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Previous studies have demonstrated a close relationship between early Parkinson’s
disease and functional network abnormalities. However, the pattern of brain changes
in the early stages of Parkinson’s disease has not been confirmed, which has important
implications for the study of clinical indicators of Parkinson’s disease. Therefore, we
investigated the functional connectivity before and after treatment in patients with early
Parkinson’s disease, and further investigated the relationship between some topological
properties and clinicopathological indicators. We included resting state-fMRI (rs-fMRI)
data from 27 patients with early Parkinson’s disease aged 50–75 years from the
Parkinson’s Disease Progression Markers Initiative (PPMI). The results showed that
the functional connectivity of 6 networks, cerebellum network (CBN), cingulo_opercular
network (CON), default network (DMN), fronto-parietal network (FPN), occipital network
(OCC), and sensorimotor network (SMN), was significantly changed. Compared to
before treatment, the main functional connections were concentrated in the CBN
after treatment. In addition, the coefficients of these nodes have also changed. For
betweenness centrality (BC), the FPN showed a significant improvement in treatment
(p < 0.001). In conclusion, the alteration of functional networks in early Parkinson’s
patients is critical for clarifying the mechanisms of early diagnosis of the disease.

Keywords: Parkinson’s disease, resting state-fMRI, functional connectivity, fronto_parietal network, graph theory

INTRODUCTION

Parkinson’s disease (PD) is a multi-system neurodegenerative disease that commonly affects
middle-aged and elderly people. The main pathological feature of PD is the degeneration and death
of substantia nigra dopamine neurons (Bene et al., 2009; Wu and Hallett, 2013). The clinical features
of PD are movement disorders such as rigidity, resting tremor, bradykinesia, and gait disturbance
(Bene et al., 2009; Colosimo et al., 2010). Currently, due to the clinical features of PD, resting-state
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functional magnetic resonance imaging (rs-fMRI) techniques are
used in clinical diagnosis to study the pathogenesis of PD.

Rs-fMRI is an emerging non-invasive method combining
functional, imaging, and anatomical information to detect
spontaneous neural activity at baseline. Magnetic resonance
imaging, as a non-invasive examination method, will be used
for long-term medical examinations, while functional magnetic
resonance imaging, as a magnetic resonance imaging method that
reflects the level of blood oxygen in the brain, can effectively and
real-time reflect the state of brain activity (Wong et al., 2021).
In addition, rs-fMRI can non-invasively detect various functional
areas of the brain, so it can be used for long-term brain research
(Emiliano et al., 2012). FMRI includes task-state functional
magnetic resonance imaging and rs-fMRI. Rs-fMRI refers to
subjects remaining still, eyes closed, not thinking, not instructing,
or assigning tasks during the examination (Crossley et al., 2014).
Resting-state imaging is a state in which the subject remains
awake, not receiving any external stimuli, and performing any
advanced tasks. Task state imaging is that subjects complete some
specific tasks during the inspection process, such as observing
pictures, finger movements, airflow tactile stimulation, etc. Rs-
fMRI mainly detects spontaneous fluctuations of unstimulated
blood oxygen level-dependent effects. It shows the spontaneous
activity of neurons in the resting state (Gold et al., 2007; Goetz
et al., 2010). Compared to task-state imaging, rs-fMRI has many
advantages: no complex tasks, easy patient coordination, and
high experimental reproducibility (Don et al., 2021; Niu et al.,
2021). Furthermore, it reduces the impact of specific tasks on
subjects (Shalchy and Asemani, 2015; Sair et al., 2016). Rs-fMRI
can study different neural networks simultaneously. It improves
the success rate of diagnosing disease-related connections. Rs-
fMRI technology has been very mature in the application of
mental diseases, such as PD, Alzheimer’s disease and depression
(Yan et al., 2018, 2019; Yang et al., 2018, 2020; Liu et al.,
2022). Now, resting-state-based brain functional network studies
have identified some intrinsic networks in the brain, such as
sensorimotor network (SMN) (Lagana et al., 2020; Caspers
et al., 2021; Palmer et al., 2021), fronto-parietal network (FPN)
(Engels et al., 2018; Boon et al., 2020), default network (DMN)
(Rektorova, 2014; Putcha et al., 2015), etc. For PD, the main
research point is to focus on changes in resting brain networks in
patients with Parkinsonian movement disorders (Liu et al., 2021).

As an important organ of the human body, the complex
structure and function of the brain are the focus of scholars’
research. The topology between neurons, or clusters of neurons,
forms a complex brain network that determines how the entire
brain works. Graph theory is an important tool for describing
network characteristics and is widely used to study the topological
properties of structural and functional networks in the human
brain (Medani et al., 2010; Dehmer et al., 2017). It provides a
complex brain network model and helps to better understand
the connections between network structures. Graph theory can
be used to examine the connections between brain functional
connectivity and information integration and human behavior,
as well as to examine the impact of neurological diseases on brain
network structure (Medani et al., 2010). In recent years, based
on the complex network theory of graph theory, researchers have

found that functional brain networks constructed by rs-fMRI
have many important topological properties. For example, degree
centrality (DC) shows many connections between cognition
and behavior. The complex functional network of the brain is
affected by brain diseases such as schizophrenia, Alzheimer’s
disease and PD (Xie et al., 2019; Li et al., 2020; Pei et al.,
2020). Graph theory is a great way to uncover the impact
of these diseases on brain function. In addition, there are
marked functional abnormalities in the brain networks of PD.
These abnormalities are concentrated in the SMN and FPN
(Dung and Thao, 2018; Chung et al., 2019). The functional
connectivity and topological properties of these networks change
as the disease progresses. Combining rs-fMRI analysis with graph
theory analysis is beneficial to study the important role of specific
brain networks in PD.

At present, the mechanism of changes in cerebral cortex
function is a hot issue in the research of central nervous system
diseases, but there are few reports on the mechanism of changes
in cerebral cortex function related to PD. In previous studies,
some scholars have used functional imaging equipment such as
PET and MRI to prove that there are metabolic and functional
disorders in the frontal and parietal cortex of PD patients
(Monchi et al., 2004; Beyer and Aarsland, 2008; Li et al., 2018).
However, current research on PD has focused on the nigrostriatal
system (Dung and Thao, 2018). Most of the migratory functional
areas of the cerebral cortex are located in the frontal and
parietal cortex, and most of the connective fibers between the
basal ganglia and the cortex project to this area simultaneously.
Moreover, the cortex of the frontal and parietal lobes plays an
important role in the development of movement as direct and
indirect feedback channels for information processing. A large
number of studies have shown that under rs-fMRI, patients with
PD have reduced functional connectivity in the sensorimotor
area, frontal and parietal networks (Lee et al., 2012; Baek et al.,
2014), and Parkinson’s drug treatment can improve and enhance
the functional connectivity of the FPN. Changes in the functional
connectivity of the FPN can be regarded as an important
feature of PD. Therefore, studying the functional changes in this
region will help people to understand the pathogenesis of this
disease more deeply.

This study aims to explore the pathogenesis of PD, find the key
networks and brain regions for early PD treatment, and provide
a scientific basis for clinical treatment of PD. We analyzed rs-
fMRI data from the Parkinson’s progression markers initiative
of 27 patients aged 50 to 75 years with early-stage PD. In
this study, by reconstructing the cerebellum network (CBN),
cingulo_opercular network (CON), DMN, FPN, occipital lobe
network (OCC), SMN and other brain functional networks, to
explore the par Brain changes in Kinson’s disease. At the network
level, compared to before treatment, we analyzed improvements
in functional connectivity and topological properties of brain
functional networks in all PD patients. Specific steps are
as follows. First, compared to before treatment, functional
connectivity and topological properties of all brain regions
were analyzed by paired t-test to find improved brain regions.
Second, the functional connectivity and topological properties
of individual networks were obtained by weighted averaging

Frontiers in Computational Neuroscience | www.frontiersin.org 2 May 2022 | Volume 16 | Article 891384

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-16-891384 May 21, 2022 Time: 15:26 # 3

Liu et al. Topology of PD Is Improved

of the functional connectivity and topological properties of the
brain regions included in the network. The same paired t-test
was applied. Finally, brain regions and networks with significant
differences before and after treatment were selected and Pearson-
correlated with dyskinesia scores.

MATERIALS AND METHODS

Participants
All rs-fMRI data and T1 data were downloaded from PPMI.1

The PPMI dataset is a comprehensive observational international
multicenter study to identify biomarkers of PD progression,
improve understanding of disease etiology and progression, and
provide biomarkers to improve PD treatment efficacy. Data was
downloaded from PPMI database on September 21, 2020.

In this dataset, patients were screened by inclusion criteria:
(1) aged between 50 and 75 years; (2) with asymmetric resting
tremor or asymmetric bradykinesia, or both of these symptoms,
including bradykinesia, resting Tremor, and rigidity; (3) PD
diagnosed within 2 years of study enrollment; (4) Hoehn and Yahr
stage (HY) I or II at enrollment. Prior to the start of the study,
each study site participating in the PPMI study was approved
by the Human Experimentation Ethics Standards Committee,
and written informed consent was obtained from all participants.
Disease staging was assessed using the Hoehn and Yahr staging
score, disease severity was assessed using the Unified PD Rating
Scale III (UPDRSIII), and overall cognitive function was assessed
using the Mini Mental State Examination (MMSE). Details of
the study methodology have been published elsewhere and are
available on the PPMI website. After exclusion of poor quality
neuroimaging data, 27 PD patients (61.16 ± 7.80 years) were
finally included in the analysis. Prior to the study, each PPMI
subject was approved by the Human Trials Ethics Committee and
signed an informed consent form.

Neuroimaging Data Preprocessing
Based on the MATLAB software platform, the DPABI toolbox
was used to preprocess the rs-fMRI data. The steps are as follows.
First, the first 10 time points were removed to improve the
signal-to-noise ratio. Second, slice time and head motion was
corrected for differences between scan layers. Third, functional
data were normalized to Montreal Neurological Institute (MNI)
space based on anatomical images (T1-weighted images) of each
subject to obtain time-series signals of various regions of the
brain. Fourth, spatially smooth the data. Fifth, global mean
signal intensities were normalized across operations, filtered
through a temporal bandpass (0.01–0.08 Hz), and detrimental
covariates (head motion, ventricle, white matter and CSF signals,
and whole-brain signals) were regressed to improve movement
Correction of related artifacts. Finally, the brain was divided
into 160 regions using the Dosenbach_Science_160 ROIs atlas
(Dos160) (Dosenbach et al., 2010). The average time signal series
of each brain region was extracted, and the Pearson correlation
coefficient of each pair of brain region time series was calculated

1http://ppmi-info.org/study-design

as the functional connectivity strength of the brain region. The
correlation coefficients were converted to a normal distribution
using Fisher’s Z transformation (Ewing-Cobbs et al., 2006). The
calculation results are represented by a 160 × 160 correlation
coefficient matrix (Nandhagopal et al., 2009; Gollo et al., 2015).

Functional Network Construction
A network consists of edges and nodes. The entire
cerebral cortex is divided into 160 regions according to the
Dosenbach_Science_160 ROIs atlas. For individual networks,
160 distinct brain regions in the Dos160 graph are defined as
nodes, and reconstructed fiber tracts connecting brain regions
represent edges. The connectivity features of individual subjects
are represented by the strength of connectivity between regions
of interest. The average signal of the ROI was calculated by
averaging the preprocessed bold signal over all vertices within the
ROI. Then, the connectivity between the two ROIs is estimated
using Pearson correlation and converted to Z-values using Fisher
z-transform (Sung et al., 2016).

To elucidate changes in each functional network, these
cortical connections were grouped according to six functional
networks, including the CBN, the CON, the DMN, the FPN,
the OCC, and the SMN. First, we performed independent
paired t-test on the functional connectivity of all regions of
interest before and after treatment to select brain regions with
significant differences (Kubler et al., 2019). Based on selected
brain regions, we calculated average functional connectivity
values for each network. Second, we used GRETNA2 to calculate
global network parameters, including network efficiency, local
efficiency, and small-world properties (Stam et al., 2007), and
node network parameters, including each participant’s BC, DC,
Node Clustering Coefficient (NCp), Node Efficiency (Ne), Node
Local Efficiency (NLe), Node Shortest Path (NLp) (Zhang
et al., 2012; Yamamoto et al., 2017). Third, brain regions with
significant differences were selected for subsequent analysis.
Finally, the same analysis steps were applied at the network level.

Statistical Analysis
All statistical analyses were performed using the Social Sciences
Statistical Package 23.0.3 To more intuitively compare the
changes in each brain region before and after treatment, we used
paired t-test to compare the functional connectivity and nodal
parameters of patients before and after treatment. We applied
multiple comparison false detection rate (FDR) correction,
Q < 0.05 (Benjamini and Hochberg, 1995), to obtain brain
regions with significant changes (Engels et al., 2018). The
functional connectivity and topological properties of selected
brain regions were Pearson-correlated with the motor scale
UPDRSIII to determine whether this brain region was strongly
associated with motor symptoms. On the network side, the
number of brain regions in each brain network was recorded. The
average value of the topological properties in the brain network is
calculated instead of the total value as the topological properties
of this brain network to avoid the influence of network size.

2http://www.nitrc.org/projects/GRETNA/
3http://www.spss.com/

Frontiers in Computational Neuroscience | www.frontiersin.org 3 May 2022 | Volume 16 | Article 891384

http://ppmi-info.org/study-design
http://www.nitrc.org/projects/GRETNA/
http://www.spss.com/
https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-16-891384 May 21, 2022 Time: 15:26 # 4

Liu et al. Topology of PD Is Improved

RESULTS

Significant Differences in Functional
Connectivity After Treatment
Table 1 lists the demographic characteristics of the 27 PD
patients. We calculated functional connectivity before and after
treatment in 27 PD patients. The functional connectivity with
significant differences in each network was selected and then
averaged as the functional connectivity of each network. Paired
t-test was performed on functional connectivity of each network
before and after treatment. All results are FDR corrected. As
shown in Figure 1, including CBN (p< 0.001), CON (p< 0.001),
DMN (p = 0.004), FPN (p < 0.001), OCC (p = 0.001),
and SMN (p < 0.001), all six networks were significantly
different. Furthermore, the functional connectivity of CBN,
DMN, FPN, OCC, and SMN was significantly enhanced after
treatment compared with before treatment, while the opposite
was true for CON.

The functional connectivity with significant difference
(p < 0.05) before and after treatment was selected, and then the
difference in functional connectivity was Pearson correlated with
the difference in motor symptom scale (UPDRSIII) before and
after treatment. Finally, 82 edges with significant correlation were
selected (see Figure 1). Notably, Figure 1 visually shows that
relevant functional connectivity is clustered in the cerebellum.

Analysis of Node Network Parameter
We performed independent paired t-test on 6 different node
network parameters for each ROI (160 regions of interest) in
PD patients before and after treatment, including BC, DC,
NCp, Ne, NLe, NLp.

For BC, after treatment, a significant increase was found in
dFC_R, lat cerebellum_R, inf cerebellum_L, med cerebellum_R1;
a significant decrease was found in occipital_L1, parietal_L1,
parietal_L2, parietal_L3 and temporal_L. For DC, after
treatment, a significant increase was found in precuneus_L,
inf temporal_L, lat cerebellum_R, inf cerebellum_L, and

TABLE 1 | Basic demographic characteristics and global network parameters.

Feature PD (pre) PD (post) Group comparisons
(statistical

significance)

Demographics

Age (years) 61.16 ± 7.80 63.16 ± 5.78 p < 0.001***

Gender 14M/13F 14M/13F N/A

Weight (kg) 80.81 ± 17.71 79.53 ± 16.82 p = 0.342

HY 1.44 ± 0.51 1.82 ± 0.48 N/A

Motor

MDS-UPDRSII 5.08 ± 2.32 7.00 ± 2.53 p = 0.264

MDS-UPDRSIII 17.07 ± 6.22 20.33 ± 10.34 p = 0.003**

Non-motor

MDS-UPDRSI 9.12 ± 6.23 9.04 ± 4.53 p = 0.168

MDS-UPDRS, Movement Disorders Society-Unified Parkinson’s Disease Rating
Scale. **Represents a significance level of p < 0.01, *** represents a significance
level of p < 0.001.

med cerebellum_R1; a significant decrease was found in post
cingulate_L, IPS_L, parietal_L2 and occipital_R1. For NCp,
after treatment, we found a significant increase in aPFC_R;
a significant decrease was found in mPFC, occipital_L2, mid
insula_L, and med cerebellum_R2. For Ne, after treatment,
a significant increase was found in inf temporal_L, lat
cerebellum_R, inf cerebellum_L and med cerebellum_R1; a
significant decrease was found in precuneus_L, post cingulate_L,
IPS_L, vFC_R, parietal_L2, occipital_R1, occipital_R2. For NLe,
after treatment, a significant decrease was found in precuneus_R,
occipita_L2, med insula_L, med cerebellum_R2. For NLp, after
treatment, a significant increase was found in precuneus_L,
post cingulate_L, dlPFC_R, ACC_L, fusiform_R; a significant
decrease was found in inf cerebellum_L, inf cerebellum_R (see
Table 2 and Figure 2).

Treatment Enhances the Betweenness
Centrality of Fronto-Parietal Network
The nodal coefficients with significant differences were selected
to perform Pearson correlation with UPDRSIII, thereby selecting
brain regions with significant correlations. Among them, for Ne,
there is a significant correlation between vFC_R of SMN and
UPDRSIII. Significant correlation between ACC_L of FPN and
UPDRSIII for NLp (see Figure 3).

To clarify the changes in each functional network, these brains
were divided into six functional networks, including the CBN,
CON, DMN, FPN, OCC, SMN. The results showed that for BC,
the FPN network not only showed a significant improvement
in treatment (p < 0.001), but also had a significant correlation
with UPDRSIII. We draw a conclusion from this that treatment
enhances the BC of FPN.

DISCUSSION

The main purpose of this study was to reveal changes in
brain networks in PD patients after drug treatment from the
perspective of functional connectivity and graph theory, and
to explore the relationship between these features and motor
symptoms. In our study, based on functional connectivity, there
were significant differences in the 6 networks of the patients
after treatment, of which 5 networks including CBN, DMN,
FPN, OCC, SMN had obvious functional enhancement, while the
functional connectivity of CON was weakened. We suspect it is
the compensatory mechanism. In addition, important relevant
functional connections are mainly concentrated in the CBN. For
the nodal network coefficients, compared to before treatment
there were also significant differences after treatment, which
were mainly concentrated in the brain regions of the DMN
and the CBN. It is worth mentioning that we have also done
research on global network coefficients, including small worlds,
network efficiency, and rich clubs, and there are no significant
differences. For BC, the FPN network not only showed significant
improvement after treatment (p < 0.001), but also had a
significant correlation with the Motor Symptom Scale. Numerous
studies have shown that functional connections between the FPN
and other brain regions are reduced in patients with PD under

Frontiers in Computational Neuroscience | www.frontiersin.org 4 May 2022 | Volume 16 | Article 891384

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-16-891384 May 21, 2022 Time: 15:26 # 5

Liu et al. Topology of PD Is Improved

FIGURE 1 | Paired t-test results of average functional connectivity of six networks before vs. after treatment. CBN, cerebellum network; CON, cingulo_opercular
network; DMN, default network; FPN, fronto-parietal network; OCC, occipital lobe network; SMN, sensorimotor network. ** Represents a significance level of
p < 0.01, *** represents a significance level of p < 0.001. (A) Paired t-test bar chart of average functional connections of six networks before vs. after treatment.
(B) Functional connections with significant differences after treatment.

TABLE 2 | Significant differences of node network parameters.

Network Brain regions p-values MNI-coordinates

BC DC NCp Ne NLe NLp X (mm) Y (mm) Z (mm)

DMN mPFC 0.412 0.657 ↓0.042* 0.901 0.069 0.365 0 51 32

Precuneus_L 0.123 ↑0.002** 0.826 ↓0.003** 0.58 ↑0.002* –3 –38 45

Inf temporal_L 0.618 ↑0.003** 0.145 ↑0.002** 0.051 0.155 –61 –41 –2

Post Cingulate_L 0.167 ↓0.014* 0.887 ↓0.022* 0.539 ↑0.029* –5 –52 17

Precuneus_R 0.388 0.853 0.068 0.647 ↓0.04* 0.398 11 –68 42

IPS_L 0.076 ↓0.04* 0.704 ↓0.04* 0.739 0.419 –36 –69 40

Occipital_L1 ↓0.003** 0.445 0.722 0.364 0.616 0.358 –9 –72 41

Occipital_L2 0.694 0.718 ↓0.03* 0.571 ↓0.03* 0.584 –42 –76 26

FPN dlPFC_R 0.069 0.087 0.604 0.065 0.91 ↑0.035* 40 36 29

ACC_L 0.259 0.074 0.421 0.08 0.293 ↑0.01* –1 28 40

dFC_R ↑0.031* 0.39 0.685 0.417 0.679 0.354 40 17 40

CON aPFC_R 0.248 0.333 ↑0.047* 0.345 0.05 0.433 27 49 26

Med insula.L 0.705 0.219 ↓0.04* 0.18 ↓0.015* 0.132 –30 –14 1

Fusiform_R 0.236 0.072 0.491 0.101 0.615 ↑0.038* 54 –31 –18

Parietal_L1 ↓0.012* 0.348 0.306 0.276 0.544 0.587 –55 –44 30

SMN vFC_R 0.063 0.057 0.329 ↓0.048* 0.153 0.914 43 1 12

Parietal_L2 0.074 ↓0.017* 0.617 ↓0.026* 0.291 0.206 –38 –15 59

Parietal_L3 ↓0.016* 0.054 0.885 0.067 0.732 0.066 –47 –18 50

Parietal_L4 ↓0.024* 0.507 0.101 0.497 0.156 0.343 –55 –22 38

Temporal_L ↓0.008** 0.226 0.589 0.178 0.977 0.241 –54 –22 9

OCC Occipital_R1 0.3 ↓0.014* 0.828 ↓0.028* 0.831 0.286 36 –60 –8

Occipital_R2 0.906 0.054 0.645 ↓0.047* 0.567 0.054 20 –78 –2

CBN Lat cerebellum_R ↑0.025* ↑0.041* 0.894 ↑0.039* 0.669 0.057 21 –64 –22

Inf cerebellum_L ↑0.045* ↑0.019* 0.369 ↑0.01* 0.526 ↓0.022* –34 –67 –29

inf cerebellum_R 0.057 0.076 0.976 0.115 0.94 ↓0.041* 33 –73 –30

Med cerebellum_R1 ↑0.011* ↑0.017* 0.161 ↑0.008** 0.275 0.251 5 –75 –11

Med cerebellum_R2 0.155 0.167 ↓0.019* 0.125 ↓0.043* 0.093 14 –75 –21

BC, Betweenness Centrality, DC, Degree Centrality; NCp, Nodal Cluster Coefficients; Ne Nodal Efficiency; NLe, Nodal Local Efficiency; NLp, Nodal Shortest Path Lengths.
*Represents a significance level of p < 0.05, ** represents a significance level of p < 0.01.
↑Means that the topological property increases after treatment.
↓Means that the topological property decreases after treatment.
Values with p < 0.05 are bolded for better visualization.
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FIGURE 2 | Brain regions with significant changes in nodal parameters. The red circles represent brain regions with significantly increase nodal parameter after
treatment and the blue circles represent brain regions with significantly decreased nodal parameter after treatment.

FIGURE 3 | Brain regions that are significantly correlated with the scale and have different node parameters before vs. after treatment. *Represents a significance
level of p < 0.05, ** represents a significance level of p < 0.01. (A) The correlation between the node efficiency of vFC_R and UPDRSIII. (B) The column chart of the
node efficiency of VFC_ R before vs. after treatment. (C) The correlation between the node shortest path of ACC_L and UPDRSIII. (D) The column chart of the node
shortest path of ACC_L before vs. after treatment. (E) The correlation between the betweenness centrality of FPN and UPDRSIII. (F) The column chart of the
betweenness centrality ofFPN before vs. after treatment.

rs-fMRI (Engels et al., 2018; Boon et al., 2020). Our study shows
that treatment can effectively enhance functional connections
between the FPN and other brain regions.

While traditional PD research has focused on basal ganglia
dysfunction, this study supports a role for the cerebellum in PD.
Previous studies have confirmed the presence of dopaminergic

meridians and dopamine D1–3 receptors in the cerebellum
(Wu and Hallett, 2013). The cerebellum receives dopaminergic
projections from the ventral tegmental area/substantia nigra pars
compacta. Differences in cerebellar activity may be considered
a pathological mechanism related to basal ganglia dysfunction
or a compensatory mechanism (Ballanger et al., 2008). The

Frontiers in Computational Neuroscience | www.frontiersin.org 6 May 2022 | Volume 16 | Article 891384

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/computational-neuroscience#articles


fncom-16-891384 May 21, 2022 Time: 15:26 # 7

Liu et al. Topology of PD Is Improved

nature of cerebellar involvement is complex and may be
influenced by dopamine, patient subtype, and specific symptoms
or assessed function (Giompres and Delis, 2005). In this study,
after treatment, functional connections that were significantly
different and significantly correlated with UPDRSIII clustered in
the cerebellum. Figure 1 visually shows that relevant functional
connectivity is clustered in the cerebellum. Based on the findings,
we can conclude that after treatment, there were significant
changes in the connectivity of the brain functional network,
and these changes were mainly related to the CBN. The typical
tremor type in PD is resting tremor. Studies have shown that the
cerebellum and/or its circuits play a crucial role in Parkinson’s
tremors (Wu and Hallett, 2013).

Our understanding of the role of the cerebellum in PD is
limited, and further research is needed to elucidate cerebellar
pathology associated with PD and how cerebellar pathology and
compensatory effects evolve as the disease progresses. A better
understanding of the functional and morphological changes
of the cerebellum associated with PD will have important
implications for the pathophysiology of PD and may contribute
to the development of new therapeutic strategies and targets.

Graph theory analysis methods have been widely used to
analyze the structural and functional networks of brain magnetic
resonance images (Bullmore and Sporns, 2009; Zhang and Luo,
2017; Ray et al., 2018). This method reflects some properties
of the whole-brain network by quantifying the topological
properties of each sub-network of the whole-brain (Fragkou
et al., 2021). In graph theory, BC is one of the measures of the
centrality of network graphs based on shortest paths. The shortest
path length is one of the indicators to measure the information
transmission ability in the brain, which can be used to evaluate
the functional integration ability of the brain network. The
shorter the length, the higher the functional integration ability.
For a fully connected network graph, any two nodes have at least
one shortest path. In an unweighted network graph, the shortest
path is the sum of the number of paths that contain an edge, and
in a weighted network graph, the shortest path is the sum of the
weights of the paths that contain an edge (Chehreghani, 2014).
The BC of each node is the number of times these shortest paths
pass through that node.

Previous studies have demonstrated reduced functional
connectivity of the FPN to other networks in PD. However,
previous studies on the FPN mostly focused on executive
function and cognitive function (Boon et al., 2020; Fathy et al.,
2020). It has been suggested that the functional connectivity
between FPN and SMN may reflect athletic performance.
Prodoehl and Zhu’s study also showed that compared with
tremor, non-tremor-dominant PD patients had decreased activity
in the globus pallidus and the ipsilateral dorsolateral prefrontal
cortex (a key player in the basal ganglia and FPN), respectively
(Prodoehl et al., 2013; Zhu et al., 2021). Matsui study finds
involvement of the parietal lobe associated with sensorimotor
coordination impairment (Matsui et al., 2005). The cortex of
the frontal and parietal lobes plays an important role in the
development of movement as direct and indirect feedback
channels for information processing. In the research related to
rs-fMRI, patients with PD have reduced functional connectivity

in the sensorimotor area, frontal and parietal networks (Lee
et al., 2012; Baek et al., 2014), and Parkinson’s drug treatment
can improve and enhance the functional connectivity of the
FPN. In our study, the FC and DC of FPN were significantly
enhanced after treatment (see Figures 1, 3). Anyway, FPN is
very important for the treatment of PD (Engels et al., 2018).
This study highlights the changes in the cerebellum and FPN
during the treatment of PD, which is of great significance
for people to further study the pathogenesis of the disease
(Boon et al., 2020).

However, the study still has certain limitations. First,
due to the incomplete website data, our sample size is
small, which makes us ignore the influence of some special
circumstances in the research process. Second, we still use
traditional scales to assess symptoms, which are subject
to the subjective judgment of experienced and trained
physicians. It is possible to reduce the impact of this problem
by using more objective symptom assessment methods.
In my opinion, the following aspects can be considered
in future research work: firstly, increase the sample size
to enhance statistical reliability; secondly, use multiple
batches of data to verify the results to avoid the chance of a
single data; finally, combine the brain Electrogram data to
explore brain changes in PD from a multimodal perspective
(Hu and Zhang, 2020).

CONCLUSION

For the analysis of functional connectivity, we conclude that
there are significant changes in the connectivity of the brain
functional network after treatment, and these changes are mainly
related to the CBN. Combined with graph theory, our study
provides valid evidence about the tight connection between
motor symptoms and FPN networks in PD. These findings
provide important implications for understanding the neural
substrates underlying PD and suggest that FPN may serve as a
new physiological biomarker.
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