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Abstract

Purpose: The aim of the present study was to compare the dose distribution generated from photon volumetric
modulated arc therapy (VMAT), intensity modulated proton therapy (IMPT), and intensity modulated carbon ion
therapy (IMCIT) in the delivery of hypo-fractionated thoracic radiotherapy.

Methods and materials: Ten selected patients who underwent thoracic particle therapy between 2015 and 2016
were re-planned to receive a relative biological effectiveness (RBE) weighted dose of 60 Gy (i.e., GyE) in 15 fractions
delivered with VMAT, IMPT, or IMCIT with the same optimization criteria. Treatment plans were then compared.

Results: There were no significant differences in target volume dose coverage or dose conformity, except
improved D95 was found with IMCIT compared with VMAT (p = 0.01), and IMCIT was significantly better than IMPT
in all target volume dose parameters. Particle therapy led to more prominent lung sparing at low doses, and this
result was most prominent with IMCIT (p < 0.05). Improved sparing of other thoracic organs at risk (OARs) was
observed with particle therapy, and IMCIT further lowered the D1cc and D5cc for major blood vessels, as compared
with IMPT (p = 0.01).

Conclusion: Although it was comparable to VMAT, IMCIT led to significantly better tumor target dose coverage
and conformity than did IMPT. Particle therapy, compared with VMAT, improved thoracic OAR sparing. IMCIT,
compared with IMPT, may further improve normal lung and major blood vessel sparing under limited
respiratory motion.
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Background
Early-stage non-small cell lung cancer (NSCLC) and
lung metastases have been treated with stereotactic body
radiation therapy (SBRT) with excellent clinical outcome
[1–4]. Locally advanced NSCLC has traditionally been
treated with conventionally fractionated concurrent
chemo-radiation [5]. However, dose escalation with

conventional fractionation has not demonstrated any
clinical advantage in any phase III randomized controlled
trials [6]. As a result, alternative radio-therapeutic strat-
egies are being sought. Given the clinical efficacy that has
been observed with hypo-fractionated dose schedules,
such as SBRT, this approach has also been increasingly
considered as a treatment strategy for locally advanced
and selected stage IV NSCLC in recent years [7–9].
Excellent dose distribution can be achieved with image-

guided and intensity-modulated radiotherapy (IG-IMRT)
delivered with volumetric modulated arc therapy (VMAT)
in the thorax [10, 11]. As a result, VMAT has been quickly
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adopted in clinical settings to deliver thoracic radiotherapy
[12]. However, sparing thoracic organs at risk (OARs)
while maintaining adequate target volume dose coverage
with VMAT remains challenging in selected patients. On
the contrary, particle therapy (PT), which includes proton
and heavy ion therapies, may have an advantage over
VMAT in OAR sparing. This improvement is due to PT’s
physical properties, which allow for better normal tissue
protection, while heavy ions’ increased radiobiological ef-
fectiveness (RBE) increases the tumorcidal effect of radio-
therapy over photons [13, 14]. PT’s dosimetric advantages
have been shown in multiple studies [15–22]. Given these
advantages, PT is increasingly being considered for the de-
livery of hypo-fractionated thoracic radiotherapy [23, 24].
To date, PT has been mostly delivered with passive scat-
tering systems. With further improvements in technology,
intensity modulation of particle beams with active beam
scanning has been developed for better dose conformity
and control of the OAR dose. However, little is known
about how active scanning beams compare with VMAT in
dose distribution in the treatment of lung tumors. In this
study, we explored the dosimetric characteristics of
intensity-modulated proton therapy (IMPT) and carbon
ion therapy (IMCIT) with raster scanning beams in the
delivery of hypo-fractionated thoracic radiotherapy in
comparison to VMAT under limited respiratory motion.

Methods
Patients, tumors and treatment characteristics
Ten selected patients who underwent either IMPT or
IMCIT between 2015 and 2016 were re-planned. Among
them, 9 patients had stage I - III NSCLC, and 1 patient
had a single lung metastasis from adenoid cystic
carcinoma of the head and neck (Table 1). All patients
were simulated head first in prone or supine positions.
Each patient was immobilized with Vac-Lok™ cushions
(CIVCO Medical Solutions, IA, USA). During CT simu-
lation, free-breathing CT and 4D CT (divided evenly
over 10 phases of the respiratory cycle) were obtained
with 3-mm slice thickness to account for respiratory
motion. All patients were planned for gated treatments
with a pressure sensor-based motion management sys-
tem (AZ-773 V, Anzai Medical, Co., Ltd., Tokyo, Japan).
The gating window (30–40% duty cycle) was selected to
keep the respiratory motion to no more than 5 mm
cranio-caudally (Table 1). This motion limitation was ac-
complished through visual inspection of the 4D CT's to
select the phases from the end of expiration to the
beginning of inspiration that were confined within a
cranio-caudal tumor motion amplitude of ≤5 mm. The
primary gross tumor volume (GTV) was delineated at
the lung window level, and any nodal metastases and
soft tissue extensions were delineated at the soft tissue
window level on the maximum exhalation CT. To

account for tumor motion, an iGTV was created with
the maximal intensity projection (MIP) generated from
CTs of the selected respiratory phases. The clinical tar-
get volume (CTV) was the iGTV with an 8-mm expan-
sion. The planning target volume (PTV) was the CTV
with a 5-mm expansion to account for set up errors and
residual tumor motion. The CTV and PTV were created
on the average CT of the selected respiratory phases.
Particular attention was paid to avoid overlapping of any
target volumes with the OARs. The lungs, esophagus,
spinal cord, and the heart were contoured for each pa-
tient on the average CT. The major blood vessels and
major airway were contoured only when they were adja-
cent to the PTV. Target and OAR volume delineation was
performed with MIM v6.5.9 software (MIM software Inc.,
Cleveland, OH, USA).
All plans prescribed 60 Gy/GyE (relative biological ef-

fectiveness, RBE, weighted dose for IMPT and IMCIT)
delivered in 15 daily fractions to the PTV with hetero-
geneity corrections. For VMAT, a 1.0-Gy physical dose is
identical to 1.0 GyE. For IMPT, a 1.0-Gy physical dose is
equal to a constant factor of 1.1 GyE at all positions.
However, a 1.0-Gy physical dose for IMCIT was scaled
to biological doses according to the LEM-1 model.
Raster-continuous spot scanning without stopping be-
tween spots was delivered with dynamic intensity con-
trol to decrease the time required to deliver large doses
(resulting in a maximum of 1–2 ms per spot). In our
beam delivery system, the beam intensity could be dy-
namically changed between spots according to the total
number of particles required for each spot. The change
in beam intensity could be performed within 100 μs.
Because our beam delivery system was calibrated to the
number of particles per unit dose Gy, 13 levels of inten-
sity for both carbon-ion and proton beams could be
used clinically (1.3 × 106 to 6.5 × 107/s for carbon ions
and 5.0 × 107 to 2.6 × 109/s for protons). However, only
the final 6 highest levels (within ¼ of the maximum in-
tensities) were used for actual treatment. The average
dose rate at the center of each spot during beam delivery
was 2.0 to 10.0 Gy/s or 12.0 to 60.0 Gy/min for both
carbon-ion and proton beams. The dose delivery time of
each energy-layer was typically within 1.0 s. With a typ-
ical energy-layer switching time of approximately 4–5 s
for both carbon-ion and proton beams, the doses for
spots in each energy layer were typically delivered within
a 5-s breathing cycle.
The plans were optimized to have ≥ 90% of the PTV re-

ceiving 100% of the prescription dose and ≥ 95% of the
PTV receiving ≥ 95% of the prescription dose. OAR dose
constraints were adopted from previous studies on hypo-
fractionated thoracic radiotherapy [8, 23]. PTV coverage
took precedence over OAR sparing in all plans, which
were optimized under the same set of planning criteria.
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Photon planning
VMAT plans were generated with Rapid Arc (RA) using
the Eclipse Treatment Planning System V.11 (Varian
Medical Systems. Palo Alto, CA, USA) with 6 MV pho-
tons. Plans were generated with co-planar partial arcs to
spare as much contralateral lung as possible. The arc
angle and collimator setting were based on the target
size, shape, and location. Then, 2-arc plans were created
for each case at dynamic multi-leaf collimator motion,
variable dose rate (max: 600 MU/min), and variable gan-
try rotation speed to generate a modulated dose distri-
bution. The arc length varied from 0° to 320°. All plans
were optimized using the Progressive Resolution
Optimizer (PRO, v11.0.31), and the volume dose was
calculated with the Anisotropic Analytical Algorithm
(AAA, V11.0.31) with a 2.5-mm grid size resolution.

PT planning (IMPT & IMCIT)
IMPT and IMCIT plans were generated with multi-field
optimization (MFO) by using the Syngo® PT Planning
System v10 (Siemens. Erlangen, Germany). The effective
dose calculation model (Local Effect Model, LEM) was
used for IMCIT dose calculation [25, 26], and IMPT
dose calculation was performed with a constant RBE fac-
tor of 1.1. Plan optimization was done on average CT's
with iGTV density overridden (to the density of muscle)
[27]. All plans were implemented in an oblique (45°)
beam-line room with a raster scanning delivery tech-
nique. With the fixed 45° beam-line, three different
angles of the robotic couch were selected to perform
non-coplanar optimization. Angle selection depended on
the tumor location and size, beam path according to
OAR location, and the innate restriction of the robotic
couch to avoid any unnecessary dose and to evade
strong density heterogeneities upon the beam’s entry.
Beam directions traversing patient support and
immobilization were avoided. The setting of the focal
spot size for the lateral full-width half-maximum
(FWHM) of the scanning beam was 8 mm, and the lon-
gitudinal beam spot range step was 3 mm. Considering
the calculation time and accuracy, we used 3 mm as the
dose grid resolution for both proton and carbon ion
treatment plans. Finally, the virtual target expansion was
specified as 3 mm in lateral, proximal, and distal directions
to allow optimal placement of additional raster spots out-
side the PTV within the expansion volume to satisfy target
coverage requirements. The estimated treatment delivery
times (median) for carbon-ion and proton plans were 736
(281–1009) seconds and 514.5 (276–703.5) seconds,
respectively.

Plan comparison
All plans were transferred into MIM software for direct
comparison of the dose parameters obtained from the

VMAT, IMPT, and IMCIT plans. OAR dose parameters,
including the mean lung dose (MLD), the volume of the
normal lung receiving 5 Gy, 10 Gy, and 20 Gy (V5, V10,
and V20, respectively) for the total lung (both lungs –
iGTV), the ipsilateral lung and the contralateral lung, the
heart’s mean dose (HMD), V5, V15, and V30, the maximum
dose (Dmax), doses to 0.01 cm3, and 1 cm3 (D0.01cm

3 and
D1cc, respectively) of the esophagus, spinal cord, major ves-
sels and the major airways, were compared. For the PTV,
the dose covering 95% and 99% of the PTV (D95, D99), the
percentage of PTV receiving ≥95% of the prescribed dose
(V95), Dmin, Dmax, Dmean, the homogeneity index (HI), and
the conformity index (CI) were compared among the 3
treatment techniques. The CI and HI were defined as [20]:

CI ¼ V95%Rx=VPTV ð1Þ
HI ¼ Dmax=DRx ð2Þ

where V95%Rx and VPTV represent the volume of tis-
sue receiving ≥ 95% of the prescribed dose and the vol-
ume of the PTV, respectively. Dmax and DRx represent the
maximum dose within the PTV and the prescribed dose,
respectively. The new Conformity Index (nCI) was also
assessed to evaluate the degree to which the prescribed
isodose volume conforms to the target volume [28].

nCI ¼ treatment volumeð Þ � prescription isodose volumeð Þ½ �
�ðvolume of the target covered by the prescription

isodose volumeÞ2
ð3Þ

Dose evaluation with recalculation on selected 4D phases
within the gating window
Gating has been applied in recognition of the effect of
the interplay on dose due to variations in the temporal
relationship between dynamic beam scanning and target
motion, as described in previous studies [29, 30]. By
applying gating to limit the target movement to within
5 mm, dose heterogeneity was found to be within the
clinically acceptable range of 3% to 5% at our institution
(Additional file 1). Without the ability to fully account
for this interplay, we focused mainly on the effect of
uncertainties in dose due to anatomical changes within
the gating window of 5 mm by retrospectively recalculat-
ing the IMCT and IMPT plans using selected 4D CT
phases within the gating window. The spot pattern and
doses obtained in the 3D plan were used to recalculate
the doses on selected CT phases. Dose distributions of
all recalculated 4D phases were accumulated to the ref-
erence CT by utilizing the deformable registration work-
flow provided by MIM 6.5.9. Selected dose parameters
from the corresponding DVH’s were then extracted and
compared with those from the original 3D plans.
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Statistical analysis
The primary objective of this study was the dosimetric
comparison of VMAT, IMPT and IMCIT for delivery of
hypo-fractionated thoracic radiotherapy. The dose pa-
rameters were obtained from treatment plans for the
three radio-therapeutic modalities for each patient and
were analyzed as continuous variables. A sample size of
10 patients had 80% power to detect one standard devi-
ation difference by using a two-sided paired t-test at a
0.05 significance level. Descriptive statistics were used to
summarize patient data, including OAR dose parameters
and target volume dose coverage parameters. Categorical
data were described using contingency tables including
counts and percentages; continuous variables were sum-
marized with descriptive statistical measures (i.e., mean
(± s.d.)). The Wilcoxon signed rank test was used to
assess dose parameters or target volume dose coverage
as paired data (within same patients but different radio-
therapeutic modalities) without the assumption of a nor-
mal distribution. A p-value <0.05 was considered to be
statistically significant. Statistical analyses were per-
formed using SAS 9.2 and R software, version R 3.1.3
(SAS Institute Inc., Cary, NC, USA).

Results
Target volume dose distribution
No statistically significant differences in any pertinent
PTV dose coverage parameters, with the exception of D95,
was observed between VMAT and IMCIT (Table 2). In
contrast, statistically significant differences in all parame-
ters favoring fixed-beam IMCIT over fixed-beam IMPT
were observed (p < 0.05). Although no statistically signifi-
cant differences in V95, D95, and D99 were observed
between VMAT and fixed-beam IMPT, VMAT led to sig-
nificantly lower Dmax, CI, HI, and nCI (p < 0.05).

Dose to the normal lungs
The volumes of normal lung tissue receiving low doses were
significantly smaller for PT (Additional file 2: Table S1;
Fig. 1). However, the V50’s for the total and ipsilateral lung
were slightly, but significantly, higher for PT than VMAT

(p < 0.05). A trend toward an increased ipsilateral lung
V60 was also observed with IMPT compared with VMAT
(p = 0.06). PT led to significantly lower V5, V10, and V20

for the total, ipsilateral, and contralateral lung than did
photon VMAT (p < 0.05, Table 3). The contralateral lung’s
MLD was significantly lower with PT (p < 0.05). The
MLD for the total lung was similar between VMAT,
IMPT, and IMCIT, whereas a lower MLD was observed
for IMCIT compared with VMAT, with a trend toward
statistical significance (p = 0.07). In addition, IMCIT fur-
ther decreased the V5 and V10 for the total and ipsilateral
lung from that achieved with IMPT (p < 0.05). Addition-
ally, lower ipsilateral lung V30 for IMCIT compared with
IMPT exhibited a trend toward statistical significance
(p = 0.09).

Dose to the heart
When compared with VMAT, IMCIT resulted in signifi-
cantly lower MHD, the D1cc and the D5cc (Table 4), and
heart’s V5 – V20 (p < 0.05), (Fig. 2a, Additional file 2:
Table S2). Similarly, IMPT led to significantly lower
MHD and V5 – V20 than VMAT (p < 0.05). However, no
significant difference in heart sparing was observed be-
tween IMCIT and IMPT.

Dose to the esophagus
Although no significant differences between IMPT and
IMCIT was found, both led to significantly improved
esophageal sparing, as compared with VMAT. The mean
dose, Dmax, D0.01cc, D1cc, D5cc, and the V5 - V30 were sig-
nificantly lower with PT (p < 0.05). These findings are
shown in Table 4, Additional file 2: Table S2, and Fig. 2b.

Dose to other thoracic organs
Dose reduction for the spinal cord was observed with
PT for all dose parameters assessed (Table 4). However,
no significant difference in spinal cord sparing was ob-
served between IMPT and IMCIT. Similar findings were
observed for the major blood vessels in the vicinity of
the PTV. IMCIT further decreased the D1cc and D5cc to
levels below those achieved with IMPT (p = 0.01). For
major airway sparing, no significant difference between
IMPT and IMCIT was observed, whereas PT, compared
with VMAT, resulted in significantly lower mean doses,
D1cc and D5cc for major airways (Table 4).

Dose evaluation with recalculation on selected 4D phases
for carbon ion and proton plans
Selected dose parameters for the PTV and the common
OARs after dose recalculation with dose summation
from 4D phases within the gating window, in compari-
son to those obtained from 3D planning, are shown in
Additional file 2: Table 3. No statistically significant dif-
ferences in the OAR dose parameters was observed.

Table 2 Target volume dose distribution

Parameters VMAT1 IMPT2 IMCIT3 p value

Mean (SD) p1,2 p2,3 p1,3

V95 100% (0) 99% (1%) 100% (0) 1.00 0.02 0.46

D95
a 59.57 (0.40) 59.63 (0.67) 59.85 (0.47) 0.17 0.04 0.01

D99
a 58.00 (0.75) 57.99 (1.25) 58.38 (0.81) 0.46 0.02 0.21

Dmax
a 64.87 (0.92) 65.98 (1.14) 65.25 (0.77) 0.04 0.01 0.41

CI 1.25 (0.10) 1.37 (0.11) 1.30 (0.09) 0.01 0.00 0.11

HI 1.08 (0.02) 1.10 (0.02) 1.09 (0.01) 0.03 0.02 0.20

nCI 1.47 (0.80) 1.53 (0.78) 1.47 (0.77) 0.01 0.00 0.79

p1,2 is VMAT vs. IMPT; p2,3 is IMPT vs. IMCIT; p1,3 is VMAT vs. IMCIT. aDose in Gy
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Among the 6 dose parameters assessed for the PTV
(V95, Dmax, Dmin, CI, HI, nCI), dose recalculation de-
creased Dmax and HI within the PTV (p < 0.05).

Discussion
To the best of our knowledge, this study is the first
study comparing photon VMAT with IMPT and IMCIT
in the definitive treatment of loco-regionally confined
lung tumors with hypo-fractionated radiotherapy. Al-
though their clinical significance remains to be deter-
mined, our results indicated that fixed-beam IMCIT,
compared with fixed-beam IMPT, may improve dose
distribution for the tumor target, an effect possibly re-
lated to the sharper lateral dose gradient associated with
carbon ions. The target volume dose coverage between
VMAT and fixed-beam IMCIT was similar. Although
the D95 was slightly improved with IMCIT compared

with VMAT, the difference may be too small to have any
clinical impact. However, fixed-beam IMCIT with 3
fields is greatly limited by the number and angles of
beams that can be used to generate the most conformal
treatment plan. In contrast, VMAT is one of the most
mature and sophisticated forms of intensity-modulated
photon therapy, and it can generate excellent dose con-
formity to the tumor target [11]. This difference indi-
cates the great potential for IMCIT to further improve
the dose distribution and the clinical efficacy of thoracic
radiotherapy as it evolves in the future, given its known
advantages over photons and protons (sharper lateral
dose gradient, higher relative biological effectiveness,
lower oxygen enhancement ratio, and more densely
ionizing tracks that can lead to increased tumor DNA
damage, less cell cycle dependence, and a stronger im-
munological response) [13, 14].
Suboptimal dose conformity due to the limitations of

fixed-beam PT appears to be more prominent with
IMPT, because protons, compared with carbon ions, are
associated with greater lateral penumbra. Improving
dose conformity for IMPT is important, because it may
decrease the risk of radiation pneumonitis [31]. Al-
though IMPT and CIRT, compared with 3D–CRT, have
been shown to improve target volume coverage when
multiple fields are used, IMRT has been shown to have
better dose conformity and homogeneity than passively
scattered PT [17–22]. Our study comparing IMPT and
VMAT demonstrated similar findings. IMPT arcs may
lead to better dose conformity than VMAT at the cost of
increased dose heterogeneity, a finding that warrants
further investigation [20].
PT has traditionally been shown to decrease the low

dose volumes in the lungs [15–22]. IMPT, and especially
IMPT arcs, compared with passively scattered PT, may
further decrease the normal lung dose [16, 17, 19, 20].
Despite prominent low dose sparing, either passively
scattered PT or IMPT may lead to higher volumes of
the normal lung receiving doses >50% of the prescribed
dose than photon therapy delivered with 3D–CRT or

Table 3 Normal lung dose volume parameters

Parameters VMAT1 IMPT2 IMCIT3 p value

Mean (SD) p1,2 p2,3 p1,3

Total lung - iGTV

MLD (Gy) 11.38 (4.67) 7.64 (3.53) 7.25 (3.67) 0.11 0.97 0.07

V5 49% (18%) 24% (11%) 21% (12%) 0.00 0.00 0.00

V10 32% (16%) 20% (10%) 18% (10%) 0.00 0.04 0.00

V20 19% (10%) 14% (7%) 14% (8%) 0.00 0.56 0.00

Ipsilateral lung

MLD (Gy) 18.94 (7.14) 15.97 (6.93) 15.03 (6.96) 0.61 0.95 0.44

V5 57% (15%) 44% (18%) 40% (18%) 0.00 0.00 0.00

V10 49% (16%) 38% (16%) 36% (16%) 0.00 0.01 0.00

V20 38% (17%) 30% (13%) 29% (14%) 0.00 0.31 0.00

Contralateral lung

MLD (Gy) 6.41 (3.51) 1.92 (2.62) 1.91 (2.48) 0.01 1.00 0.01

V5 45% (22%) 8% (9%) 7% (9%) 0.00 0.25 0.00

V10 22% (19%) 6% (8%) 6% (7%) 0.00 0.81 0.00

V20 6% (7%) 3% (5%) 4% (5%) 0.03 1.00 0.03

p1,2 is VMAT vs. IMPT; p2,3 is IMPT vs. IMCIT; p1,3 is VMAT vs. IMCIT

Fig. 1 Dose distribution for normal lungs. a Dose distribution for the total lung (both lungs – iGTV). b Dose distribution for the ipsilateral lung.
c Dose distribution for the contralateral lung
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Table 4 Selected dose parameters for other OARs

VMAT1 IMPT2 IMCIT3 p value

Parameters (Gy) Mean (SD) p1,2 p2,3 p1,3

Heart

Mean dose 8.68 (7.13) 1.34 (1.99) 1.92 (2.96) 0.00 0.32 0.00

Dmax 45.53 (19.70) 41.71 (26.36) 40.31 (27.77) 0.38 0.49 0.28

D0.01cc 45.06 (19.74) 40.16 (26.95) 38.95 (28.28) 0.23 0.37 0.19

D1cc 38.89 (19.56) 32.97 (26.96) 31.79 (26.24) 0.19 0.13 0.05

D5cc 31.94 (16.96) 24.33 (22.75) 22.53 (21.57) 0.08 0.13 0.00

V5 (%) 50% (37%) 6% (8%) 9% (16%) 0.00 0.56 0.00

V30 (%) 4% (8%) 1% (2%) 1% (2%) 0.13 1.00 0.13

Esophagus

Mean dose 11.37 (5.78) 5.37 (5.94) 5.73 (5.35) 0.00 0.23 0.00

Dmax 44.68 (15.88) 36.00 (22.10) 35.82 (22.93) 0.00 1.00 0.01

D0.01cc 44.18 (15.94) 36.32 (22.43) 34.42 (23.34) 0.03 0.70 0.00

D1cc 39.18 (16.33) 26.65 (25.26) 27.07 (23.59) 0.00 0.77 0.00

D5cc 31.20 (14.57) 17.91 (20.50) 17.79 (16.77) 0.00 1.00 0.00

Spinal cord

Mean dose 8.32 (4.55) 3.18 (3.35) 3.25 (3.48) 0.00 1.00 0.00

Dmax 30.58 (8.87) 20.86 (11.38) 18.35 (12.39) 0.00 0.56 0.00

D0.01cc 29.74 (8.47) 19.05 (10.68) 16.86 (11.39) 0.00 0.38 0.00

D1cc 25.90 (8.22) 12.70 (9.76) 11.03 (9.93) 0.00 0.28 0.00

D5cc 21.57 (8.58) 8.68 (9.48) 8.54 (9.61) 0.00 0.92 0.00

Major vessels

Mean dose 34.31 (6.81) 19.43 (9.84) 19.38 (9.63) 0.01 0.74 0.01

Dmax 63.27 (0.80) 62.37 (0.85) 62.14 (1.12) 0.01 0.48 0.02

D0.01cc 62.95 (0.78) 61.64 (0.97) 61.33 (1.12) 0.01 0.11 0.01

D1cc 60.64 (1.87) 58.23 (3.70) 57.30 (4.22) 0.001 0.01 0.01

D5cc 56.34 (5.75) 50.43 (12.22) 48.99 (12.83) 0.01 0.01 0.01

Major airway

Mean dose 22.75 (16.90) 16.11 (17.00) 16.23 (16.70) 0.00 1.00 0.00

Dmax 43.21 (25.95) 43.53 (26.55) 42.64 (26.94) 0.77 0.19 0.56

D0.01cc 42.85 (25.90) 42.75 (26.20) 41.87 (26.80) 0.23 0.23 0.38

D1cc 38.96 (25.30) 36.37 (26.70) 36.18 (26.70) 0.02 0.43 0.03

D5cc 30.72 (21.57) 24.77 (24.98) 24.77 (24.19) 0.02 0.74 0.02

p1,2 is VMAT vs. IMPT; p2,3 is IMPT vs. IMCIT; p1,3 is VMAT vs. IMCIT

Fig. 2 Dose distribution for the heart and the esophagus. a Dose distribution for the heart. b Dose distribution for the esophagus
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IMRT [17, 18]. However, this unique phenomenon of
proton therapy has not been previously observed in com-
parisons of CIRT with 3D–CRT [21, 22]. Both IMPT and
IMCIT significantly lowered the normal lung V5 - V20 in
this study. This result was similar to those from previous
studies comparing proton and photon therapies [15–20].
In contrast, VMAT, compared with either IMPT or
IMCIT, appears to be associated with slightly lower but
clinically non-significant volumes of normal lungs receiv-
ing high doses close to the prescribed dose, probably be-
cause of the suboptimal dose conformity associated with
fixed-beam particle therapy (Fig. 1). In addition, IMCIT,
compared with IMPT, may further decrease the ipsilateral
lung volumes receiving low doses, thus leading to reduced
total lung volumes receiving low doses. These findings
may be associated with both the physical properties of
particle beam therapy and the better dose conformity ob-
served with VMAT and IMCIT compared with IMPT.
However, improved normal lung sparing with IMCIT
compared with VMAT was not found to be as dramatic as
previously observed when passively scattered CIRT was
compared with 3D–CRT, possibly because of the better
control of normal lung dose associated with VMAT
compared with 3D–CRT [21, 22]. Given PT’s physical
properties, this sparing may be improved with arc-based
methods of beam delivery [20].
Significant sparing of the heart, esophagus, and other

thoracic OARs was observed with PT compared with
VMAT (Table 4, Fig. 2). This finding was consistent with
those of previous studies comparing PT and photon
therapy [15–22]. Although no significant difference be-
tween IMCIT and IMPT was observed in the sparing of
the heart, the esophagus, the spinal cord, or the major air-
way, the sparing of the heart and the major blood vessels
in the high dose volumes may be best achieved with
IMCIT. Overall, our findings suggested that although they
are delivered with a limited number of beams and beams
angles, fixed-beam IMPT and IMCIT may have an OAR
sparing advantage over photon VMAT, which is more
prominent with IMCIT than IMPT in the sparing of nor-
mal lungs and major blood vessels, owing to its improved
dose conformity. Such an advantage may be further aug-
mented as PT is more developed in the future.
Intensity modulation through active scanning may fur-

ther improve dose conformity and OAR sparing in the
thorax [16, 17, 19, 20]. This advantage is significantly
limited by organ motion due to changes in radiological
path length as a result of organ motion adjacent to the
tumor, inter-field motion, and the interplay of interfer-
ence between beam and tumor motion, which may result
in tumor under-dose and OAR over-dose [32]. The
interplay effect has been shown to significantly deterior-
ate target dose coverage and dose homogeneity when
the motion amplitude is greater than 8 mm [33]. The

correlation between motion amplitude and dose
heterogeneity due to interplay, which leads to increased
under-dosing within the target volume, has been further
demonstrated in a 4D Monte Carlo simulation [34].
Such under-dosing has been modeled to significantly
decrease the 2-year local control. However, this problem
may be mitigated through fractionation, which leads to a
motion-averaging effect on dose distribution, and the
selection of larger spot size for the scanning beam. To-
gether, these strategies can retain dose homogeneity with
motion amplitudes of <20 mm. The mitigating effect of
fractionation on interplay has also been shown in a
series of 11 patients with stage III NSCLC for whom
conventional fractionation with 35 fractions and hypo-
fractionation with 10 fractions were modeled [35]. These
observations further support our utilization of a hypo-
fractionated schedule in the current study.
Respiratory motion is mainly managed through

rescanning, gating, and beam tracking [32, 36, 37].
Rescanning mitigates the interplay effect by averaging
the under-dosing and over-dosing patterns of the dose
distribution. This process can be accomplished through
volumetric or energy-slice by energy-slice rescanning
while motion parameters are kept different between
rescans. Rescanning mitigates the interplay effects
without mitigating the target motion. Thus, adequate
margins need to be maintained for adequate target dose
coverage, possibly leading to suboptimal OAR sparing in
conjunction with the dose blurring at the field borders.
In addition, rescanning may be beneficial only when sig-
nificant interplay exists under moderate to large respira-
tory motion [38]. Gating, which is already in clinical use
for photon therapy to minimize respiratory motion-
related dose degradation and unnecessary OAR irradi-
ation, has been a major approach of respiratory motion
management for particle therapy to minimize interplay.
Through 4D dose calculation, adequate target volume
dose coverage and dose homogeneity have been demon-
strated with a gating window (GW) of ≤5 mm, and lung
dose can be further decreased within the clinically ac-
ceptable range with shorter GWs up to 1 mm for spot
scanning proton therapy [39]. This process supports our
motion selection criteria of limiting the cranio-caudal
motion to ≤5 mm through selecting the motion phases,
including the maximal expiratory phase, by visual in-
spection of each patient’s 4D CT. Although 4D dose cal-
culation to better account for interplay was not
performed in this study, dose heterogeneities due to
interplay for target motion of ≤5 mm were found to be
within the clinically acceptable 5% for both carbon ions
and protons at our institution (Additional file 1). How to
best account for interplay in thoracic particle therapy
will be more thoroughly assessed in future studies. A
limitation for evaluating the effects of range uncertainties

Chi et al. Radiation Oncology  (2017) 12:132 Page 8 of 11



and interplay in this study is that errors may exist in the
correlation between surrogate marker motion and internal
tumor motion, and irregularities in the breathing pattern
may also be present during real-time treatment. Such er-
rors may be further decreased through periodical stereo-
scopic imaging intra-fractionally and phase-controlled
rescanning (PCR) combined with gating for fast scanning
particle beams [40]. Excellent dose conformity and en-
hanced OAR sparing have been demonstrated for PCR
combined with gating [41]. However, rescanning during
gating may not be necessary in all cases, especially when
fractionated treatments are delivered, as suggested by the
findings discussed above [34, 35, 38]. To account for ir-
regular breathing patterns throughout the entire course of
fractionated particle therapy, amplitude-based gating
based on tumor location observed in 4D CT datasets has
been adopted and routinely used clinically [42]. Although
active tumor tracking may lead to the smallest high dose
volume, this approach places a high demand on scanning
speed, which must allow for rapid alteration of beam en-
ergy to adjust the Bragg peak in depth in relation to tumor
motion [43]. This longitudinal compensation may be
achieved through the use of wedges [44, 45]. However,
tumor tracking remains an area of active research in thor-
acic particle therapy.
Owing to the scanning beam’s sensitivity to motion,

4D dose calculation for thoracic particle therapy has
been advocated. The temporal density changes due to
respiratory motion, which result in range uncertainties,
can be incorporated into the treatment planning process.
This process leads to decreased interplay and more ro-
bust treatment plans that, in contrast to 3D planning,
can avoid unexpected under-dosing [46, 47]. Robust 4D
planning is preferred for thoracic particle therapy, be-
cause dose errors in 3D planning are not always
dependent on motion [47, 48]. However, this approach
can be labor intensive and technically demanding. Thus,
3D planning with adequate motion management is still
an acceptable approach in clinical practice [48]. No clin-
ically significant differences in most of the commonly
evaluated dose parameters were observed in our dose re-
calculation. This finding may be due to the limiting of
respiratory motion in this selected group of patients, be-
cause the primary goal of the study was to compare the
dose distribution among photon VMAT, IMCIT, and
IMPT with minimal influence from respiratory motion.
Therefore, 4D planning may have a more significant im-
pact when significant respiratory motion is encountered.
Our 4D dose evaluation is only a limited approximation
of the actual dose, owing to a lack of full consideration
of the interplay between respiratory motion and the dy-
namic beam scanning, which could be achieved only
with more robust approaches for 4D dose calculation that
are not commercially available currently [29, 30, 46, 47].

As a result, the limited dose variation observed after 4D
dose evaluation, especially for the OAR dose parameters,
may not fully capture the interplay effect and potentially
be missing larger than actually observed dose uncertain-
ties. This issue is also the major limitation of our study.
Nevertheless, this study represents a step forward from
3D planning in accounting for range uncertainties that
may lead to an overall decreased interplay effect [47]. The
best approaches to 4D dose calculation and how to
fully account for the interplay effect are beyond the scope
of the current study. Robust 4D dose calculation for scan-
ning beam particle therapy should be further assessed,
and 4D planning should be considered whenever feasible,
owing to the lack of direct correlation between motion
amplitude and the interplay [29, 30, 47].
Another major limitation of this study is that fixed-

angle particle beams are used. Dose distribution may be
further improved with gantry-based systems through
augmenting the known advantages of active scanning
particle therapy with the increased number of angles for
beam delivery. This question remains to be investigated
in the future.

Conclusion
In comparison with VMAT, fixed-beam IMCIT led to
comparable dose conformity under limited respiratory
motion. However, IMCIT had significantly better tumor
target dose coverage and conformity than did IMPT. Al-
though both IMPT and IMCIT led to significantly better
thoracic OAR sparing than VMAT, IMCIT may further
improve normal lung and major blood vessel sparing, as
compared with IMPT.
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