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Isotropic inverse opal structures have been extensively studied for the ability to
manipulate cell behaviors such as attachment, migration, and spheroid formation.
However, their use in regulate the behaviors of neural stem cells has not been fully
explored, besides, the isotropic inverse opal structures usually lack the ability to induce
the oriented cell growth which is fundamental in neural regeneration based on neural
stem cell therapy. In this paper, the anisotropic inverse opal substrates were obtained
by mechanically stretching the poly (vinylidene fluoride) (PVDF) inverse opal films. The
anisotropic inverse opal substrates possessed good biocompatibility, optical properties
and anisotropy, provided well guidance for the formation of neural spheroids, the
alignment of neural stem cells, the differentiation of neural stem cells, the oriented growth
of derived neurons and the dendritic complexity of the newborn neurons. Thus, we
conclude that the anisotropic inverse opal substrates possess great potential in neural
regeneration applications.

Keywords: neural regeneration, neural stem cells, neurons, oriented growth, anisotropic inverse opal substrate

INTRODUCTION

Neurodegenerative disorders are usually caused by loss or dysfunction of neurons that results in the
disruption of signal transduction in the nervous system such as neurosensory deafness, Parkinson’s
disease, and Huntington’s disease (Lindvall and Kokaia, 2010). Repairing the neural circuit by
replacement of the dysfunctional neurons would represent an effective cure for neurodegenerative
disorders. Nowadays, based on stem cell transplantation, neural stem cells which possess self-
renewal and pluripotency have become a promising curative agent for neurodegenerative disorders
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treatment (Lindvall et al., 2004; McGinley et al., 2018; Reidling
et al., 2018; Song et al., 2018; Yang et al., 2018; Ahmadian-
Moghadam et al., 2020; Derakhshankhah et al., 2020; Xapelli
et al., 2020). Following transplantation, neural stem cells
can differentiate into neural subtype cells, including neurons,
astrocytes, and oligodendrocytes, in vivo (Gage, 2000). However,
because neural circuits have specific orientations (Rose et al.,
2017), in order to repair the neural circuits and recover the
transduction of neural signals, the newborn neurons need not
only normal functionality, but also must grow towards the target
cells to form synaptic connections. Thus the guided growth of
newborn neurons has become the critical factor for the use of
neural stem cell transplantation in neural regeneration.

With the development of biomaterials, topography has
become a promising physical cue for manipulating cell behaviors
during neural regeneration (Guo et al., 2016; He et al., 2016; Jiang
et al., 2016; Severino et al., 2016; Liu et al., 2018; Han et al.,
2019; Tang et al., 2019; Xia et al., 2019; Fang et al., 2020). The
topography of these materials influences the mechanosensory
apparatus and the spatiotemporal dynamics of the cells (Chen
et al., 2014), and these cell-material interactions play a key factor
in cell behavior regulation (Guilak et al., 2009; Zangi et al.,
2016). Many kinds of biomaterials have been investigated for
guiding cell growth through topography, including nanofibers
(Liu et al., 2010; Xie et al., 2014; Omidinia-Anarkoli et al., 2017;
Zuidema et al., 2018; Li et al., 2019), colloidal nanoparticles
(Antman-Passig et al., 2017; Musoke-Zawedde and Shoichet,
2006), and inverse opal materials (Lu et al., 2014; Shang et al.,
2019; Li et al., 2020). Among the applied biomaterials, inverse
opal materials represent a class of porous structures with
an ordered array of uniform nanoscale or microscale pores,
which possessed well-controlled pore size, long-range ordered
structure, and homogeneous interconnectivity. On the other side,
the 3D porous structure of the inverse opal materials is very
facilitated to the distribution of oxygen/nutrients/cells (Zhang
and Xia, 2012). Thus, the inverse opal materials have been
widely investigated in biomedical applications such as cellular
co-culture (Kim et al., 2014; Im et al., 2017; Mushtaq et al.,
2019), cell migration (Stachowiak and Irvine, 2008; Zhang et al.,
2013; Mushtaq et al., 2019), and fabrication of multicellular
spheroids (Zhang and Xia, 2012; Zhang et al., 2017). However,
their application in guiding the oriented growth of neurons has
not been fully explored.

In this study, we designed the anisotropic inverse opal
substrates with elliptical macro-pores using mechanical
stretching. The substrates were fabricated with PVDF,
which possesses well piezoelectricity and has been widely
applied in biomedical and flexible electronic devices. The
neural stem cell spheroids cultured on the anisotropic
inverse opal substrates exhibited good proliferation, and
the cultured neural stem cells were induced into an
ordered alignment and the newborn neurons showed
oriented growth. In addition, the dendritic complexity
index (DCI) of the newborn neurons was also significantly
increased under the oriented guidance of the anisotropic
inverse opal substrates. These features indicate the
wide biomedical applications of the anisotropic inverse
opal substrates.

RESULTS AND DISCUSSION

Materials Characterization
The fabrication of the inverse opal substrate was based on a
colloidal silica crystal template. As shown in Figure 1A, the
template was manufactured by the vertical deposition of silica
nanoparticles on a glass following by sintering under 500◦C.
A solution of PVDF material dissolved in dimethylformamide
(DMF) was used to fill the void space of the template. The
PVDF solidified after the evaporation of the DMF, and the
silica nanoparticles were dissolved by hydrofluoric acid. Thus
a PVDF inverse opal substrate with highly ordered pore array
was obtained (Figure 1C). To generate anisotropy, the PVDF
inverse opal substrate underwent mechanical stretching along
the uniaxial orientation. As shown in Figures 1D,E, the lengths
increased 3× and 6× under stretching, and the pores of
the inverse opal materials became ellipses. A flat PVDF film
without any topographical features was fabricated as the control
substrate (Figure 1B). This PVDF film possessed the same
material with the inverse opal substrates, thus to exclude the
influence of fabricating material in comparison to the inverse
opal substrates.

Optical Properties of the Substrates
Due to the periodicity of the macropores, the inverse opal
substrates could regulate the photon propagation by the photonic
band gap (PBG), thus exhibiting the structures with different
colors. This coloration derived from the interference between
visible light and structural features is called “structural color.”
The periodic elliptical structures in the stretched anisotropic
inverse opal substrates also possessed photon-manipulating
capability. Thus, the light with certain wavelengths could be
blocked and reflected by the PBG. The reflecting peak of the
structural colors could be described by the Bragg–Snell equation:

λ = 1.633D(n2
average − cos2θ)1/2

In the equation, D represents the distance with the diffracting
point, naverage represents the average index of refraction, and
θ represents the incident Bragg glancing angle. According to
the equation, changes in D or θ are effective approaches to
regulate the structural color. As shown in Figure 2, as the
degree of stretching increased, the round pores of the substrates
gradually became ellipses leading to decreased values of D along
the stretch orientation. This led to a blue-shift in the reflective
peak with a fixed θ (Figure 2D). The blue-shift indicated the
increase of the wavelength, which meant that the wavelength
of reflective light was increased by the PBG of substrates. This
excellent optical property indicates the huge potential of these
substrates in biomedical applications such as detection, sensors
and decoration (Zhu et al., 2017). However, their application in
neural regeneration has not been fully explored.

Promoted Formation of Neural Stem Cell
Spheroids
The ability of self-renewal is a critical factor for neural
stem cells applied in neural regeneration. To explore the
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FIGURE 1 | Materials characterization. (A) Schematic illustration of the manufacturing process of the anisotropic inverse opal substrates; the SEM images of the
PVDF control substrate (B), the inverse opal substrate (C), the 3× stretched substrate (D), and the 6× stretched substrate (E). Scale bars are 1 mm in panels (B–E).

FIGURE 2 | Optical images of the inverse opal substrate (A), the 3× stretched substrate (B), and the 6× stretched substrate (C). (D) The reflecting peaks of the
inverse opal substrates. The purple line matches with panel (A), the orange line matches with panel (B), and the green line matches with panel (C). Scale bars are 1
mm in panels (A–C).

influence of the anisotropic inverse opal substrates on
self-renewal ability, neural stem cell spheroids were seeded
onto the anisotropic inverse opal substrates. A flat PVDF film

without any topographical structures was manufactured as
the control. In these experiments the complexity of serum
components makes it difficult to maintain the undifferentiated
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FIGURE 3 | Promoted formation of neural stem cell spheroids. Fluorescent images of Ki67, Nestin, DAPI, and merged images of neural stem cell spheroids cultured
on the PVDF control (A–D), on the inverse opal substrate (E–H), on the 3× stretched substrate (I–L), and on the 6× stretched substrate (M–P). Scale bars
are 20 µm.

state of neural stem cells in serum-containing medium, so
the seeded neural stem cell spheroids were cultured under
proliferation conditions in serum-free medium. After 7 days
of culture, Ki67 immunofluorescence staining was used to
measure the proliferation of neural stem cell spheroids, and
Nestin immunofluorescence staining was used to measure the
pluoripotency of the neural stem cells. As shown in Figure 3,
the diameters of neural stem cell spheroids increased with the
degree of stretching of the substrates, the number of Ki67
cells significantly increased with the degree of stretching, and
Nestin staining indicated that the neural stem cells maintained
pluoripotency during the culture. In addition, the statistics
of the spheroid diameters and the Ki67-positive cells were
shown in Supplementary Figure S1, which indicates that
the inverse opal substrates promoted the neural stem cell
spheroids formation.

Alignment of Neural Stem Cells
To investigate the guiding effect of the anisotropic inverse
opal substrates, monodispersed neural stem cells were seeded
onto the surfaces of the inverse opal substrates and cultured
under proliferation conditions. The neural stem cells adhered
to the substrates and migrated according to the topographical
induction of the substrates. After 5 days of culture, Nestin
immunofluorescence staining was used to visualize the seeded
neural stem cells and assess their viability at the same time.
As shown in Figure 4, the neural stem cells were random on
the PVDF control, which was similar with the neural stem
cells seeded on the inverse opal substrate without stretching.
However, with increasing degree of stretch, the orientations of
the neural stem cells showed greater alignment on the anisotropic
inverse opal substrates. The statistic of orientation angles of
the neural stem cells validated the fluorescent images, 51.4 and
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FIGURE 4 | Alignment of neural stem cells. The fluorescent images of Nestin, DAPI, and merged images of the neural stem cells cultured on the PVDF control (A–C),
on the inverse opal substrate (D–F), on the 3× stretched substrate (G–I), and on the 6× stretched substrate (J–L). Scale bars are 20 µm.

71.6% of the seeded neural stem cells showed orientation angles
within 10◦ of the stretch direction in the 3× and 6× stretched
anisotropic inverse opal substrates, respectively (Supplementary
Figure S1b). This illustrated the strong guiding effect of the
anisotropic inverse opal substrates.

Differentiation of Neural Stem Cells
To explore the differentiation of neural stem cells under the
guidance of topographical cues, monodispersed neural stem
cells were seeded onto the inverse opal substrates. After culture
for 24 h under proliferation conditions, the neural stem
cells adhered to the surface of the inverse opal substrates.
The culture was then changed to differentiation conditions
with serum-containing medium. After culturing for 7 days,
Tuj1 and GFAP immunofluorescence staining was used to
visualize the newborn neurons (green) and the glial cells
(red). As shown in Figure 5, the orientations of the newborn
neurons and the glial cells were random in the control
substrate and the inverse opal substrate without stretching.
However, with increasing degree of stretching, the orientations
of differentiated cells showed alignment on the inverse opal
substrate. In statistics, 49 and 68% of the newborn neurons
showed orientation angles within 10◦ of the stretch direction
on the inverse opal substrates with 3× and 6× stretching,

respectively (Supplementary Figure S2b). This effect showed the
strong guiding effect of the anisotropic topographical cues of
the inverse opal substrates on the oriented growth of newborn
neurons. In addition, the percentage of newborn neurons was
also increased under the guidance of the anisotropic inverse
opal substrates (Supplementary Figure S2a). Furthermore, the
morphological properties of the newborn neurons were assessed
as shown in Supplementary Figure S3. The morphological
properties of the newborn neurons on the inverse opal substrate
without stretching were similar to those cultured on the PVDF
control. However, as the degree of stretching increased, the
average branch length increased, while the average number of
primary dendrites and the average number of branch points
decreased. This effect was induced by the “contact-guidance,”
the growth cones of the neurites measured the guiding cues of
the inverse opal substrates, which led the oriented extension
of the neurites, thus stimulate the increase of branch length. At
the same time, the oriented extension of the branch decreased
the average number of primary dendrites and the average
number of branch points. These changes increased the DCI
of the newborn neurons, which indicated that the dendritic
complexity of the newborn neurons was increased under the
guidance of the topographical cues of the anisotropic inverse
opal substrates.
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FIGURE 5 | Differentiation of neural stem cells. The fluorescent images of neurons and glial cells cultured on the PVDF control (A), on the inverse opal substrate (B),
on the 3× stretched substrate (C), and on the 6× stretched substrate (D). Scale bars are 40 µm.

CONCLUSION

The topological cues provided by biomaterials have become a
promising approach to regulate the fate of neural stem cells.
Inverse opal substrates possess periodic pore structures and
have excellent ability to regulate cell behaviors. However, these
substrates have rarely been used to regulate the fate of neural
stem cells, which is important for neural regeneration. In
this study, inspired by the stretching property of the PVDF
material, we investigated how changes in the topographical
cues of the inverse opal substrate due to stretching the
material might regulate the fate of neural stem cells. We
show that the anisotropic inverse opal substrates possess
good biocompatibility and can maintain the pluoripotency
of the seeded neural stem cells during culture. In addition,
in comparison to the isotropic inverse opal substrate,
the anisotropic inverse opal substrates showed greater
proliferation of the neural stem cell spheroids, oriented
alignment of the monodispersed neural stem cells, ordered
alignment of differentiated neural cells, and increased DCI of
newborn neurons. These features indicate the huge potential
of the anisotropic inverse opal substrates for guiding the
arrangement of differentiated cells for neural stem cell-based
neural regeneration.

Furthermore, due to the soft polymer PVDF material,
the anisotropic inverse opal substrates can deform as cells
grow on them, and this leads to shifts in the reflection
peak of the material. This self-reporting property of the
anisotropic inverse opal substrates suggests that these materials
might make excellent detectors when integrated into various
platforms such as microfluidics. Together, these results indicated

the well biomedical applied prospect of anisotropic inverse
opal substrates.

MATERIALS AND METHODS

Materials
Monodispersed silicon dioxide spheres were purchased from
the company of Nanorainbow Biotechnology (Jiangsu China),
Polyvinylidene fluoride (PVDF) and Laminin were purchased
from the company of Sigma Aldrich (MO, United States).
N, N-dimethylformamide (DMF) was purchased from the
company of Sinopharm Chemical Reagent (Shanghai, China).
Ethanol and hydrofluoric acid were purchased from the
company of Aladdin (Shanghai, China). Penicillin-streptomycin,
Accutase, B-27 supplement (50×), EGF (recombinant human
epidermal growth factor), DMEM/F-12(1:1) medium, PBS
(Phosphatebuffered saline), and HBSS (Hank’s balanced
salt solution) were purchased from the company of Gibco
(NY, United States). FGF (recombinant murine FGF-
basic) was purchased from the company of PeproTech
(NJ, United States). The NeuroCultTM Differentiation Kit
(Mouse) was purchased from the company of Stemcell
(CA, United States).

Neural Stem Cell Isolation, Proliferation,
and Differentiation
Neural Stem Cell Isolation
Neural stem cells were isolated from hippocampuses
obtained from 16 to 18-day embryonic rats,
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and the isolated hippocampuses were collected in a petri dish of
HBSS under 4◦C and then rinsed twice with HBSS. The isolated
hippocampuses were digested with Accutase for 20 min under
37◦C then triturated gently with a pipette tip. The monodispersed
neural stem cells were suspended in medium (2% B-27 dissovled
in DMEM/F12), then cultured under 37◦C with 5% CO2.

Neural Stem Cell Proliferation
The neural stem cells were seeded in proliferation medium (2%
B-27, 20 ng/ml EGF, 20 ng/ml FGF dissovled in DMEM/F12) at
5 × 104 cells/ml. The neural stem cells were then cultured in a
humidified atmosphere under 37◦C with 5% CO2 and passaged
every 7 days.

Neural Stem Cell Differentiation
The neural stem cells were cultured in differentiation medium
(preparation from the NeuroCultTM Differentiation Kit (Mouse)
according to the recommendation) at 5 × 104 cells/ml. The
differentiation medium was replaced every 2 days after the neural
stem cells had firmly attached onto the inverse opal substrates.

Immunofluorescence Staining
The cells were washed with PBS three times then fixed in 4%
paraformaldehyde for 30 min, blocked with blocking buffer for
1 h under room temperature, stained with primary antibodies
against Nestin, Tuj1, or GFAP overnight under 4◦C, and stained
with FITC or rhodamine-conjugated secondary antibodies for 1 h
under room temperature. The nuclei were stained with DAPI for
15 min under room temperature.

Preparation of the Substrates
Monodispersed silica dioxide spheres were vertically deposited
on the glass coverslip and sintered under 500◦C for 4 h to
fabricate the silica colloidal crystal templates. The solution
of PVDF/DMF (0.04 g/ml) was infiltrated into the templates.
After the evaporation of DMF, the PVDF became solidified.
Then, the silica nanoparticles were etched by hydrofluoric
acid (2% wt), thus forming the inverse opal PVDF films. The
PVDF films were uniaxially stretched using Vernier caliper
(Masterproof) to 3× and 6× elongation in an 80◦C water
bath. The stretched PVDF substrates were observed by scanning
electron microscopy (Hitachi S-300N) and with a fluorescence
microscope (Leica DM5000). On the contrary, the solution of
PVDF/DMF (0.04 g/ml) was added onto the glass and evaporated
under room temperature, after the evaporation of DMF, the
PVDF became solidified, thus forming the flat PVDF film without

pores as the control substrate. All the substrates were coated by
Laminin (1%) before the seeding of neural stem cells.

Statistical Analysis
The data was analyzed by SPSS software, the results were achieved
by three independent parallel experiments, the significant was
considered at P < 0.05.
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