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Circulating myocardial microRNAs from infarcted
hearts are carried in exosomes and mobilise bone
marrow progenitor cells
Min Cheng1, Junjie Yang2, Xiaoqi Zhao1, Eric Zhang2, Qiutang Zeng1, Yang Yu2, Liu Yang1,2, Bangwei Wu3,

Guiwen Yi1, Xiaobo Mao1, Kai Huang1, Nianguo Dong4, Min Xie5, Nita A. Limdi6, Sumanth D. Prabhu5,

Jianyi Zhang 2 & Gangjian Qin 2

Myocardial microRNAs (myo-miRs) are released into the circulation after acute myocardial

infarction (AMI). How they impact remote organs is however largely unknown. Here we show

that circulating myo-miRs are carried in exosomes and mediate functional crosstalk between

the ischemic heart and the bone marrow (BM). In mice, we find that AMI is accompanied by

an increase in circulating levels of myo-miRs, with miR-1, 208, and 499 predominantly in

circulating exosomes and miR-133 in the non-exosomal component. Myo-miRs are imported

selectively to peripheral organs and preferentially to the BM. Exosomes mediate the transfer

of myo-miRs to BM mononuclear cells (MNCs), where myo-miRs downregulate CXCR4

expression. Injection of exosomes isolated from AMI mice into wild-type mice downregulates

CXCR4 expression in BM-MNCs and increases the number of circulating progenitor cells.

Thus, we propose that myo-miRs carried in circulating exosomes allow a systemic response

to cardiac injury that may be leveraged for cardiac repair.
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Mobilization of progenitor cells (PCs) and other accessory
cells from bone marrow (BM) to ischemically-injured
heart is a physiological reparatory response1. Over the

last 15 years, a large number of cell-therapy clinical trials have
been conducted using BM PCs and demonstrated beneficial
effects for ischemic heart disease2. However, the efficacy remains
modest, and a better mechanistic understanding of BM PC traf-
ficking and recruitment is needed for developing newer and more
effective therapeutic strategies.

MicroRNAs (miRNAs) are bioactive small non-coding RNAs,
which interact with the complementary sequences in the 3′
untranslated region (3′UTR) of protein-coding mRNAs, resulting
in the inhibition of protein translation or mRNA degradation3. It
is well known that some miRs are tissue-specifically expressed.
For example, miR-208a and miR-499-5p are highly enriched in
the heart tissue, while miR-1a and miR-133a are abundantly
expressed in both heart and skeletal muscles4–6. These myocardial
abundant miRs (hereto referred as myo-miRs) have been shown
to be markedly elevated in the peripheral blood (PB) following
acute myocardial infarction (AMI) in patients and animals7.
However, how these myo-miRs are transported in the circulation
and what their biological significance is remains largely unknown.

Exosomes are small lipid-bilayer vesicles, with a 50–150 nm
diameter, that are released by healthy and diseased cells8. Accu-
mulating evidence suggests that exosomes mediate exchanges of
genetic materials, DNA fragments, mRNAs and miRs, between
cells8. However, whether these actions of exosomes play a role in
the systemic response to cardiac ischemic injury has not been
explored.

Here we investigated the role of circulating myo-miRs and
exosomes in mice with AMI. We found that following cardiac
injury, myo-miRs are rapidly released in a remarkable quantity to
the PB where they are carried primarily in the exosomes. The
exosomal myo-miRs are transferred selectively to other tissues
and preferentially to the BM mononuclear cells (MNCs), in which
they suppress CXCR4 expression and mediate PC mobilization.
Thus, our studies reveal a novel pathway of systemic response to
cardiac ischemic injury, which may be leveraged for cell based
cardiovascular repair.

Results
Myo-miRs are markedly elevated in PB after AMI and effi-
ciently transferred into BM-MNCs. We surgically induced AMI
in mice and 6 h later, isolated plasma for measuring myo-miRs
with quantitative RT-PCR (qRT-PCR). The levels of the four
myo-miRs, miR-1a, miR-133a, miR-208a, and miR-499-5p, were
markedly (~104–105 times) higher in AMI mice than in Sham-
operated mice (Fig. 1a). We then analyzed myo-miR uptakes by
different organs; while the levels of myo-miRs in the liver and
spleen were similar between the two treatment groups, their levels
in BM-MNCs and kidney were significantly higher in AMI mice
than in Sham mice (Fig. 1b). The fold change was the greatest in
BM-MNCs (Fig. 1c). It is unlikely that the increase of myo-miRs
was due to their upregulation in the BM-MNCs themselves by
ischemia, because their expression levels in these cells are extre-
mely low and unaltered by hypoxia treatment (Supplementary
Figure 1). These results suggest that myo-miRs released from the
infarcted heart are transferred rather selectively to different
organs and more efficiently into the BM cells. Furthermore, we
analyzed the time-course of myo-miR accumulation in the BM-
MNCs, which peaked between 6 and 12 h post-AMI, decreased at
24 h, and returned to basal level by 72 h (Fig. 1d).

Exosomes mediate transfer of circulating myo-miRs into BM-
MNCs. To investigate whether myo-miRs are carried in exosomes

in the circulation, we isolated exosomes from the mouse plasma
and collected exosome-depleted component. The exosomes were
characterized by electron microscopy, NanoSight, and Western
blotting (Supplementary Figure 2). Then we quantified the levels
of myo-miRs in both exosomes and the exosome-depleted (non-
exosomal) component. Compared to Sham mice, levels of the
four myo-miRs in the circulating exosomes were significantly
higher in AMI mice (Fig. 2a). Notably, these results were repro-
duced in humans, in which acute ST–elevation MI significantly
increased circulating exosomal myo-miRs (Supplementary Fig-
ure 3). Further studies in mice revealed that miR-1, 208, 499 were
elevated overwhelmingly in the exosomes, while miR-133 was
increased predominantly in the non-exosomal component
(Fig. 2a). These results suggest that miR-1, 208, and 499 are
primarily, while miR133 is partially, carried by exosomes in the
circulation.

Next, we investigated whether exosomes can mediate the
transfer of myo-miRs to the BM. BM-MNCs were isolated from
intact mice (Supplementary Figure 4) and treated with exosomal
or non-exosomal component from AMI or Sham mice. qRT-PCR
analyzes were performed with the six reference miRNAs stably
expressed in the plasma as control since their expression in the
BM-MNCs was not altered by hypoxia treatment (Supplementary
Table 1 & Supplementary Figure 5). The levels of myo-miRs were
significantly higher in BM-MNCs treated with exosomes from
AMI mice than from Sham mice (Fig. 2b), while no difference
was observed between BM-MNCs treated with non-exosomal
components from AMI and Sham mice (Fig. 2c). Then, we i.v.
injected intact mice with exosomes or the non-exosomal
component isolated from AMI or Sham mice. Consistently,
myo-miRs were marked increase in the BM-MNCs of mice
treated with exosomes (Fig. 2d) but not mice treated with non-
exosomal component (Fig. 2e) from AMI mice. These data
suggest that it is the exosomal, not the non-exosomal, component
of the plasma that mediates the transfer of circulating myo-miRs
into BM-MNCs after AMI.

Further, we investigated whether the exosomes themselves
could be transferred to the BM cells. Exosomes were isolated from
the plasma of AMI or Sham mice (6 h post-surgery), labeled with
a fluorescent membrane marker PKH67, and i.v. injected into
intact mice; 12 h later, BM-MNCs were isolated for analysis of
their uptake of exosomes by flow cytometry. Injections of equal
amount of AMI and Sham exosomes led to 92% and 89% PKH67-
positive BM-MNCs in the recipient mice, respectively (Supple-
mentary Figure 6). These results indicate that circulating
exosomes are transferred efficiently to the BM cells and may
regulate the function of BM PCs.

Myo-miRs downregulate CXCR4 expression in BM-MNCs
in vitro. Ample evidence from us and other laboratories suggests
that PCs are retained in the BM by interactions between the CXC
chemokine stromal cell-derived factor 1 (SDF-1) and CXC che-
mokine receptor 4 (CXCR4)9. Blockade of CXCR4 in the BM
mediates mobilization of BM PCs to circulation and contribute to
ischemic repair10. Since myo-miRs carried by exosomes were
transferred into BM-MNCs and our bioinformatic analyzes
identified a putative binding site of miR-1a at position 295-302
(-ACAUUCCA-) of the 3′ UTR of CXCR4 (Supplementary Fig-
ure 7a), we investigated whether these miRs have a role in the
regulation of CXCR4 expression. We first transfected individual
myo-miR mimics in both freshly isolated BM-MNCs and BM
culture-derived mesenchymal stem cells (MSCs). Surprisingly,
overexpression of any single myo-miR was able to downregulate
CXCR4 expression in both BM-MNCs and MSCs, as evaluated by
qRT-PCR, Western blotting, and flow cytometry analyzes (Fig. 3).
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In contrast, overexpression of two skeletal muscle specific miRs,
miR-208b and miR-133b, did not alter the levels of CXCR4
(Supplementary Figure 8). Furthermore, dual-luciferase activity
reporter assays confirmed that miR-1a targets the 3’UTR at
position 295-302 (Supplementary Figure 7b). However, miR-
133a, miR-208a or miR-499-5p did not regulate the CXCR4 3′
UTR reporter activity (Supplementary Figure 7c), suggesting that
they may regulate CXCR4 expression through mechanisms

unrelated to the 3′UTR. Collectively, these data suggest that myo-
miRs inhibit CXCR4 expression in BM-MNCs and MSCs in vitro,
implicating a potential function in BM PC mobilization.

Exosomal transfer of myo-miRs downregulates CXCR4 in BM-
MNCs. Next, we investigated whether exosome-mediated myo-
miR transfer regulates the expression of CXCR4. BM-MNCs were
cultured with exosomes isolated from AMI or Sham mice for
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Fig. 1 Myo-miRs are released into PB following AMI and transported into BM-MNCs. AMI and Sham surgeries were performed in C57BL/6 mice; then at
various time points, the plasma, BM-MNCs, and different organs were isolated and subjected to qRT-PCR analyzes of myo-miRs, miR-1a, 208a, 133a, and
499-5p. a myo-miR levels in the plasma 6 h post-surgery (n= 10 animals per group). b myo-miR levels in the BM-MNCs, kidney, spleen, and liver 12 h post-
surgeries, expressed relative to the levels in the intact controls (n= 5 animals per group), and c the fold difference in AMI vs. Sham mice (n= 5 animals per
group). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001 vs. Sham; n.s., no significant. d The fold difference of myo-miR levels in the BM-MNCs of AMI vs.
Sham mice at 0, 6, 12, 24, 72, and 120 h post-surgery. *p < 0.05 **p < 0.01, ***p < 0.001 vs. Sham at same time point. n= 5 animals per group per time point.
An unpaired t test was used in a and a two-way ANOVA was used in b, c, and d for statistical analysis. Error bars represent mean ± s.e.m
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24 h. The expression of CXCR4 was significantly reduced in BM-
MNCs treated with exosomes from AMI mice but not with
exosomes from Sham mice (Fig. 4a, b). Co-treatment with myo-
miRs specific inhibitors abolished the AMI-exosomes mediated
downregulation of CXCR4 expression (Fig. 4c, d), indicating that
the effect was specific to myo-miRs.

Exosomal transfer of myo-miRs induces mobilization of BM
PCs. Finally, we investigated whether exosome-mediated down-
regulation of CXCR4 contributes to BM PC mobilization. Exo-
somes were isolated from AMI and Sham mice that had been
pre-treated with anti-myo-miRs antagomirs or non-targeting
scrambled oligonucleotides for 3 days (Supplementary Figure 9),
and i.v. injected into intact mice; 12 h later, BM and PB MNCs in
the recipients were analyzed. The level of CXCR4 expression was
significantly reduced in the BM-MNCs of mice treated with
exosomes from AMI mice (AMI-exosomes), while the reduction

was diminished if the exosome donor mice were pretreated with
antagomirs (Fig. 4e). Notably, c-kit+, Lin–, and Lin–c-kit+ cells in
the PB were markedly increased in mice treated with AMI-
exosomes but not with Sham-exosomes or AMI-exosomes from
mice with antagomir pre-treatment (Antagomir-AMI-exosomes)
(Fig. 4f, g). Importantly, we further performed PC colony for-
mation assays and confirmed that the colony-forming PCs in the
PB were also increased in mice treated with AMI-exosomes but
not with Sham-exosomes or Antagomir-AMI-exosomes (Fig. 4h).
Collectively, our results indicate that the exosome-mediated myo-
miRs transfer downregulates CXCR4 expression in BM-MNCs
and contributes to BM PC mobilization.

Discussion
In this study, we have identified a previously unknown mechanism
by which the ischemically-injured myocardium “signals” to mobi-
lize BM PCs. We found that following MI, circulating exosomes and
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Fig. 2 Exosomes mediate the transfer of circulating myo-miRs into BM-MNCs. Exosomes and the non-exosomal component were isolated from the plasma
of AMI and Sham mice 6 h post-surgery. a The levels of myo-miRs in the exosomes and the non-exosomal component were analyzed by qRT-PCR and
expressed as fold difference in AMI vs. Sham mice. *p < 0.05, ****p < 0.0001 vs. Sham. n= 5 animals per group. b, c In vitro, freshly-isolated mouse BM-
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their cargo myo-miRs were transferred selectively to peripheral
organs and preferentially to the BM in an exosome-dependent
manner. Notably, the transferred myo-miRs downregulate CXCR4
expression in the BM cells, resulting in PC mobilization.

Although it is well-recognized that exosomes externally-
prepared from stem cells have beneficial effects of on cardiovas-
cular repair11,12, whether endogenous exosomes represents a
physiologically relevant regulatory mechanism in the
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cardiovascular system remains undefined. Our work reveals that
exosomes released from the ischemic heart are in fact mediating
the systemic response of BM PCs to the site of injury. These
observations are compelling, as circulating myo-miRs are not
only a bio-marker, but also a functional constituent of the intri-
cate crosstalk between ischemic heart and the remote BM organ.
Because mobilization of PCs and other accessory cells from BM to
peripheral circulation is a crucial step in the systemic response to
cardiac ischemic injury and plays an important role in the
turnover of vascular endothelium and restoration of coronary
function8, exploitation of this mechanism may have the potential
to enhance ischemic cardiovascular repair.

It is known that exosomes mediate exchange of genetic mate-
rials between cells; the bilayer lipid structure of exosomes protects
miRs from degradation and maintains their integrity. A previous
report showed that exosomes mediate transfer of miR-1 into
kidney and urine13. In this study we found exosomes mediate
transfer of myo-miRs to BM. Intriguingly, miR-1, 208, and 499
are primarily, while miR133 is partially, carried by exosomes in
the circulation. Others have reported that in addition to being
packed into exosomes or microvesicles, extracellular miRNAs can
also be transferred by high-density lipoprotein (HDL)14,15 or
bound by Argonaute2 (AGO2) protein complex16. Whether
miR133a is transported in other forms in circulation is still
unknown at present and warrants further investigation in the
future. In addition, we found that the level of miR133a in the
circulation is highest among the four myo-miRs post AMI, and
that it suppresses CXCR4 expression to a greater extent than the
other three myo-miRs. Thus, despite miR133a being only par-
tially carried by exosomes, it may function potently.

The underlying mechanisms for the sorting of specific miRs
into exosomes remain largely unclear17. Recent studies reveal that
sumoylated hnRNPA2B1 recognizes the GGAG motif in the 3′
portion of miRNA sequences and causes specific miRNAs to be
packed into exosomes; however no binding motif has been
identified18. Others discovered that the 3’ ends of uridylated
endogenous miRNAs are mainly presented in exosomes derived
from B cells or urine, whereas the 3′ ends of adenylated endo-
genous miRNAs are mainly presented inside B cells19. The
changes in miRNA-repressible targets levels that occur in
response to cell activation may cause miRNA sorting to exo-
somes, partially by differentially engaging them at the sites of
miRNA activity and exosome biogenesis20. Thus, specific
sequences present in certain miRNAs may guide their incor-
poration into exosomes21.

The SDF-1/CXCR4 signal pathway is central to PC mobiliza-
tion. We and others have previously shown that CXCR4
antagonist AMD3100 can induce BM PC mobilization and
improve cardiovascular repair after MI9,10, and that the down-
stream effect of SDF-1/CXCR4 axis is mediated by Src family
kinase activity9,22. However, the endogenous regulators of
CXCR4 has been largely unclear. In this study, we found that
myo-miRs suppress CXCR4 expression in BM-MNCs and med-
iate BM PC mobilization to the circulation. Our results suggest
that miRs released from ischemic heart are natural suppressants
of CXCR4, thus representing a feedback circuit. A previous report
suggested an miR-1a putative target site on CXCR423; here we
have verified that miR-1a directly targets on CXCR4 3′ UTR.
Interestingly, despite that miR-133a, miR-208a, and miR-499-5p
suppress CXCR4 mRNA and protein expression, our bioinfor-
matics analyzes revealed no binding site of these 3 miRNAs on
the gene, and neither of them regulates the 3′ UTR reporter
activity; thus it is likely that these 3 myo-miRs regulate CXCR4
expression through mechanisms unrelated to the 3′ UTR.

Existing evidence suggest that myo-miRs may also regulate PC
differentiation24. For example, miR-1 has been shown to enhance

the angiogenic differentiation of human cardiomyocyte progeni-
tors25, and over-expression of miR-1 improves the effectiveness of
MSC transplantation in the infarcted heat26. MiR-499 has been
shown to induce cardiac differentiation of rat MSCs through
Wnt/β-catenin signaling pathway27. Most interestingly, combined
injection of miR-1, 133, 208, and 499 to the ischemic myo-
cardium is capable of inducing the reprogramming and conver-
sion of fibroblasts to cardiomyocyte-like cells and improves heart
function28,29. These observations suggest that, in addition to
promoting BM PC mobilization, exosomal myo-miRs may also
modify the potency of PCs30.

A weakness of this study is that we did not examine those
exosomes from non-myocardial origin, such as endothelial and
platelet miRNAs. It is possible that some miRNAs from other
cell-types in the injured heart may also contribute to the BM
response, which remains to be tested in the future. Similarly, due
to the scope of this current study, we did not evaluate the func-
tional significance of this systemic myo-miRs-SDF1/CXCR4
pathway on PC-mediated cardiac repair, which might be chal-
lenging to differentiate myo-miRs’ BM PC effects from their
direct cardiac effects31.

In conclusion, our data demonstrate that circulating exosomal
myo-miRs released from the ischemic heart can mediate BM PC
mobilization by targeting CXCR4 expression. Because of the
critical role of BM PCs in the ischemic tissue repair, the
mechanism identified in this study could be an important com-
ponent of the physiological response to ischemic injury and thus
could be leveraged for treatment of ischemic heart disease.

Methods
Mouse care and AMI surgery. All animal experiments in this report were
approved by the Animal Care and Use Committee of Huazhong University of
Science and Technology and performed in compliance with the “Guide for the Care
and Use of Laboratory Animals” (NIH publication) and all relevant ethical reg-
ulations for animal testing and research. Male, 8 week-old C57BL/6 mice were used
for all the experiments unless specified. For surgical induction of AMI, the mice
were anesthetized by intraperitoneal injection of sterile pentobarbital sodium
(50 mg/kg body weight, Sigma-Aldrich, St. Louis, MO, USA). After endotracheal
intubation and mechanical ventilation, the chest of mouse was open by a left
intercostal thoracotomy. AMI was induced by permanent ligation of the left
anterior descending coronary artery (LAD) as we previously described32. The
Sham-operated animals went through all the procedures except LAD ligation. Post-
operative care was performed by following our approved animal study protocol.
For pain management, Metacam was subcutaneously injected (1 mg/kg) at the end
of surgery and continued twice daily for 3 days.

Human studies. Human studies were approved by the Institutional Review Board
for Human Use (IRB) of the University of Alabama at Birmingham (protocols IRB-
151201004 and IRB X130807012) and performed in adherence to the Belmont
Report and Declaration of Helsinki. Informed consent was obtained from all
subjects. Plasma samples were drawn from three patients (age range 49–74 yo; two
males, one female) with underlying coronary artery disease and acute ST–elevation
myocardial infarction during their initial hospital presentation, immediately prior
to coronary intervention and stent placement. Control plasma samples were
obtained from three patients (age range 64–78 yo; one male, two females) with
underlying coronary artery disease (but without evidence of acute coronary syn-
drome) after elective percutaneous coronary intervention.

Isolation and labeling of circulating exosomes. Exosomes were isolated from
mouse and human plasma by following recommended protocols33–35. The plasma
was centrifuged at 3000 × g for 15 min to remove cell debris and platelets. Then
each 250 μL platelet-free plasma was added into 63 μL ExoQuick Exosome Pre-
cipitation Solution (System Biosciences Co., Ltd., USA) and carefully mixed. After
4 °C refrigeration for 30 min, the mixture was centrifuged at 1500 g for 30 min at
4 °C to sediment exosomes (20 μg exosomes/250 μL platelet-free plasma). The
supernatant was collected as non-exosomal component. For comparison, exosomes
and the non-exosomal component from equal amount of plasma were used. To
facilitate tracking in vitro and in vivo, exosomes were labeled with PKH67 Green
Fluorescent Cell Linker Kit (Sigma-Aldrich Co., Ltd., USA) by following the
manufacturer’s protocol. The amounts of exosomes chosen for use in the in vitro
and in vivo experiments were based on our previously report36.
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qRT-PCR analysis of myo-MiRs in the plasma and exosomes. Plasma RNAs
were isolated from 250 μL plasma samples using 750 μL TRI reagent (TB126-200,
Molecular Research Center, Inc.) according the manufacturer’s protocol. To extract
RNAs from exosomes, the exosome pellet was suspended in 1 mL of TRIzol reagent
(Invitrogen) and quantified by NanoDropTM 2000/2000c Spectrophotometers
(ThermoFisher Scientific). Equal quantity (5 ng) of total RNAs from each sample
was used for cDNA synthesis by using a PrimeScript® RT reagent kit (Takara). The
reverse transcriptions of miRNAs were performed by looped miRNA-specific RT
primers for myo-miRs (miR-1a, miR-208a, miR-133a and miR-499-5p) and
reference miRNAs (miR-19b-3p, 103-3p, 154-5p, 200b-3p, 342-3p, and 434-3p)
(Guangzhou RiboBio). The reference miRNAs are stably-expressed in the circu-
lation as determined by miRNA sequencing of plasma collected from AMI and
Sham mice (Supplementary Table 1). PCR reactions were performed in SYBR®
Green Master Mix (Takara). The cycling program for miRNAs included a 20 s
initial pre-incubation at 95 °C followed by 37 cycles of 95 °C for 10 s, 60 °C for 20 s,
and 70 °C for 1 s. Real-time PCR was conducted in an ABI PRISM 7900 Sequence
Detector system (AB Applied Biosystems). The Ct value was defined as the cycle
number at which the fluorescence exceeded the threshold of 100 RFU. The plasma
samples with similar Ct values (difference < 0.3) for each of all six reference
miRNAs were considered to have same amounts of starting RNAs, and the Ct
values of circulating myo-miRs in AMI and Sham samples with same amounts of
starting RNAs were compared directly. All PCR primer sequences are reported in
Supplementary Table 2.

BM-MNC and PB-MNC isolation. About 1 ml PB was collected from each group
by aspiration from heart, and BM was obtained by flushing the cavity of femurs
and tibias. MNCs were obtained by density centrifugation using 1.083 g/ml Lym-
phocyte separation medium (MP Co., Ltd.), as we previously described22,37.

Flow cytometry. Cells were blocked with 50% rat serum and mouse Fc blocker
(BD Bioscience) for 10 min, then stained for 30 min with fluorophore-conjugated
antibodies, anti-Lin-FITC (eBioscience; 17A2/RA3-6B2/M1-70/TER-119/RB6-8C5,
1:25), anti-c-kit-PE (eBioscience; 104D2, 1:25), anti-CD105-PE (eBioscience, MJ7/
18, 1:25), anti-CD11b-FITC (eBioscience; M1/70, 1:25), anti-CD34-PE (Invitrogen;
MEC14.7, 1:25), anti-CD45-PE (eBioscience; 30-F11, 1:25), or their corresponding
isotype control antibodies (eBioscience). For CXCR4 staining, primary monoclonal
CXCR4 antibody (abcam; EPUMBR3, 1:25) and FITC- or APC-conjugated sec-
ondary antibody (goat-anti-rabbit IgG; BD Bioscience) were used. The cells were
firstly gated for the intact cell population using forward scatter versus side scatter
plots. All flow cytometry data were acquired on an LSRII (BD Biosciences, CA) and
analyzed with FlowJo (Treestar, OR).

BM-MSC culture. BM-MSCs were obtained from mice as described previously22.
Briefly, BM-MNCs were cultured in low glucose DMEM medium (HYCLONE Co.,
Ltd., USA) supplemented with 10% FBS (Gibco Co., Ltd., USA); 24 h later, the
unattached cells were removed, and the attached cells were cultured continuously
until 80%~90% confluence (referred as passage 0, P0). The P0 cells were then
detached with trypsin-EDTA (HYCLONE Co., Ltd., USA) and split 1:2 or 1:3 into
new plates as P1 cells. For the experiments reported in this study, BM-MSCs at P3-
P5 were used after verification with flow cytometry analyzes for expression of MSC
markers (i.e., CD44 and CD105) and absence of hematopoietic markers (i.e., CD34
and CD45).

Western blotting. Proteins were extracted using RIPA Lysis Buffer (Thermo
Fisher Scientific, MA, USA) containing protease inhibitors cocktail (Cell Signaling
Technology, MA, USA). Protein concentration was measured using the BCA
Protein Assay Kit (Beyotime Institute of Biotechnology). Then, protein extract
(20 μg) was separated by SDS-PAGE and transferred onto polyvinylidene fluoride
microporous membranes (Merck Millipore, Darmstadt, Germany). The membrane
was blocked with 5% milk in 0.5% Tris-buffer saline solution (pH 7.6) for 1 h, then
incubated overnight at 4 °C with primary antibodies for CXCR4 (abcam; UMB2,
1:1000), GAPDH (abcam; EPR16891, 1:5000), CD9 (abcam; EPR2949, 1:2000),
CD63 (Santa Cruz; MX-49.129.5, 1:200), TSG101 (abcam; EPR7130(B), 1:1000), or
actin (abcam; EPR16769, 1:5000). The membrane was then incubated at room
temperature for 30 min with HRP-conjugated secondary antibodies. The image
data were collected on Bio-Rad molecular Imager with Image LabTM Software and
analyzed with NIH ImageJ.

Overexpression of myo-miRs in BM-MNCs and BM-MSCs. Myo-miRs mimics
were synthesized by RiboBio Co., Ltd. (Guangzhou, China) based on mouse mature
miR sequences: miR-1a (miRBase IDs: MIMAT0000123), miR-208a (miRBase IDs:
MIMAT0000520), miR-133a (miRBase IDs: MIMAT0000145) and miR-499-5p
(miRBase IDs: MIMAT0003482). The transfection was carried out by using the
riboFect™ CP Transfection Kit (RiboBio Co., Ltd.) according to the manufacturer’s
instructions.

Inhibition of myo-miRs. AntagomiRs are chemically modified anti-sense single-
stranded RNA molecules complementary to the mature miRNAs, which can inhibit

target miRNAs via degradation and are stable in vivo for at least 2 weeks38.
MicrOFF™ myo-miRs (miR-1a, miR-208a, miR-133a and miR-499-5p) antagomirs
and micrOFF™ miRNA antagomir Negative Control were synthesized by RiboBio
Co., Ltd. The sequences of these myo-miRs antagomirs are: miR-1a antagomir, 5′-
AUA CAU ACU UCU UUA CAU UCC A-3′; miR-208a antagomir, 5′-ACA AGC
UUU UUG CUC GUC UUA U-3′; miR-133a antagomir, 5′-CAG CUG GUU GAA
GGG GAC CAA A-3′; miR-499-5p antagomir, 5′-AAA CAU CAC UGC AAG
UCU UAA-3′. The four antagomiRs were injected separately, with 1 h intervals, via
the tail vein at a dose of 80 mg total antagomiRs (20 mg each in 75 μL volume)/kg
body weight/day for 3 consecutive days according to the manufacturer’s instruc-
tions39. The antagomir negative control was administered at the same dose and
injection intervals. The functional inhibition of myo-miRs by the administered
antagomirs in vivo was verified by qRT-PCR of the myo-miRs’ known targets in
the heart.

PC colony-forming assay. The PC colony-forming assay was performed in 35-mm
dishes with a semisolid methylcellulose medium containing SCF and other
recombinant cytokines (MethoCult GF M3434, StemCell Technologies, Canada) by
following the manufacturer’s protocol; 2 × 105 PB-MNCs were seeded in each dish,
and colonies were counted 12 days later, as we described previously9.

Statistical analysis. All values are reported as mean ± s.e.m. Two-tailed Student’s
t-test was used to compare two means. One-way or two-way analysis of variance
(ANOVA) with a Bonferroni correction was used to compare multiple (>2) means
with one or two independent variables, respectively. A p-value of <0.05 was con-
sidered significant.

Reporting summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The microRNA-seq data is accessible at Gene Expression Omnibus (accession number:
GSE124545). All remaining data are included in the article and Supplementary
Information files, or available from the authors upon reasonable request.
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