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Development of screening methods 
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Glycosylation is a key modification that contributes to determine bioactivity and bioavailability of 
plant natural products, including that of terpenoids and steviol glycosides (SVglys). It is mediated by 
uridine-diphosphate glycosyltransferases (UGTs), that achieve their activity by transferring sugars 
on small molecules. Thus, the diversity of SVglys is due to the number, the position and the nature 
of glycosylations on the hydroxyl groups in C-13 and C-19 of steviol. Despite the intense sweetener 
property of SVglys and the numerous studies conducted, the SVglys biosynthetic pathway remains 
largely unknown. More than 60 SVglys and 68 putative UGTs have been identified in Stevia rebaudiana. 
This study aims to provide methods to characterize UGTs putatively involved in SVglys biosynthesis. 
After agroinfiltration-based transient gene expression in Nicotiana benthamiana, functionality of the 
recombinant UGT can be tested simply and directly in plants expressing it or from a crude extract. 
The combined use of binary vectors from pGWBs series to produce expression vectors containing 
the stevia’s UGT, enables functionality testing with many substrates as well as other applications for 
further analysis, including subcellular localization.

Steviol glycosides (SVglys) are ent-kaurenoic diterpenoids produced and accumulated in Stevia rebaudiana leaves 
up to 25% of the dry matter1. Biosynthesis of SVglys starts with the formation of geranyl-geranyl diphosphate 
(GGDP) in the chloroplast from the methyl-erythritol-4-phosphate (MEP) pathway2–4. GGDP then undergoes 
two cyclization steps, catalyzed by terpene cyclases to give ent-kaurene5. Ent-kaurene is subsequently oxidized 
into kaurenoic acid (KA) by kaurene oxidase (KO) in the endoplasmic reticulum (ER). Kaurenoic acid is the last 
step of a biosynthetic pathway shared by gibberellins and SVglys. Oxidation of KA leads to gibberellins, while 
its hydroxylation produces steviol that can be glycosylated on the two hydroxyl groups of its C-13 and C-19 to 
give SVglys. Glycosylation is catalyzed by UDP (uridine diphosphate)-glycosyltransferases (UGTs). To form 
steviol glycosides, UGTs transfer an activated sugar of a sugar-donor substrate on hydroxyl groups of an acceptor 
substrate. Glycosylation is a key and widespread modification of secondary metabolites, playing a pivotal role in 
the huge diversity of plant natural products6. Thus, more than 60 SVglys have been identified in S. rebaudiana 
leaves to date1. Main SVglys are stevioside (ST), rebaudioside A, C, D, E, F (Reb A-F), dulcoside A (Dulc A) 
and steviolbioside. In S. rebaudiana, a wide phenotypic variability in SVglys profiles can be observed7–9. For 
example, some genotypes synthetize very high proportions of Reb A and/or Reb C, whereas others accumulate 
preferentially their corresponding substrates ST and Dulc A, respectively10,11. These differences could be due to 
variability of the enzyme responsible for Reb A and Reb C biosynthesis, UGT76G110,11.

The first part of the SVglys biosynthesis leading to steviol formation is well known and characterized12,13. The 
latter part, leading to SVglys from the steviol aglycone remains largely unknown as S. rebaudiana UGTs are poorly 
characterized, preventing a better understanding of the SVglys pathway. Nevertheless, several UGT genes of S. 
rebaudiana are available. For example, 12 candidates have previously been identified14. In a more recent study, 
Li et al. isolated 144 sequences suspected to be UGTs by re-analyzing the public transcript data of S. rebaudiana 
from NCBI (SRR1576548), among them 68 were unambiguously identified as UGT genes15.

When a UGT gene is available, one the most common methods to identify its functionality is in vitro expres-
sion in a heterologous system16. Substrate specificity of plant UGTs involves recognition of a sugar acceptor as 
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well as a UDP-sugar donor17. In most instances, UGTs show a strong specificity for the UDP-sugar; even those 
exhibiting activities toward several sugar donors, often have a better affinity for only one of them17. UGTs show 
broad differences in their individual number of possible acceptors. Some UGTs are highly specific and only 
glycosylate few acceptors. For example, UGT73A14 of Gentiana triflora specifically glucosylates the 3′-hydroxy 
group of delphinidin-type anthocyanins having glucose at 3 and 5 positions18. Many other UGTs are regiospecific, 
thus they can glycosylate a large array of compounds, often part of the same metabolic family. Possible acceptor 
substrates tested in vitro can also be different. This is the case of UGT76G1 of S. rebaudiana, which glucosylates 
alcohols, substituted monophenols, polyphenols and glycosides19. Identification of an enzyme for a single glyco-
sylation step using in vitro tests is limited by the panel of substrates used. For example, UGT74G1 and UGT73E1 
appear to be steviol C-4 glucosyltransferases giving the 19-O-glucoside in S. rebaudiana14,15. However, they were 
also found to glucosylate the same site to produce rubusoside from steviolmonoside. Additionally, these tests may 
disregard the substrate synergy present in plant or the affinity of enzymes for these different substrates. These 
ambiguities underpin the need to test the specificity of plant UGTs in vivo, to better understand the complex or 
uncommon metabolic pathways as well as the plasticity of metabolism in response to biotic and abiotic stresses.

A method to reveal the functionality of a plant UGT which takes into account their polyspecific nature, is the 
creation of mutants of which the phenotype is compared to the control plants. Two different methods are available 
to create genetically transformed plants: stable or transient transformations. Stable transformation consists in 
integrating a foreign DNA sequence in the genome of a plant of interest in order to modulate plant traits such as 
stress tolerance, disease resistance or metabolite production. In the opposite, transient transformation is a pro-
cess leading to the introduction of a nucleic sequence with temporary expression and tissue specific localization. 
Transient transformation has several advantages compared to stable one, as it does not need to create stable lines.

This study deals with two simple and original methods to characterize functionality of stevia’s UGTs after 
transient expression in Nicotiana benthamiana with the caveat that this system is not intended to characterize 
enzyme kinetics. These methods (1) avoid the purification step generated by recombinant protein expression in 
micro-organisms or plants, and allow to (2) quickly screen the functionality of an enzyme with individual sub-
strates, (3) test a mix of proven acceptors, which might give clues on the substrate affinity of the enzyme in vivo.

Results
Recombinant proteins are expressed in Nicotiana benthamiana.  To characterize UGT76G1, GFP 
was added in N or C terminus of the protein as tag may interfere with protein localization or activity20,21. Both 
constructs p35S::UGT76G1-GFP and p35S::GFP-UGT76G1 were agroinfiltrated in N. benthamiana leaves, 
using A. tumefaciens. At 5 days post-infiltration (dpi), specific bands are observed on western blot at around 
77 kDa, the expected size of UGT76G1-GFP and GFP-UGT76G1 proteins (Fig. 1). Strong bands corresponding 
to UGT76G1-GFP confirm the accumulation of the protein while weak bands are detected for the N-terminally 
tagged version (see Supplementary Fig. S1 for longer acquisition signal). This indicates that although both ver-
sions of UGT76G1 recombinant proteins are expressed, it seems that GFP N-terminal tag may interfere with 
the accumulation of the protein. Bands of great intensity at around 25 kDa corresponds to expression of GFP as 
control.

UGT recombinant proteins harbor a nucleo‑cytoplasmic localization.  Expression of recombi-
nant proteins was verified by confocal laser scanning microscopy (CLSM) at 5 dpi. The GFP fluorescence was 
observed in leaves transformed with GFP, GFP-UGT76G1 and UGT76G1-GFP, confirming their expression 
(Fig. 2).

Recombinant GFP is visible in the cytosol for all three constructs due to the specific green fluorescence of 
filaments passing through the cell. Part of the specific fluorescence is observed in the endoplasmic reticulum, 
which appears as a diffuse green “grid” in the cell. This is probably due to the presence of recombinant proteins 
at the level of the maturation zone.

Figure 1.   Anti-GFP western blot analysis of recombinant proteins expressed in N. benthamiana at 5 days post-
infiltration (dpi). Recombinant proteins are shown with arrows. The figure presents 3 biological repetitions per 
condition. 1: non-transformed plants; 2: p35S::UGT76G1-GFP; 3: p35S::GFP-UGT76G1; 4: p35S::GFP.
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GFP fluorescence is also detected in the nucleus for all three constructs at 5 dpi (but not in the nucleolus). 
This localization could be due to passive diffusion of GFP. Some studies support the hypothesis of bidirectional 
diffusion of free GFP through nuclear pores, due to its low molecular weight22,23. GFP-UGT76G1 and UGT76G1-
GFP being bigger, one hypothesis to explain their nuclear fluorescence could be the degradation of recombinant 
proteins allowing fragments of free GFP to diffuse into the nucleus. This hypothesis is supported by our western 
blot analyzes at 5 dpi, where specific GFP band (26.4 kDa) was revealed in the corresponding lanes (Fig. 1).

N. benthamiana does not convert stevioside in steviol glycoside.  Stevioside (ST) and other SVglys 
were identified by their elution times and UV spectra using corresponding standards (see Supplementary 
Fig. S2). Chromatograms corresponding to leaves from non-transformed plants and that have been in presence 
of ST show a characteristic peak at around 2.7 min corresponding to ST (red and yellow curves), contrary to the 
negative control (blue and green curves) (Fig. 3). No new peak appears close to that of ST, meaning that non-
transformed N. benthamiana does not have a UGT able to transform ST into Reb A. This result was confirmed 
by both functionality tests and allowed the continuation of activity trials on plants expressing UGT76G1.

UGT76G1 expressed in N. benthamiana produces rebaudioside A from stevioside.  In vitro and 
in planta activity tests were then conducted on N. benthamiana leaves expressing UGT76G1. According to the 
chromatograms, leaves expressing UGT76G1 and that have not been in the presence of ST (blue and green 
curves), cannot synthesize Reb A naturally as no peak specific to SVglys appears (Fig. 4). In the presence of ST 
(red and orange curves), the UGT76G1 expressed in N. benthamiana catalyzes β-1,3 glucosylation to produce 
Reb A, whose characteristic peak appears on the chromatograms at 2.6 min.

GFP tag does not affect UGT76G1 functionality.  Functionality of fusion proteins UGT76G1-GFP and 
GFP-UGT76G1 was then tested using the two methods. According to the chromatograms, the negative controls 
(corresponding to blue and green curves) do not synthetize Reb A as no specific peak appears (Fig. 5). In the 
presence of ST (red and orange curves), UGT76G1-GFP and GFP-UGT76G1 proteins expressed in N. bentha-

Figure 2.   CLSM observations of recombinant proteins at 5 dpi (a) GFP, (b) GFP-UGT76G1, (c) UGT76G1-
GFP. er endoplasmic reticulum, f cytosolic filaments, n nucleus, nl nucleolus.

Figure 3.   Glycosylation activity of non-transformed N. benthamiana. (a) In vitro test: a crude extract was 
produced from leaves of non-transformed N. benthamiana, and was analyzed by UPLC after a 2 h-incubation 
with (red) or without (blue) ST, (b) In planta test: leaves of non-transformed N. benthamiana were analyzed by 
UPLC, 24 h after infiltration of stevioside in leaves (yellow) or no infiltration (green). ST stevioside.
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miana catalyze the β-1,3 glucosylation to produce Reb A. The same results have been observed for UGT76G1 
coupled with a polyhistidine tag UGT76G1-6xHis and 6xHis-UGT76G1 (see Supplementary Fig. S3).

These two methods of functional characterization can therefore be used for UGTs that intended to be purified 
or to be localized at the cellular level, provided that the conformation of the active site is conserved, and that it 
is accessible despite the GFP or 6xHis tags.

UGT76G1 produces rebaudioside C and F from steviol glycosides subtrates.  An in vitro activity 
test was carried out from a crude extract of N. benthamiana leaves expressing UGT76G1 and put in the presence 
of the Genotype E’s extract obtained from dried leaves. The objective was to evaluate the activity of the enzyme 
in the presence of several substrates. Genotype E used to produce the SVglys extract mainly accumulates ST and 
Dulc A, due to the non-functionality of the β-1,3 glucosylation, as previously shown10.

Chromatograms corresponding to the negative controls show that (1) the non-transformed N. benthamiana 
leaves do not naturally produce SVglys (Fig. 6a), (2) they do not catalyze the β-1,3 glucosylation of the SVglys 
of the Genotype E’s extract (Fig. 6c) (3) and that leaves of N. benthamiana expressing UGT76G1 do not produce 
SVglys (Fig. 6b).

Figure 4.   Activity of UGT76G1 expressed in N. benthamiana at 5 dpi. (a) In vitro test: a crude extract was 
produced from leaves of transformed N. benthamiana and was analyzed by UPLC after a 2 h-incubation with 
(red) or without (blue) ST, (b) In planta test: leaves of transformed N. benthamiana were analyzed by UPLC, 
24 h after infiltration of ST in leaves (yellow) or no infiltration (green). Reb A rebaudioside A, ST stevioside.

Figure 5.   Activity of UGT76G1-GFP and GFP-UGT76G1 expressed in N. benthamiana at 5 dpi. (a, c) In vitro 
test, after a 2 h-incubation of a leaf extract with (red) or without (blue) ST, (b,d) In planta test, 24 h after 
infiltration of ST in leaves (yellow) or not (green). (a, b) p35S::UGT76G1-GFP, (c, d) p35S::GFP-UGT761. Reb 
A rebaudioside A, ST stevioside. Original chromatogram for (a) (red) is given in Supplementary Fig. S4 and 
compared with SVglys standards for peak identification.



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:15137  | https://doi.org/10.1038/s41598-020-71746-9

www.nature.com/scientificreports/

Chromatograms relative to N. benthamiana leaves expressing UGT76G1 and put in presence of the Geno-
type E’s extract show additional peaks with respect to ST and Dulc A (Fig. 6d). These molecules have retention 
times corresponding to Reb A, C and F. The surface area of the Dulc A peak decreased compared to that of the 
SVglys extract alone (Fig. 6e,f), in favor of an increase in the area of the Reb C peak, probably corresponding to 
glucosylation of Dulc A. Concerning Reb F, its precursor is not identified among SVglys peaks appearing on the 
chromatograms. The outgoing peak near the Dulc A seems to decrease compared to the SVglys extract alone, so 
it could correspond to the Reb F precursor.

Considering the proportions of Reb A and Reb C relative to those of their respective precursors, only 
7.8 ± 1.3% (n = 3) of ST are converted into Reb A on average against 73.5 ± 4.9% of Dulc A converted in Reb C 
(n = 3), after 2 h. This isoform seems to be preferentially active with Dulc A rather than with ST. If it was the 
case, is could be due to easier access to the β-1,3 glycosylation site on Dulc A compared to ST. Indeed, these two 
compounds differ only in the nature of the β-1,2 sugar: Dulc A has a rhamnose and ST, a glucose. This hypothesis 
could be verified with affinity measurements on a purified protein.

Discussion
In this work, two types of activity tests were used to evaluate the functionality of a plant UGT, directly from a 
crude extract or plants expressing the protein of interest. These tests are based on an on/off detection system of 
the enzyme products and are not intended for quantification. These methods showed that recombinant UGT76G1 
catalyzes the conversion of ST to Reb A, as expected14. The tests also revealed that the β-1,3 glucosylation activity 
of UGT76G1 was not affected by the addition of a GFP or polyhistidine tag (6xHis), both in C- and N-terminal. 
This allows with a single vector, to test both the activity of the enzyme and research its localization in the cell, or 
to purify it for a more refined enzymatic characterization.

Through expression in N. benthamiana, UGT76G1 was localized in cytosol, as previously shown24. This com-
partmentalization is logical considering the role of glycosylation of UGT76G1, which occurs after synthesis of the 
aglycone in the chloroplast and the endoplasmic reticulum and before the storage of glycosides in the vacuole. 
The GFP fusions were also detected in ER which may be explained by presence of the recombinant UGT76G1 

Figure 6.   Functionality of UGT76G1 in presence of several SVglys subtrates: in vitro activity of N. benthamiana 
crude extracts incubated without (a,b) or with (c,d) SVglys extract from Genotype E. (a,c) Non-transformed N. 
benthamiana, (b,d) N. benthamiana expressing UGT76G1 at 5 dpi, (e,f) SVglys extract from Genotype E. Dulc 
A dulcoside A, ST stevioside, Reb A rebaudioside A. Original chromatogram for (e,f) is given in Supplementary 
Fig. S4 and compared with SVglys standards for peak identification. Original chromatograms for (d–f) are given 
in Supplementary Fig. S5 for comparison of SVglys presence/absence.
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in the maturation area. Fluorescence of UGT76G1-GFP and GFP-UGT76G1 were also observed in nucleus. The 
same nuclear fluorescence pattern was already observed for some plant UGTs as GFP-tagged UGT85A1 from 
Arabidopsis25 or GFP tagged TaUGT3 of Triticum aestivum expressed in onion epidermis cells26. A nuclear locali-
zation was also obtained for the stevia’s UGT74G1 expressed in onion epidermal cells24, for which the authors 
advocated for a weak diffusion of the fusion protein into the nucleus. Even if passive diffusion decreases with 
protein size, it was shown that proteins larger than 60 kDa passively diffuse from cytosol into the nucleus, thus 
accumulating over time27,28. The authors found that passive diffusion does not have a molecular mass threshold, 
contradicting the view that the maximal size for protein diffusion through the nuclear pore is around 60 kDa27,28. 
Another alternative to explain stevia’s UGTs localization in nucleus supports the presence of a nuclear address-
ing and export signal although it was never shown24. However, we cannot exclude the presence of the functional 
protein in the nucleus, as it was shown in Zea mays root cells for the trans-zeatin O-glycosyltransferase enzyme, 
for which nuclear localization was confirmed by immunodetection29,30. In our case, part of the GFP fluorescence 
in the nucleus may also come from fusions degradation.

Many chemical phenotypes have been observed in our S. rebaudiana collection8. The diversity of SVglys 
profiles thus makes it possible to produce numerous extracts directly obtained from the plant, with different 
combinations of substrates. For example, Genotype E is not able to produce Reb A and Reb C10. Extraction of 
SVglys from Genotype E’s leaves allow production of an extract rich in ST and Dulc A, which was used as sub-
strates for UGT76G1. The method developed in vitro showed that UGT76G1 contained in a crude extract of N. 
benthamiana catalyzes the β-1,3 glucosylation of Dulc A to form Reb C, from Genotype E’s extract. The crude 
extract containing UGT76G1 also produces Reb F from the S. rebaudiana extract, confirming the assumption 
previously made8, although the precursor of this SVgly was not identified on the chromatograms. Usually, meth-
ods to test activity in vitro require purification of the recombinant protein. Here, the developed method allows 
to test the functionality of several UGTs simply from a crude extract, using as substrates individual SVglys as 
well as SVglys synergies, moving closer to in vivo conditions. With identical crude extract/substrate ratio and 
reaction time, relative substrate affinity of a UGT could be investigate, by testing several individual and combined 
substrates. It could also be adapted to test UGTs thought to be involved in minor or higher glycosylations of 
SVglys, requiring a finer detection system such as mass spectrometry.

The in planta method is unique in that it infiltrates the substrate directly into the N. benthamiana leaf express-
ing the protein of interest. This method has previously been used but remains rather unusual in protein func-
tionality studies and has never been used to study S. rebaudiana UGTs. For example, PgUGT5 and PgUGT5b 
from Picea glauca involved in pungenol glycosylation were expressed in N. benthamiana, and their substrate was 
directly injected into the transformed leaves31. However, N. benthamiana exhibited endogenous glycosylation 
activity leading to a basal production of the detected products. The use of this type of method appears to be 
appropriate for the study of UGTs involved in the biosynthesis of SVglys as it may limit this endogenous phe-
nomenon. Indeed, the SVglys pathway does not exist in N. benthamiana, which restricts the existence of UGTs 
that can be recruited for the glycosylation of SVglys.

Taken together, these methods are effective tools to screen functionality of recombinant UGTs suspected to 
be involved in SVglys biosynthesis. Once expression vectors are produced and N. benthamiana is transformed, 
the user can choose the best method. The in vitro method only requires one expression vector and is suited to 
quickly screen several substrates and non-characterized UGTs. The in planta method uses binary vectors from 
pGWBs series and allows simultaneously functional screening close to the in vivo conditions, and several appli-
cations for further analysis, such as subcellular localization or purification.

Material and methods
Biological material.  Nicotiana benthamiana.  Nicotiana benthamiana seeds used for transient transfor-
mation were provided by LRSV (Toulouse, France). Each seed was sown in a 7 × 7 cm plastic pot in a special 
seedling and cuttings potting soil. The seeds were sprouted in moisture-saturated plastic mini-greenhouses 
(closed aeration) to allow germination and good plant development. The seedlings were placed under long day 
conditions: 16 h of day and 8 h of night, at a temperature of 20–23 °C. After the appearance of the first 3 leaves, 
the vents of the mini-greenhouses were opened (weekly watering) then the lids of the mini-greenhouses re-
moved (daily watering), in order to accustom the plants to the ambient hygrometry.

Stevia rebaudiana.  Our germplasm is derived from selection cycles of Criolla and Morita populations. Geno-
type E previously studied, has a non-functional UGT76G110 and doesn’t produce Reb A and Reb C, and accu-
mulates high proportions of Dulc A and ST. Genotype E was cultivated in 1-L pot in greenhouse under long days 
(16 h of daylight), to maintain plants in a vegetative stage and favor biomass production.

Production of expression vectors.  The coding sequence of genotype A’s UGT76G1 of our previous study 
was used for the experiments10. Primers used for coding sequence amplification of UGT76G1 were used to 
design attB specific primers, for native expression and C- and N-term fusions (Table 1).

The synthesis of attB-UGT76G1 PCR products was performed in two steps. Platinum Taq DNA Polymerase 
High Fidelity (Thermo Fisher Scientific) was used for the two PCR, according to manufacturer recommendations. 
The first PCR (50 µL) consisted in amplifying purified clones containing UGT76G1 of the Genotype A with the 
specific primers of Table 1. The cycling parameters described in Table 2 were used.

Ten microliters of the first PCR reaction were transferred to a 40 µL PCR mixture containing 40 pmol each of 
the attB1 and attB2 adapter primers (AttB1: GGG​GAC​AAG​TTT​GTA​CAA​AAA​AGC​AGGCT, AttB2: GGGG ACC​
ACT​TTG​TAC​AAG​AAA​GCT​GGG​T.). The second PCR (50 µL) used the cycling parameters described in Table 3.
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Entry clones were created by BP recombination between the attB-UGT76G1 purified products and the vector 
pDONR/Zeo (Invitrogen, Thermo Fisher Scientific) with the BP Clonase enzyme (Invitrogen, Thermo Fisher 
Scientific), following the manufacturer recommendations. Library Efficiency DH5α (Thermo Fisher Scientific) 
competent cells were transformed by heat shock at 42 °C during 45 s with the entry clones. Positive clones 
were selected and sequenced to confirm the insertion of the transgene and the correct reading frame for fusion 
proteins. Entry clones were then purified with the Wizard Plus Minipreps DNA Purification System (Promega) 
according to the manufacturer recommendations. Expression clones were produced by a LR recombination 
between the entry clones and the binary vectors pGWBs32, with the LR Clonase enzyme (Invitrogen, Thermo 
Fisher Scientific). The vectors pGWBs were provided by T. Nakagawa (Shimane University, Japan). Library Effi-
ciency DH5α (Thermo Fisher Scientific) competent cells were transformed by heat shock at 42 °C during 45 s 
with the expression clones. Positive clones were selected and purified with the purification system NucleoBond 
Xtra Midi (Macherey–Nagel) following the manufacturer recommendation.

Agrobacterium tumefaciens transformation.  The LBA4404 strain was used for transformation (Elec-
troMAX A. tumefaciens LBA4404 Cells, Invitrogen, Thermo Fisher Scientific). Cells were transformed with 
expression vectors in electroporation cuvettes, during 5 ms at 1.8 kV, 200Ω, 25 µF. After electroporation, 800 µL 
of YEB medium were added and cultures were incubated at 28 °C during 2 h at 180 rpm. Cells were spread on LB 
plates with rifampicin, streptomycin, and hygromycin (at 100 µg/mL final) and incubated during 48 h at 28 °C. 
Positive clones were selected and pricked out in LB liquid medium.

Nicotiana benthamiana transformation.  For each construct, a 200  mL-culture with appropriate 
antibiotics was prepared starting from 40 µL of a glycerol stock. Cells were grown at 28  °C, 150  rpm until 
1.8 < DO600nm < 2.0. They were then centrifugated 20 min at 1,000g. Media was removed and cells were washed 
with the resuspension solution (10 mM MgCl2, 10 mM MES-K pH 5.6). After wash, pellets were resuspended in 
the resuspension solution containing acetosyringone 100 µM. An aliquot of the bacterial solution was sampled 
and diluted in the resuspension solution with acetosyringone qsp. the desired volume until 0.7 < DO600nm < 0.9. 
Cells were incubated during 2 h at ambient temperature. Agrobacterium was infiltrated into N. benthamiana 
leaves with a 5 mL-syringe applied on the lower face. As control of plant transformation, A. tumefaciens LBA4404 
strain containing a vector pEAQ-HT-Dest1-GFP was used33. This strain was provided by L. Hoffman (University 

Table 1.   UTG76G1 specific primers used to synthetize attB-PCR products.

Orientation Primer Usage

Forward
AAA​AAG​CAG​GCT​ATG​GAA​AAT​AAA​ACG​GAG​ACCA​

Native expression

C-term fusion

AAA​AAG​CAG​GCT​TCA​TGG​AAA​ATA​AAA​CGG​AGA​CCA​ N-term fusion

Reverse
AGA​AAG​CTG​GGT​TTA​CAA​CGA​TGA​AAT​GTA​AGA​AAC​TAG​

Native expression

N-term fusion

AGA​AAG​CTG​GGT​GCA​ACG​ATG​AAA​TGT​AAG​AAA​CTA​G C-term fusion

Table 2.   Cycling parameters for the first step PCR.

Denaturation 2 min 95 °C

Denaturation 15 s 94 °C

10 cyclesAnnealing 30 s 53.3 °C

Elongation 1 min/kb 68 °C

Table 3.   Cycling parameters for the second step PCR.

Denaturation 2 min 95 °C

Denaturation 15 s 94 °C

5 cyclesAnnealing 30 s 45 °C

Elongation 1 min/kb 68 °C

Denaturation 15 s 94 °C

15–20 cycles
Annealing 30 s 55 °C

Elongation 1 min/kb 68 °C

Elongation 10 min 68 °C
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of Toulouse, France). Vectors containing UGT76G1 and GFP were co-infiltrated with the co-suppressor p19 
(with a bacterial solution volume ratio 2:1) as it enhances recombinant protein expression (see Supplementary 
Fig. S6). The vector pCB301-p19 was provided in a LBA4404 strain by J. Win (Sainsbury Laboratory, United-
Kingdom).

Protein analysis.  Sample preparation.  Leaves were sampled 5  days post infiltration. Immediately after 
sampling, leaves were frozen in liquid nitrogen. They were ground into a fine powder with a ball mill MM300 
(Retsch) and stainless-steel balls (2 mm Ø). One volume of sample was extracted in 2 volumes of extraction 
buffer (Triton X100 0.25%, DTT 10 mM, Halt Protease Inhibitor Cocktail [Thermo Fisher Scientific) 1X, qsp. 
GTEN buffer (glycerol 10%, Tris–HCl pH 7.5 150 mM, EDTA 1 mM, NaCl 150 mM)]. Samples were incubated 
10 min at 4 °C under gentle stirring. After centrifugation 10 min at 4 °C, 3,000g, supernatants were sampled and 
conserved for protein analysis. Proteins were quantified using the Bradford method. For western blot, 20 µg of 
proteins were denatured 5 min at 96 °C using 5 volumes of protein extract and 1 volume of Laemmli 6X. Samples 
were centrifugated 30 s at 13,000g and supernatants were used for electrophoresis.

Western blot.  Proteins were loaded on a 1 mm gel prepared with TGX Stain-Free FastCast Acrylamide Kit, 10% 
(BioRad) according to manufacturer specifications. Proteins were separated in a Mini-Protean Tetra Cell System 
(BioRad) at 250 V (400 mA) during 30 min. Separated proteins were transferred on nitrocellulose membrane 
with a Trans-Blot Turbo Transfer System (BioRad) at 25 V during 3 min per gel. Membranes were saturated 
during 1 h under strong stirring with 5% fat free milk dissolved in TBS Tween 0.1%. Then, they were incubated 
with primary antibodies prepared at 1/1,000 in BSA 1X TBS-Tween 1X during 2 h at ambient temperature. For 
blotting of GFP-tagged proteins, monoclonal anti-GFP antibodies produced in mouse were used respectively 
(Sigma). After incubation with primary antibodies, membranes were washed three times with TBS-Tween 1X 
during 10 min and incubated under stirring during 1 h with secondary antibodies prepared at 1/6,000 in BSA 
1X TBS Tween 1X. Secondary antibodies anti-mouse IgG (H + L)-HRP conjugated antibodies produced in goat 
were used (BioRad). Membranes were washed three times with TBS-Tween 1X during 10 min. Specific bands 
were revealed with Clarity Western ECL Substrate (BioRad) and membranes were observed with a ChemiDoc 
XRS + system (BioRad). For the revelation step, anti-GFP blots were exposed for 60s except for GFP controls (3s) 
to avoid overexposition. The 60s exposition for the GFP control is shown on Supp fig 1.

Microscopy.  Microscopy observations were realized at the platform FR AIB (Toulouse, France) at 5 days post-
infiltration. GFP fluorescence (λexcitation = 488 nm; λemission = 510 nm) was observed with a confocal laser scanning 
microscope (CLSM) TCS SP8 (Leica) and a HC Fluotar L25X/0.95 W VISIR (Leica) lens. Pictures were taken 
with the software LAS (Leica) and were processed with the software ImageJ (1.52a).

Activity of recombinant proteins.  Production of the SVglys extract.  Genotype E’s leaves (complete 
stems) were sampled and dried at 50 °C. Then, they were ground with a mortar and pestle. SVglys were extracted 
from 10 g of Genotype E’s dry leaves during 30 min at 50 °C under stirring in 200 mL of ultrapure water. The 
extract was filtrated with absorbent paper to remove leaf powder and fragments.

In planta: infiltration of substrate in transformed leaves.  At 5 dpi, transformed leaves were infiltrated by syringe 
with stevioside 5  mM. After 24  h, leaves were sampled separately and dried 48  h at 50  °C. Then, they were 
grinded with piston pellet Eppendorf and steviol glycosides were extracted 30 min at 50 °C in 200 µL of ultrapure 
water. Extracts were filtrated at 0.2 µM and analyzed by UPLC.

In vitro: enzymatic assay on crude extract expressing recombinant protein.  For each construct, two transformed 
leaves were sampled at 5 dpi and immediately ground in ice with 500  µL of cold reaction buffer (Tris–HCl 
100 mM, pH 8.0; MgCl2 3 mM; BSA 10 µg mL−1). Extracts were centrifugated 2 min at 2,000g at 4 °C, and 180 µL 
of supernatant were transferred in two new tubes. Twenty microliters of reaction buffer were added in one of 
the tubes to constitute the negative control. Twenty microliters of substrate were added in the other tube. The 
substrates were alternatively stevioside 5 mM or SVglys extract for the Genotype E, mainly composed of ST and 
Dulc A.

Tubes were homogenized by gentle flipping. After 2 h at 30 °C, reactions were stopped by addition of 10 µL 
TFA 20%. Samples were centrifugated 5 min at 2,000g. Supernatants were filtrated at 0.2 µm and analyzed by 
UPLC.

UPLC analysis of steviol glycosides.  Liquid chromatography was performed under isocratic conditions on a 
Dionex UltiMate 3,000 system from ThermoScientific consisting of a DGP-3600RS pump, a WPS-3000 TRS 
autosampler, a TCC-3000 SD column compartment maintained at 40 °C and a DAD-3000 diode array detector 
set to a wavelength of 195 nm. The flow rate and sample injection volume were 0.3 mL min−1 and 1 μL, respec-
tively. Steviol glycosides were separated with a reverse phase (RP) column Kinetex C18 (150 × 2.1 mm, 1.7 μm) 
(Phenomenex, USA), maintained at 40 °C. Solvents used as mobile phase were 32% acetonitrile and 68% ultra-
high-purity water acidified with 0,1% formic acid (pH 2.6). A mix of 9 SVglys standards (JECFA mixture) was 
purchased from Chromadex, Inc. (Irvine, CA, USA) and were used to identify ST, Dulc A, Reb A and C. Chro-
matogram of standards and UV spectrum of ST are given in the Supplementary Fig. S2.
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