension step at 72 ◦C for 7 min

ApaI a allele: T→ G transition
in intron 8 rs7975232

Initial heating at 94 ◦C for 2 min, followed by 30 cycles
of denaturing (at 94 ◦C for 30 s), annealing (at 57 ◦C for
30 s) and chain extension (at 72 ◦C for 1 min), followed

by a final extension step at 72 ◦C for 7 min

FokI
f allele: C→ T transition
at the junction of intron 1

and exon 2
rs2228570

Initial heating at 95 ◦C for 2 min, followed by 35 cycles
of denaturing (at 94 ◦C for 30 s), annealing (at 58 ◦C for
30 s) and chain extension (at 72 ◦C for 1 min), followed

by a final extension step at 72 ◦C for 7 min

BsmI b allele: G→A transition rs1544410

Initial heating at 95 ◦C for 2 min, followed by 35 cycles
of denaturing (at 94 ◦C for 30 s), annealing (at 60 ◦C for
30 s) and chain extension (at 72 ◦C for 1 min), followed

by a final extension step at 72 ◦C for 7 min

4.6. KRAS Mutational Analysis

KRAS mutational analysis was performed by Sanger sequencing after the PCR amplification of
KRAS exon 2. The PCR conditions and the primers set that was used have been previously reported by
our group [53].

4.7. Study Design and Statistics

The current study is a retrospective, single institution study which aimed to investigate the VDR
gene polymorphisms in CRC patients before the initiation of any treatment. Disease-free survival (DFS),
progression-free survival (PFS) and overall survival (OS) were calculated as previously described [18].
In brief, DFS was calculated from the date of surgery to the date of disease recurrence, PFS was calculated
from the date of diagnosis to documented disease progression or death from any cause, and OS was
calculated from the date of diagnosis to the date of death, from any cause. Laboratory analysis was
carried out blind to clinical data, and statistical analysis was based on contingency tables, including the
calculations of hazard ratios (HR) and 95% CI, as previously described [18]. Statistical significance was
set at p = 0.05.

5. Conclusions

In conclusion, the results of the present study highlight the significant role of VDR polymorphisms
in carcinogenesis, disease progression and patients’ survival. Our data also showed a correlation
between TLR and VDR expression and an increased impact on patients’ survival. Based on the present
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results, therapies targeting the activity of VDRs, including the modulation of the TLR/VDR pathways,
might provide new approaches to the management of CRC.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/12/6/1379/s1,
Table S1: Research raw data.
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