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Monocytes that migrate into tissues during inflammatory episodes and differentiate to
macrophages were previously classified as classically (M1) or alternatively (M2) activated
macrophages, based on their exposure to different fate-determining mediators. These
macrophage subsets display distinct molecular markers and differential functions. At the
same time, studies from recent years found that the encounter of apoptotic leukocytes
with macrophages leads to the clearance of this cellular “debris” by the macrophages,
while concomitantly reprogramming/immune-silencing the macrophages. While some of
the features of M2 differentiation, such as arginase-1 (murine) and 15-lipoxygenases (human
and murine) expression, were also displayed by macrophages following the engulfment of
apoptotic cells, it was not clear whether apoptotic cells can be regarded as an M2-like differ-
entiating signal. In this manuscript we review the recent information regarding the impact
of apoptotic cells on macrophage phenotype changes in molecular terms. We will focus
on recent evidence for the in vivo existence of distinct pro-resolving macrophages and the
role of apoptotic cells, specialized lipid mediators, and glucocorticoids in their generation.
Consequently, we will suggest that these pro-resolving CD11blow macrophages have meta-
morphed from M2-like macrophages, and modulated their protein profile to accommodate
the changes in their function.
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INTRODUCTION
Macrophages are highly plastic monocyte-derived cells that
acquire different molecular and functional phenotypes following
exposure to different bioactive molecules and environments. The
early studies on the interactions of macrophages and lympho-
cytes in battling bacterial infections revealed the T helper type 1
(Th1) secreted cytokine IFNγ to be involved in the classical acti-
vation of macrophages (Nathan et al., 1983). However, seminal
studies by the groups of Gordon and Mantovani have extensively
characterized additional macrophage subtypes activated in alter-
native manners (reviewed in Mantovani et al., 2004; Martinez et al.,
2009). Since the major polarizing cytokines initially found to be
involved in classical and alternative activation were derived from
Th1 (IFNγ) and Th2 (IL-4 and IL-13) lymphocytes these activated
macrophages were named M1 and M2, respectively. Later studies
revealed that in addition to IL-4, alternative activation can also
be induced by immune complexes and glucocorticoids (Martinez
et al., 2008), and accordingly the subdivision of alternatively acti-
vated macrophages to M2a–c was instilled. M1 macrophages are
important inducers and effectors in the Th1 response. They are
instrumental in immune responses against intracellular microbes
and tumors (Mantovani et al., 2005). M2 macrophages are more
heterogeneous, but generally play a role in Th2 responses, such
as killing and encapsulation of extracellular parasites, resolving

type 1 inflammation, and promoting tissue repair and remodel-
ing. M2 macrophages are also playing a role in immune regulation
and promote tumor progression (Mantovani et al., 2005; Mar-
tinez et al., 2009). M1 and M2 macrophages are not only distinct
in function, but also express different receptors and enzymes
required for their activities. M1 macrophages express high levels of
inflammatory cytokines (IL-12, IL-23, TNFα, IL-1β, and IL-6) and
chemokines (CXCL9, 10, and 11, CCL2, 3, 4, and 5, and CXCL2),
as well as enzymes involved in the generation of reactive oxygen
species (ROS) and nitric oxide (NO; Mantovani et al., 2005). M2
macrophages express lower levels of inflammatory mediators, but
high levels of IL-10, scavenger, mannose, and galactose receptors.
Importantly, in mice, M2 express the enzyme arginase-1 that inter-
cepts the NO generation pathway [though inducible NO synthase
(iNOS)] to generate ornithine and polyamines that are instru-
mental in tissue repair and fibrosis (Hesse et al., 2001). Hence, the
expression of iNOS and arginase-1 are major markers decipher-
ing M1 and M2 macrophages. Additional markers of M2, such as
YM1 and FIZZ1, were later identified in mouse macrophages (Raes
et al., 2002, 2005).

Macrophages also undergo dramatic molecular and functional
changes upon encounter, interaction with, and uptake of apop-
totic cells (efferocytosis) during the resolution of inflammation.
In this article we will highlight some of the similarities between M2
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differentiation and transcriptional events activated by early effero-
cytosis. In addition, we will discuss recent results that support the
notion that efferocytosis can eventually transform macrophages to
another phenotype that is postulated to limit tissue repair/fibrosis
and promote macrophage regulatory properties at remote sites. In
this regard, it is important to note the early studies that indicated
“non-phlogistic” activation of monocytes by the pro-resolving
lipid mediators lipoxins. This bioactivity of lipoxins resulted in
increased adhesion and migration of human monocytes (Maddox
and Serhan, 1996; Maddox et al., 1997, 1998) hence prompting the
notion that resolution-driven monocyte/macrophage activation
promotes tissue repair and wound healing.

EFFEROCYTOSIS AS AN ALTERNATIVE MODE OF
MACROPHAGE ACTIVATION
The recognition, engulfment, and responsiveness to apoptotic cells
are cardinal properties of resident and inflammatory macrophages
and play a role in processes, such as tissue morphogenesis and
homeostasis, embryonic development, hematopoiesis, immunity,
and the resolution of inflammation (Savill et al., 2002; Erwig
and Henson, 2007; Ravichandran and Lorenz, 2007). The recog-
nition and uptake of apoptotic cells by macrophages through
“eat me” signals (and the absence of “do not eat me” signals)
expressed on their surface and their cognate receptors have been
extensively studied and reviewed (Ravichandran, 2011). However,
apoptotic cells also transduce signals to the engulfing macrophages
that result in significant molecular and functional adjustments
that address physiological needs consequent to the identified
cell death. During the resolution of inflammation, macrophages
engulf apoptotic cells and consequently, apoptotic cell recognition
evokes distinct signaling events (Patel et al., 2006) that block the
release of pro-inflammatory mediators from macrophages. This
release is activated by bacterial moieties, and its blockage, which is
termed immune-silencing (Voll et al., 1997; Fadok et al., 1998;
Kim et al., 2004), is accompanied by the production of TGFβ

and IL-10 (Byrne and Reen, 2002; Huynh et al., 2002; Mitchell
et al., 2002), cytokines that can promote resolution and wound
repair. The engulfment of apoptotic leukocytes by macrophages
also leads to inhibition of iNOS expression and stimulates the
expression of arginase-1 in the RAW 264 macrophage cell line
(Freire-De-Lima et al., 2006) thereby preventing reactive NO pro-
duction. In addition, the production of angiogenic growth factors
(Golpon et al., 2004) by macrophages is consequent to the uptake
of apoptotic cells. Elucidation of the signaling pathways activated
by efferocytosis revealed significant roles for nuclear transcrip-
tional regulators, such as peroxisome proliferator activated recep-
tor (PPAR)-γ (Freire-De-Lima et al., 2006; Johann et al., 2006)
and -δ (Mukundan et al., 2009) as well as the liver X receptor
(LXR; A-Gonzalez et al., 2009) in promoting anti-inflammatory
properties.

It is important to note that while macrophages engulf tissue-
infiltrating apoptotic PMN during the resolution of inflamma-
tion, different experimental models used different sources of
apoptotic cells, including Jurkat T cells, mouse thymocytes, or
human peripheral blood neutrophils. All types of apoptotic cells
express phosphatidylserine on the outer leaflet of their cytoplas-
mic membrane, and this is apparently the major signaling module

used by these cells to communicate their mortal status with phago-
cytic cells (Ravichandran,2011). Nevertheless, it is conceivable that
other molecules (“eat me signals”) are expressed on apoptotic cells
of different sources to give a more detailed “report” as to the con-
sequences of their demise. Thus, the interpretation of the results
obtained following incubations of macrophages with apoptotic
cells of different sources should be evaluated carefully depending
on the source of apoptotic cells used.

The prototypic Th2 cytokines IL-4, IL-13, and IL-10, as well as
immune responses to parasites were found to promote many of
the outcomes of efferocytosis in macrophages. These cytokines are
well appreciated antagonists of the M1 response and macrophage
pro-inflammatory properties (Martinez et al., 2009) while IL-4
and IL-13 can also promote fibrosis through TGFβ production
(Fichtner-Feigl et al., 2006; Wynn, 2008). IL-13 was also found
to promote vascular endothelial growth factor production dur-
ing lung injury (Corne et al., 2000). Importantly, IL-4 and IL-13
also activate PPAR-γ (Huang et al., 1999; Berry et al., 2007) and
PPAR-δ (Kang et al., 2008) to promote monocyte/macrophage
alternative activation. LXR was recently found to synergize with
IL-4 in the induction of arginase-1 expression and promotion of
an M2 phenotype in regressive atherosclerotic lesions (Pourcet
et al., 2011). Thus, efferocytosis induces phenotypic and molecu-
lar switches and activates signaling pathways in macrophages that
resemble M2 polarization. Moreover, M2 polarization promotes
efferocytosis through induction of different molecular modules,
whereas M1 macrophages exert reduced uptake of apoptotic cells.
Along these lines, recent studies also found that efferocytosis is a
self-promoting process, and that M2 pathways play key roles in
mediating this feature of macrophage function. These aspects of
efferocytosis are covered by Korns et al. (2011) in this research
topic and will not be elaborated on here. Nevertheless, while
macrophages are paradoxically involved in both the generation
of fibrosis and its resolution (Wynn and Barron, 2010) and effe-
rocytosis and M2 polarization generate a positive feedback loop
during resolution of inflammation, it is much less clear what are
the events and mediators that stop M2 differentiation and tis-
sue repair/remodeling short of excessive, fibrotic outcomes. Such
events and mediators are inevitably required to complete the res-
olution of inflammation and restore homeostasis rather than end
every infection with a debilitating scar.

15-LIPOXYGENASE AND ITS PRODUCTS
A major enzymatic pathway that mediates key events in
the resolution of inflammation involves the expression and
activation of 12/15-lipoxygenase (LO) in mice and 15-LO-
1 in humans. 15-LO expression and activity are upregu-
lated by IL-4 and IL-13 in murine and human monocytes,
macrophages, and peripheral blood mononuclear cells (Levy
et al., 1993; Nassar et al., 1994; Heydeck et al., 1998; Huang
et al., 1999; Ariel et al., 2005). This upregulation leads to
the production of 15-LO products from eicosatetraenoic and
docosahexaenoic acids (ETA and DHA, respectively), such as
15-hydroxyeicosatetraenoic acid (15-HETE), lipoxin (LX) A4 and
B4 (5S,6S,15S-trihydroxy-7E,9E,11Z,13E-EPA, and 5S,14R,15S-
trihydroxy-6E,8Z,10E,12E-EPA, respectively), 17S-hydroxy-DHA
(17S-hydroxy-4Z,7Z,10Z,13Z,15E,19Z -DHA), and protectin D1
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(10R,17S-dihydroxy-4Z,7Z,11E,13E,15Z,19Z -DHA). Macrophage
expression of 12/15-LO was found to promote the production of
resolvin (Rv) D1 (7S,8R,17S-trihydroxy-4Z,9E,11E,13Z,15E,19Z -
DHA) and maresin 1 (7,14-dihydroxy-4Z,8,10,12,16Z,19Z -DHA),
in addition to LXA4 and PD1 (Merched et al., 2008; Serhan et al.,
2009). The expression of 12/15-LO was also found to be upreg-
ulated in mouse macrophages following their incubation with
apoptotic cells (Freire-De-Lima et al., 2006; Schif-Zuck et al.,
2011) and resulted in the production of 15-HETE and LXA4

(Freire-De-Lima et al., 2006). Macrophages from chronic granu-
lomatous disease (CGD) mice display impaired efferocytosis that
could be repaired by IL-4 through the expression of 12/15-LO
and activation of PPAR-γ (Fernandez-Boyanapalli et al., 2009).
Hence, 15-LO-mediated signaling seems to be a major convergence
point for efferocytosis and M2 polarization, and its down-stream
signaling pathways could play a paramount role in deciphering
whether macrophages will become pro-fibrotic or will finalize the
resolution sequel to restore tissue homeostasis.

Along these reasoning, 12/15-LO products have been shown
to be anti-inflammatory and to promote tissue repair, while play-
ing an anti-fibrotic and immune-regulatory role (Serhan, 2010).
The major bioactive 12/15-LO products could be produced from
arachidonic acid to yield 15-HETE or lipoxins, or from DHA to
generate protectin D (PD)1, resolvins of the D series, and the
recently identified macrophage product maresin 1 (Serhan, 2010).
While 15-HETE binds PPARγ to mediate its anti-inflammatory
actions (Huang et al., 1999), LXA4, PD1, and resolvin D1 seem to
act through binding to cell surface GPCRs (Serhan et al., 2011), as
well as the aryl hydrocarbon receptor (that binds LXA4; Machado
et al., 2006). All these 12/15-LO products induce a broad spectrum
of anti-inflammatory actions on neutrophils and macrophages, as
well as other cell types (Wittwer and Hersberger, 2007; Serhan
et al., 2011). Lipoxins and PD1 are produced during epithelial
injury in the cornea and mediate wound repair in addition to coun-
teracting inflammation (Gronert et al., 2005). On the other hand,
12/15-LO products also induce unique pro-resolving properties of
macrophages and promote regulatory pathways in lymphocytes.
LXA4, PD1, RvD1, and PPARγ agonists were all found to pro-
mote efferocytosis and enhance PMN clearance during resolution
(Godson et al., 2000; Schwab et al., 2007; Fernandez-Boyanapalli
et al., 2009; Krishnamoorthy et al., 2010). In addition, PD1 and
RvD1 were found to promote macrophage departure of resolving
inflammation sites (Schwab et al., 2007; Schif-Zuck et al., 2011).
LXA4 and PD1 inhibited inflammatory cytokine secretion from
T lymphocytes (Ariel et al., 2003, 2005) and enhanced CCR5
expression on apoptotic PMN to promote clearance of its pro-
inflammatory ligands (Ariel et al., 2006). Moreover, LXA4 was
recently found to play a role in the generation of myeloid-derived
suppressor cells (Zhang et al., 2010). Of note, LXA4, PD1, and
RvD1 are potent inhibitors of fibrosis in the lung and kidney
(Duffield et al., 2006; Martins et al., 2009; Borgeson et al., 2011).
Therefore, 15-LO products can be generated by macrophages fol-
lowing their interaction with apoptotic cells and/or polarization
to the M2 phenotype. In turn, these products not only block
inflammation but can also shift the macrophage healing balance
from tissue repair/fibrosis to pro-resolution, anti-fibrotic, and reg-
ulatory functions. The exact mode of production and action for the

different 15-LO products is probably dependent on substrate avail-
ability, concentration formed in the healing tissue and additional
cues from the resolving environment. Nevertheless, they seem to
act in concert to promote post-inflammation tissue healing and
return to homeostasis.

CD11BLOW MACROPHAGES – A NEW PHENOTYPE
GENERATED FOLLOWING SATIATED-EFFEROCYTOSIS
Recent reports have indicated the co-existence of various
macrophage phenotypes in resolving peritoneal cavities (Bystrom
et al., 2008; Schif-Zuck et al., 2011). Macrophages from resolving
murine peritonitis expressed an alternatively activated phenotype
albeit with increase expression of M1 markers, such as cyclooxy-
genase 2 (COX 2) and iNOS (Bystrom et al., 2008). Thus, these
macrophages were termed resolution-phase macrophages (rMs)
and were postulated to have a hybrid phenotype of classically
and alternatively activated macrophages (Bystrom et al., 2008).
A recent report from the same group has indicated that rMs could
be divided to at least three distinct populations based on F4/80
and Ly-6C expression, with varying expression of additional pro-
inflammatory and anti-inflammatory markers as well as CD11b
(Stables et al., 2011). Along these lines, we have recently charac-
terized F4/80+ macrophages from resolving peritoneal exudates
into two distinct macrophage subtypes: CD11bhigh and CD11blow

(Schif-Zuck et al., 2011). CD11bhigh macrophages were found to
express low to intermediate levels of the M1 markers iNOS, COX
2, and matrix metalloproteinase (MMP)-9 and high levels of the
M2 marker arginase-1. These cells also expressed very low lev-
els of 12/15-LO. In addition, these macrophages secret medium
levels of inflammatory cytokines and chemokines, as well as IL-
10, in response to TLR ligands, are highly phagocytic, and do not
migrate to lymphoid tissues. CD11blow macrophages express even
lower levels of iNOS,COX 2,and MMP-9 than CD11bhigh ones,but
they also do not express arginase-1. In addition, these macrophages
secrete very low levels of inflammatory cytokines and chemokines,
and IL-10, but higher amounts of TGFβ. Moreover, CD11blow

macrophages, despite containing higher numbers of apoptotic
PMN, are no longer phagocytic and are prone to emigrate to
remote sites. Hence, CD11blow macrophages were termed “sati-
ated” (Schif-Zuck et al., 2011). A seminal report from Ravichan-
dran and colleagues (Park et al., 2011) has recently revealed that
the mitochondrial membrane protein UCP2 controls satiation vs.
continued clearance of apoptotic cells, and it would be interesting
to examine its role in the generation of CD11blow macrophages.
The integration of the results from Schif-Zuck et al., Bystrom et
al., and Stables et al. suggests rM/CD11bhigh macrophages are a
mixed macrophage population with dominant M2-like character-
istics, and some low-grade M1 activity and that early efferocytosis
promotes the conversion of the M1-like population to an M2-like
phenotype (Fadok et al., 1998; Freire-De-Lima et al., 2006; Korns
et al., 2011) as well as enhanced phagocytosis/efferocytosis. How-
ever, the CD11blow subset of macrophages, although converting
from the CD11bhigh subset ex vivo and in vivo (following late,
threshold-meeting, efferocytosis; Schif-Zuck et al., 2011), are not
M2-like, but rather display a distinct phenotype with its own mole-
cular and functional characteristic (Figure 1). Of interest, a similar
series of macrophage phenotype switches was found to take place
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FIGURE 1 | Macrophage phenotype conversions induced by

efferocytosis. A monocyte that infiltrated an inflamed tissue differentiates to
a macrophage and adopts an M1-like phenotype previous to encounter with
apoptotic PMNs (A). Once it encounters apoptotic PMN and starts to engulf
them (early efferocytosis), the macrophage switches to an M2-like phenotype
that is anti-inflammatory, highly efferocytic, and involved in tissue repair and
return to homeostasis, but can also promote fibrosis and scar formation (B).
As the engulfment of apoptotic PMN by the macrophage continues and
reaches a threshold level determined by the resolving milieu
(satiating-efferocytosis) the macrophage undergoes another switch to the
Mres phenotype (C). These macrophages reduce the expression of
pro-fibrotic arginase-1 and display reduced phagocytosis of extracellular
particle including apoptotic cells. Consequently, rapid Mres departure of the

resolving tissue and emigration to remote sites takes place. At these target
organs Mres macrophages presumably produce 12/15-LO-derived
pro-resolving lipid mediators, and deliver homeostatic signals to antigen
presenting cells and lymphocytes. Moreover, Mres that stay in the resolving
tissue might express higher levels of anti-inflammatory, anti-fibrotic, and
anti-oxidant proteins to limit tissue damage and fibrosis. 12/15-LO-derived
lipid mediators probably also contribute to the anti-inflammatory and
anti-fibrotic properties of Mres in the resolving tissue. Early and
satiating-efferocytosis can be modulated by pro-resolving and
anti-inflammatory mediators, such as lipoxins, resolvins, protectins, maresin,
GC, IL-4, TGFβ, IL-10, and PPARγ ligands (D). This modulation can enhance the
immune-silencing and departure of Mres to the lymphatics, where they can
contribute to the termination of acquired immune responses.

during muscle injury and repair. These switches were induced by
the engulfment of muscle debris that promoted TGFβ production
and muscle regeneration (Arnold et al., 2007; Perdiguero et al.,
2011). Importantly, the macrophage phenotype switch was medi-
ated by a signaling cascade involving MAPK (Perdiguero et al.,
2011) an essential module in macrophage inflammatory signaling
(Kim et al., 2008).

Macrophages are important in limiting inflammation, exces-
sive tissue repair, and fibrosis (Wynn and Barron, 2010). They
also act at remote sites, such as lymphoid organs and adipose tis-
sue (Schwab et al., 2007; Mukundan et al., 2009; Odegaard et al.,
2007; Titos et al., 2011) to regulate acquired immune responses and
metabolism. Since CD11blow macrophages are distinct from either
M1 or M2, do not express the pro-fibrotic enzyme arginase-1,
stop phagocytosing foreign particles and can be found at lym-
phoid organs and adipose tissue (Schif-Zuck et al., 2011; Titos
et al., 2011), we suggest these macrophages display a new phe-
notype, now termed resolution-promoting macrophages (Mres),
which might be involved in anti-fibrotic, immune-regulatory,
and metabolic processes, and hence is critical for the local and

systemic termination of inflammatory episodes. The “decision-
making” of macrophages on which phenotype will be expressed
at a given time and setting is probably controlled by multi-
ple variants in their milieu, including the number of apoptotic
PMN they acquired and local concentrations of pro-resolving lipid
mediators (from 15-LO and other pathways) and glucocorticoids
(Schif-Zuck et al., 2011; Titos et al., 2011). Other macrophage-
inactivating and resolution-promoting cytokines, growth factors
and lipid mediators, such as IL-10, TGFβ, and PPARγ ligands are
likely to also be important in regulating the fate of macrophages
during the resolution of inflammation and the return of tissues to
homeostasis.
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