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INTRODUCTION

Brain tumors can originate from different cells both from 
within the brain and from systemic tumors that have metasta-
sized to the brain. Primary brain tumors most commonly arise 
from glial cells [1]. With an annual age-adjusted incidence rate 
of 28 per 100,000 in adults, gliomas account for approximate-
ly 27.2% of all brain and other central nervous system tumors, 
and approximately 81.3% of all malignant tumors [2].

Gliomas can be categorized into different pathologic sub-
types. In addition to the pathologic type, World Health Orga-
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Brain tumors represent a diverse spectrum of histology, biology, prognosis, and treatment options. Al-
though MRI remains the gold standard for morphological tumor characterization, positron emission to-
mography (PET) can play a critical role in evaluating disease status. This article focuses on the use of 
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tiate between recurrent tumors and radiation necrosis. The most widely used tracer is 18F-fluorodeox-
yglucose (FDG). Although the intensity of FDG uptake is clearly associated with tumor grade, the ex-
act role of FDG PET imaging remains debatable. Additionally, high uptake of FDG in normal grey 
matter limits its use in some low-grade tumors that may not be visualized. Because of their potential 
to overcome the limitation of FDG PET of brain tumors, 11C-methionine and 18F-3,4-dihydroxyphenyl-
alanine (FDOPA) have been proposed. Low accumulation of amino acid tracers in normal brains allows 
the detection of low-grade gliomas and facilitates more precise tumor delineation. These amino acid 
tracers have higher sensitivity and specificity for detecting brain tumors and differentiating recurrent 
tumors from post-therapeutic changes. FDG and amino acid tracers may be complementary, and 
both may be required for assessment of an individual patient. Additional tracers for brain tumor imag-
ing are currently under development. Combinations of different tracers might provide more in-depth 
information about tumor characteristics, and current limitations may thus be overcome in the near fu-
ture. PET with various tracers including FDG, 11C-methionine, and FDOPA has improved the manage-
ment of patients with brain tumors. To evaluate the exact value of PET, however, additional prospec-
tive large sample studies are needed.
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nization classifications also provide histologic grades based on 
cellular alterations related to cancer aggressiveness. Grades I 
and II are considered low-grade tumors that have a prolonged 
clinical course. Grade III and IV tumors are considered high-
grade lesions rapidly leading to death when left untreated [3]. 

Despite multimodal treatment strategies, the prognosis for 
patients with glioma is poor. The median survival for patients 
varies according to tumor grade, location, and age at diagno-
sis. Therefore, adequate tumor diagnosis and grading is thus 
crucial to initiate appropriate treatment and improve long-term 
outcomes [4]. 

MRI with gadolinium contrast enhancement is the gold 
standard imaging modality for assessing the morphological 
characteristics of brain tumors, such as location, mass effect, 
and contrast enhancement; however, it has several limitations. 
It cannot always distinguish gliomas from non-neoplastic le-
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sions such as those resulting from vascular processes or in-
flammatory reactions. Because the absence of contrast en-
hancement does not always correspond to low-grade tumors, 
MRI is not perfect for grading gliomas. Furthermore, distin-
guishing tumor recurrence from post-surgical or post-radio-
therapeutic changes remains a major challenge in brain imaging 
studies [5]. In recent decades, molecular imaging with positron 
emission tomography (PET) has gained increasing impor-
tance in identifying and delineating areas of increased tumor 
growth activity. Various PET tracers have been developed to 
visualize tumors using the hallmarks of cancers, such as meta-
bolic derangement and replicative immortality. The tracer 
18F-fluorodeoxyglucose (FDG) visualizes glucose metabolism, 
radiolabeled amino acids [e.g., 11C-methionine, 18F-3,4-dihy-
droxyphenylalanine (FDOPA), and O-(2-18F-Fluoroethyl)-l-
Tyrosine (FET)] perform protein synthesis, and 18F-fluorothy-
midine (FLT) performs DNA replications. PET fused with 
computed tomography (PET/CT) can obtain detailed ana-
tomical information on PET results and provides clinically 
invaluable information regarding primary detection and dif-
ferentiation between various underlying tumor types, initial 
tumor grading and risk stratification, therapy planning, selec-
tion of biopsy site, response evaluation, and recurrence detec-
tion [6-8]. The current article discusses some of the positive as-
pects of the contemporary use of PET or PET/CT in primary 
brain tumors. 

FDG PET

FDG PET imaging was first used to detect and differentiate 
between low- and high-grade tumors [9]. Similar to most ma-

lignancies elsewhere in the body, malignant brain tumors gen-
erally have increased glucose metabolism and increased FDG 
uptake, and FDG is actively transported across the intact blood-
brain barrier (BBB) (Fig. 1). Anaerobic glycolysis has been shown 
to occur in advanced cancers, even with an abundance of oxy-
gen, a process named the Warburg effect. The high glycolytic 
rate of cancerous lesions results from various biological chang-
es, including high levels of the membrane glucose transporter 
and increased cytosolic glycolytic enzymes such as hexokinase. 
Consequently, the greater demand for glycolytic substrates 
causes increased transport of the glucose analog FDG into ma-
lignant cells [10-12]. 

FDG PET can be used to identify differences in glucose up-
take among healthy brains, low- and high-grade gliomas, and 
radionecrosis [13,14]. FDG uptake is generally considered to 
reflect both tumor cell viability and density, and is directly re-
lated to tumor grade [15,16]. FDG uptake in low-grade tumors 
is similar to that of white matter, whereas Grade III and IV 
tumors exhibit glucose metabolic activity comparable to or 
higher than that of grey matter (Fig. 2). A meta-analysis con-
ducted by Zhao et al. [17] revealed that FDG PET was able to 
detect brain tumors with a sensitivity of 71% and a specificity 
of 77%, whereas another study on detecting high-grade glio-
mas found that FDG PET had a sensitivity of 94% and a spec-
ificity of 77% [9]. Because the similarities in glucose metabolic 
activity between tumors and grey matter cause difficulties in 
the analysis of FDG-PET images, several studies have shown 
that delaying scanning times by 3 hours after FDG injection 
considerably improves the contrast between malignant brain 
tumors and normal brain tissue [18,19].

Because treatment-induced changes such as radionecrosis 

Fig. 1. FDG PET/MR for CNS lymphoma. 79-year-old woman diagnosed as CNS lymphoma. T2 fluid attenuated inversion recovery MRI 
shows multiple lesions with high signal in both hemisphere (A). FDG PET (B) and FDG PET/MR (C) show intense tracer uptake at the le-
sions. FDG, 18F-fluorodeoxyglucose; PET, positron emission tomography; CNS, central nervous system.
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evolving domain, promising higher sensitivity as well as high-
er specificity for certain tumor entities [30]. Because of physi-
ologically low uptake in healthy brain tissue and absent or low 
uptake in inflammatory lesions, radiolabeled amino acids or 
their analogs have been demonstrated to overcome the limita-
tions of FDG [31,32] . 

AmINO ACID PET

Because of the limitations of FDG PET in assessing brain 
tumors, amino acid-based radiotracers have been developed. 
The most popular amino acid tracer is 11C-methionine, which 
has been investigated in many studies on brain tumors (Fig. 3). 
The use of 11C-methionine provides a high detection rate for 
brain tumors and good lesion delineation because of the low 
physiological uptake of the amino acid in healthy brains with 
high contrast between normal and cancerous tissue [33-38]. 
Increased 11C-methionine uptake is associated with upregula-
tion of L-type amino acid transporter 1 (LAT1) and prolifera-
tion of the tumor microvasculature [39-42]. Although methio-
nine PET has been shown to have high sensitivity for gliomas, 
false-positive results may be seen under benign conditions, such 
as cases of demyelination, leukoencephalitis, or abscess [43]. 

Several studies diagnosing untreated brain tumors with me-
thionine PET have reported relatively high sensitivities, rang-
ing from 76% to 91%, and specificities ranging from 75% to 
100% [35,38,44-47]. A recent meta-analysis found a 91% sen-
sitivity and an 86% specificity [17]. Methionine PET is more 
suitable than FDG PET alone for diagnosing and managing 
patients, particularly those with low-grade tumors [38,48,49].

In high-grade gliomas, tracer leakage from a disrupted BBB 
contributes considerably to amino acid uptake. However, in 
low-grade gliomas, amino acid uptake occurs without sub-

and post-surgical changes are highly difficult to distinguish 
from tumor recurrence, evaluation of disease status after treat-
ment is challenging with MRI alone [20]. Conversely, FDG 
PET can detect recurrent high-grade tumors. Chao et al. [14] 
reported sensitivity of 75% and specificity of 81% for FDG 
PET in differentiating recurrent tumors from post-radiation 
changes. They also observed an improvement in the sensitivity 
of tumor recurrence detection after stereotactic radiotherapy, 
from 65% to 85%, when FDG PET was added to standard 
MRI. Previous studies have reported high sensitivities and 
specificities for FDG PET of 81–86% and 40–94%, respective-
ly, for distinguishing radionecrosis from residual or recurrent 
tumors whereas those for contrast enhanced MRI were 95% 
and 23%, respectively [21,22]. 

Wang et al. [23] defined the criteria for positive and nega-
tive FDG PET scans as tracer uptake above or below the ex-
pected uptake in the adjacent brain tissue, which achieved high 
overall sensitivity and accuracy of 80% and 87%, respectively, 
with regard to differentiating recurrent tumors from post-ra-
diation changes.

However, values of FDG PET are inherently limited by the 
FDG avidity of normal brain tissue. The physiologic glucose 
consumption in the normal brain generates a high background 
uptake of FDG, which is generally high in gray matter, and 
moderate to high in white matter [24-26]. In addition, various 
non-malignant intracerebral lesions also have varying levels 
of increased FDG uptake (e.g., with inflammatory or infec-
tious causes), and this also applies to normal brain tissue adja-
cent to tumor lesions. Thus, differentiating between malignant 
and non-malignant causes of increased FDG uptake is difficult 
[27-29].

Although FDG remains the most widely used radiotracer 
for PET imaging, radiopharmaceutical development is an 

Fig. 2. FDG PET/MR for high-grade glioma. 18-year-old woman diagnosed as a glioblastoma, WHO grade IV. T2 fluid attenuated inversion 
recovery MRI shows high signal in pontine lesion (A). FDG PET (B) and FDG PET/MR (C) show increased tracer uptake at the lesion (ar-
rows). FDG, 18F-fluorodeoxyglucose; PET, positron emission tomography.
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stantial BBB breakdown, corresponding to an upregulation of 
LAT1 [45]. Therefore, the relationship between tumor grade 
and the intensity of amino acid analog uptake remains subject to 
speculation; some studies have reported strong correlation be-
tween the two parameters [50-52], whereas others have reached 
the opposite conclusion [53-55]. 

Methionine PET can also detect recurrent tumors with high 
sensitivity and specificity, allowing differentiation between tu-
mor recurrence and radionecrosis. A recent meta-analysis of 
methionine PET reported a summary sensitivity of 70% and 
specificity of 93% for high-grade gliomas in the detection of 
recurrent tumors [56].

However, because of the short half-life of 11C, 18F-labeled 
amino acid tracers were developed, such as FDOPA and FET 
[4,31,57,58]. Whereas FDOPA is widely spread in the United 
States, FET is more common in Europe [59]. 

Similar to radiolabeled methionine, uptake of FDOPA is 
mediated by amino acid transporters and does not require dis-
ruption of the BBB. Therefore, FDOPA and 11C–methionine 
have similar distribution in tumors [60,61]. 

Despite published series having involved mixed patients 
populations, FDOPA PET reportedly has high sensitivity and 
specificity for detecting brain tumors, ranging from 85% to 
100% and from 86% to 90%, respectively [60,62-64]. Accumu-
lation of FDOPA does not vary substantially within different 
tumor grades, and the amino acid analog is clearly superior to 
18F-FDG for diagnosing low- and high-grade gliomas [64,65].

Because FDOPA uptake in brain tumors does not depend 
on the BBB, delineation of tumor extent is reportedly more ac-
curate, and areas with increased uptake on PET are often larger 
than areas with contrast-enhanced lesions on MRI [66]. There-

fore, amino acid PET can be useful for treatment planning, 
and Grosu et al. [67] reported better outcomes for patients 
with radiotherapy planned on the basis of tumor extent as de-
fined using amino acid PET. 

FDOPA PET provides crucial information for the detection 
of recurrent brain tumors as well as initial diagnosis. It is a 
valuable tool for treatment monitoring because it helps in as-
sessing treatment response and evaluating patient prognosis 
after therapy. Previous studies have reported sensitivity and 
specificity of FDOPA PET for detecting tumor recurrence as 
ranging from 90% to 92% and from 92% to 95%, respectively 
[32,68,69]. 

FLT PET

The pyrimidine analog 3’-deoxy-3’-FLT has been studied as 
a marker of tumor proliferation rate by reflecting thymidine 
kinase-1 activity, which is the principle enzyme in the path-
way of DNA synthesis. Because no transporter has sufficient 
capacity, uptake of FLT in the brain depends on BBB permea-
bility. In brain tumors with a damaged BBB, therefore, FLT pro-
vides highly reliable tumor-to-background contrast but cannot 
be used in low-grade gliomas with an intact BBB [70,71]. 

Whereas the sensitivity of FLT PET for detecting high-grade 
gliomas can reach 100%, a lower overall sensitivity of 83% has 
been shown because of major differences in uptake between 
high- and low-grade tumors [72,73]. Hence, the sensitivity of 
all grades is typically lower than with FDG PET [74] and me-
thionine PET [75]. Conversely, FLT PET seems to be superior 
to methionine PET in tumor grading and assessment of pro-
liferation activity in gliomas of different grades [76,77].

Fig. 3. 11C-methionine PET/MR. 5-year-old girl diagnosed low-grade glioma in cerebellum. T2 fluid attenuated inversion recovery MRI shows 
high signal in a cerebellar lesion (A). 11C-methionine PET (B) and 11C-methionine PET/MR (C) show increased tracer uptake at the cerebellar 
lesion. PET, positron emission tomography.
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FUTURE PERsPECTIvEs

Because the information gained by different imaging meth-
ods is complementary and brain PET scans generally should 
not be interpreted without access to the corresponding MRI 
scans, combining all imaging methods might provide optimal 
results for assessment of tumor characteristics [78-83]. Com-
bined PET/MR can readily be achieved using standard soft-
ware and is provided more directly and conveniently by hy-
brid PET/MR machines (Fig. 1-3). Although the effect of image 
fusion does not play an essential role in the case of brain imag-
ing, accurate image fusion can be easily obtained through im-
age co-registration based on fixed points. PET/MR also has 
the advantage of low radiation exposure compared to PET/
CT, rendering it particularly attractive for pediatric patients.

The nitroimidazole derivative tracer 18F-Fluoromisonida-
zole (F-MISO) has been developed as a PET tracer, to visualize 
intratumoral hypoxic areas before and during radiation thera-
py [84,85]. In addition, F-MISO is able to diffuse freely across 
the BBB, it is useful imaging tracer for brain tumor. Dual-phase 
F-MISO PET has been used; early F-MISO distribution re-
flects blood flow, while later tracer is accumulated in hypoxic 
area [86,87]. Hypoxia measurements have been shown to cor-
relate with invasion, tumor recurrence, the probability of met-
astatic spread and decreased patient survival as well as resis-
tance to radiation and chemotherapy. However, the biggest 
obstacle for using F-MISO is limited availability, and further 
clinical studies are still needed for verifying clinical usefulness 
of F-MISO PET. Nevertheless, the majority of PET studies have 
been limited to small sample size and retrospective designs, 
lacking comparability because of different acquisition and data 
evaluation methods. Therefore, the clinical value of PET in 
brain tumors might still be underestimated. Multicenter clini-
cal trials of PET are crucial to elucidate the optimal PET set-
ting for assessing brain tumors, which can be useful for guid-
ing optimal diagnostic and therapeutic decision making and 
ultimately improving the prognosis of brain tumors.

Additional tracers for brain tumor imaging are under active 
development, and PET tracers using other metabolic process-
es, such as phospholipid membrane biosynthesis, hypoxia, re-
ceptor binding, and oxygen metabolism and blood flow, will 
be crucial for forming personalized therapeutic strategies us-
ing targeted agents. The combination of different tracers 
might provide more accurate information on the characteris-
tics of various brain tumors, and the current limitations may 
thus be overcome in the near future. 

CONCLUsION

PET imaging with oncologic radiotracers can visualize vari-

ous biological statuses of brain tumors and improves diagnos-
tic and therapeutic planning in certain patients with brain tu-
mors. Advancement of PET chemistry and development of 
imaging technologies will broaden the applications of PET 
imaging in the field of brain tumors.
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