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“Hearing faces and seeing voices”: 
Amodal coding of person identity in 
the human brain
Bashar Awwad Shiekh Hasan1,2, Mitchell Valdes-Sosa3, Joachim Gross1 & Pascal Belin1,4,5

Recognizing familiar individuals is achieved by the brain by combining cues from several sensory 
modalities, including the face of a person and her voice. Here we used functional magnetic resonance 
(fMRI) and a whole-brain, searchlight multi-voxel pattern analysis (MVPA) to search for areas in which 
local fMRI patterns could result in identity classification as a function of sensory modality. We found 
several areas supporting face or voice stimulus classification based on fMRI responses, consistent with 
previous reports; the classification maps overlapped across modalities in a single area of right posterior 
superior temporal sulcus (pSTS). Remarkably, we also found several cortical areas, mostly located along 
the middle temporal gyrus, in which local fMRI patterns resulted in identity “cross-classification”: vocal 
identity could be classified based on fMRI responses to the faces, or the reverse, or both. These findings 
are suggestive of a series of cortical identity representations increasingly abstracted from the input 
modality.

•	 Local	patterns	of	cerebral	activity	measured	with	fMRI	can	classify	familiar	faces	or	voices.
•	 Overlap	of	face-	and	voice-classifying	areas	in	right	posterior	STS.
•	 Cross-classification	of	facial	and	vocal	identity	in	several	temporal	lobe	areas.

The	ability	to	recognize	familiar	individuals	is	of	high	importance	in	our	social	interactions.	The	human	brain	
achieves	this	by	making	use	of	cues	from	several	sensory	modalities,	including	visual	signals	from	the	face	of	
a	person	and	auditory	signals	from	her	voice1,2.	There	is	evidence	that	these	cues	are	combined	across	senses	
to	yield	more	accurate,	more	robust	representations	of	person	identity—a	clear	case	of	multisensory	integra-
tion3–5.	For	instance,	familiar	speaker	recognition	is	faster	and	more	accurate	when	the	voice	is	paired	with	a	
time-synchronized	face	from	the	same	individual	than	when	presented	alone,	and	slower	and	less	accurate	when	
paired	with	the	face	of	a	different	individual3.

The	contribution	of	different	sensory	modalities	to	person	perception	is	acknowledged	in	particular	by	cog-
nitive	models	such	as	Bruce	and	Young	(1986)’s	model	of	face	perception.	Specifically	they	proposed	the	notion	
of	“person	identity	nodes”	(PINs):	a	portion	of	associative	memory	holding	identity-specific	semantic	codes	that	
can	be	accessed	via	the	face,	the	voice	or	other	modalities:	it	is	the	point	at	which	person	recognition,	as	opposed	
to	face	recognition,	is	achieved6,7.

Whether	the	PINs	have	a	neuronal	counterpart	in	the	human	brain	remains	unclear,	in	part	owing	to	the	
fact	that	most	studies	of	person	recognition—either	using	neuropsychological	assessment	of	patients	with	brain	
lesions,	or	neuroimaging	techniques	such	as	functional	magnetic	resonance	imaging	(fMRI)	in	healthy	volun-
teers—have	focused	on	single	modality,	mostly	face,	then,	far	second,	voice;	only	few	studies	have	investigated	the	
cerebral	bases	of	person	recognition	based	on	more	than	one	sensory	modality1,4.

Lesion	and	neuroimaging	studies	have	suggested	potential	candidate	cortical	areas	for	the	PINs,	including	the	
precuneus8,	parietal	and	hippocampal	regions9–11,	posterior	superior	temporal	sulcus	(pSTS)12,13	or	the	anterior	
temporal	lobes14.	However	a	PIN,	as	defined	in	Bruce	&	Young	(1986),	would	correspond	to	a	patient	with	a	brain	
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lesion	preserving	recognition	and	feeling	of	familiarity	based	on	single	modalities	separately	but	who	could	not	
retrieve	semantic	information	on	the	person,	and	not	associate	the	face	and	voice	of	the	person;	such	a	patient	has	
not	yet	been	identified1.	Other	studies	suggest	that	amodal	representations	could	rather	emerge	from	cross-talk	
interactions	between	modality-specific	areas1:	voice	and	face-sensitive	areas	are	not	only	connected	via	direct	
anatomical	projections15	but	also	functionally	connected	during	familiar	voice	recognition16.

Multi-voxel	pattern	analyses	(MVPA)	offer	a	powerful	means	of	extracting	information	contained	in	distrib-
uted	fMRI	activity17,18:	their	enhanced	sensitivity	compared	to	classical	univariate	fMRI	analyses	has	contributed	
to	clarifying	the	neural	correlates	of	unimodal	face19–23	or	voice24,25	identity	processing.	To	our	knowledge	MVPA	
have	not	been	used	yet	to	examine	the	cerebral	bases	of	multimodal	person	identification	although	they	have	pro-
vided	exciting	insights	in	the	integration	of	emotional	information	across	senses.	Peelen	et al.26	used	a	searchlight	
information-based	analysis27	to	compare	the	fMRI	activation	patterns	elicited	in	local	spherical	clusters	of	voxels	
by	emotional	stimuli	presented	in	three	modalities:	faces,	voices	and	bodies.	They	found	two	clusters	across	the	
whole	brain,	located	in	rostral	medial	prefrontal	cortex	and	in	the	left	pSTS,	in	which	patterns	of	activity	associ-
ated	with	the	same	emotions	from	different	modalities	were	more	similar	to	each	other	than	patterns	associated	
with	different	emotions,	strong	evidence	for	supramodal	representations	of	emotion26.

Here	we	used	fMRI	to	measure	blood	oxygenation	level	dependent	(BOLD)	signal	as	an	indirect	index	of	neu-
ronal	activity	in	normal	volunteers	engaged	in	an	identity	recognition	task.	They	were	performing	a	4-alternative	
forced	choice	classification	of	the	identity	of	four	familiar	persons	recorded	while	saying	the	word	“had”	either	as	
a	video	combining	the	face	and	the	voice	(Face-Voice	condition),	a	silent	video	of	their	face	(Face	condition)	or	
the	audio	recording	of	the	voice	(Voice	condition).	We	used	a	slow-event	related	design	to	maximize	independ-
ence	between	trials	and	a	large	number	of	trials	to	enable	robust	subject-level	analyses.	Searchlight	MVPA	was	
used	across	the	whole	grey	matter	mask	of	each	subject	to	localize	brain	areas	in	which	local	patterns	of	cortical	
activity	could	be	used	to	train	a	support	vector	machine	(SVM)	classifier	to	classify	the	identity	of	the	familiar	
persons	viewed	and/or	heard.	We	asked	whether	some	cortical	areas	could	result	in	identity	classification	across	
sensory	modalities.

Results
All	five	participants	performed	the	identity	classification	task	with	near-ceiling	accuracy	during	scanning	
(Fig. 1).	Individual	one-way	ANOVAs	showed	that	average	percent	correct	accuracy	was	lower	and	average	
reaction	time	(RT)	longer	in	the	Voice	condition	(p	<		0.05	two-tailed;	Accuracy:	mean	=		94.6%,	range	across	
the	five	subjects	=		[90.0–98.2];	RT:	mean	=		643	ms,	range	of	mean	=		[542–795])	than	in	the	Face	(Accuracy:	
mean	=		98.9%,	range	=		[97.9–100];	RT:	mean	=		458	ms,	range	=		[362–531])	or	the	Face-Voice	(Accuracy:	
mean	=		99.0%,	range	=		[97.9–100];	RT:	mean	=		475	ms,	range	=		[396–537])	conditions	(differences	significant	
in	4/5	participants).

Univariate	fMRI	analysis	confirmed	the	involvement	of	visual	and	auditory	cortex	in	stimulus	processing,	
revealing	overlapping	activation	of	bilateral	fusiform	cortex	and	medial	prefrontal	cortex	in	the	Face	and	the	
Face-Voice	conditions,	and	of	bilateral	superior	temporal	gyrus	and	sulcus	in	the	Voice	and	the	Face-Voice	condi-
tions.	No	significant	activity	differences	between	the	four	identities	were	observed	in	any	part	of	the	brain	for	any	
stimulation	conditions	(all	q	>		0.01	FDR)	with	the	univariate	analysis.

In	the	MVPA	analysis	(cf.	Methods)	all	participants	individually	showed	areas	of	cortex	in	which	local	patterns	
of	fMRI	activity	resulted	in	significantly	(0.01	FDR	corrected)	above-chance	stimulus	classification,	either	the	
voice	or	the	face.	The	coincidence	map	of	Fig. 2,	which	shows	in	the	standard	stereotactic	space	of	the	Montreal	
Neurological	Institute	(MNI)	the	voxels	present	in	the	individual	classification	accuracy	maps	of	4	or	5	of	the	5	
participants,	reveals	several	areas	consistently	involved	across	individuals.	For	faces,	classifying	areas	included	left	
fusiform	gyrus,	right	inferior	temporal	gyrus	and	right	posterior	STS.	For	voices,	classifying	areas	were	located	
along	left	occipital	cortex,	left	mid	STS,	right	mid	STS/middle	temporal	gyrus	and	posterior	STS	(Fig. 2,	Table 1).

Next	we	probed	the	modality-dependence	of	these	local	representations	of	face	and	voice	stimuli	in	two	dif-
ferent,	complementary	ways.	First	we	asked	whether	any	overlap	in	the	stimulus-classifying	areas	based	on	face	

Figure 1.	 Behavioural results. Distribution	of	average	accuracy	and	reaction	time	(in	ms)	at	the	identity	
classification	task	across	the	five	participants.	AV:	audiovisual	Face-Voice	condition.
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or	voice	could	be	observed.	Only	a	single	region	of	cortex	showed	such	overlap	consistently	across	participants:	
spherical	ROIs	centered	on	right	posterior	STS	(pSTS)	could	classify	both	faces	and	voices	(Fig. 2,	Table 1).

Second,	we	asked	whether	some	areas	could	result	in	identity cross-classification,	that	is,	whether	they	could	
classify	test	fMRI	volumes	measured	in	response	to	presentation	of	the	familiar	identities	in	one	modality	(e.g.,	
the	face)	after	training	the	SVM	classifier	based	on	fMRI	volumes	measured	in	response	to	the	other	modal-
ity	(e.g.,	the	voice).	All	participant	showed	such	areas	resulting	in	cross-classification	of	identity	either	in	one	
direction	(train	classifier	on	voices,	test	on	faces)	or	the	other	(train	on	faces,	test	on	voices)	or	both	(Figure S1).	
The	coincidence	map	of	these	regions	across	the	five	participants	(Fig. 2)	revealed	a	number	of	these	identity	
cross-classifying	areas	consistently	located	across	individuals:	most	consisted	of	small	patches	of	cortex	located	
in	the	temporal	lobe	along	the	whole	antero-posterior	extent	of	the	STS	bilaterally;	additional	cross-classifying	
areas	were	found	in	left	inferior	prefrontal	cortex	and	in	right	Rolandic	operculum.	Remarkably,	several	of	these	
cross-modally	identity	classifying	areas	showed	an	overlap	of	the	two	directions	of	cross-classification:	fMRI	
patterns	measured	in	these	areas	resulted	in	above-chance	cross-classification	of	identity	in	both	directions,	i.e.,	
from	face	to	voice	and	from	voice	to	face	(Table 1).

Discussion
We	used	an	fMRI	searchlight	MVPA	approach	to	investigate	the	cerebral	processing	of	identity	information	from	
the	auditory	and	visual	sensory	modalities.	We	searched	the	whole	brain	of	healthy	participants	for	areas	in	
which	local	fMRI	patterns	measured	in	response	to	the	face	or	voice	of	four	familiar	individuals	contained	suffi-
cient	information	to	classify	the	face	or	voice.	All	participants	individually	showed	areas	resulting	in	significantly	
above-chance	classification	of	face	or	voice	stimuli	based	on	the	responses	of	local	voxel	clusters,	consistent	with	
previous	results.	We	also	found,	for	the	first	time,	local	areas	resulting	in	identity	cross-classification,	that	is,	suc-
cessful	classification	of	identities	in	one	modality	based	on	fMRI	responses	in	the	other	modality.	We	argue	these	
results	reinforce	the	notion	of	amodal	representations	of	person	identity	in	the	human	brain.

We	found	that	the	face	and	voice	of	familiar	persons	can	be	decoded	within-modality	based	on	local	fMRI	
patterns.	All	five	participants	showed	areas	in	which	fMRI	patterns	measured	in	8	mm-radius	spheres	in	response	
to	the	face	or	voice	of	the	four	familiar	persons	resulted	in	significantly	(q	<		0.01	FDR	corrected)	above-chance	
classification	of	face	or	voice	by	a	classifier	trained	on	stimuli	in	the	same	modality:	face	classification	based	on	
fMRI	responses	to	the	faces;	voice	classification	based	on	fMRI	responses	to	the	voices	(Fig. 2,	Table 1).

Figure 2.	 Identity cross-classification in multiple cortical areas. Voxels	overlaid	in	color	on	surface	rendering	
of	the	left	and	right	hemispheres	are	the	centers	of	spherical	ROIs	resulting	in	significantly	(q	<		0.01	FDR	
corrected)	above-chance	classification	of	the	stimulation	conditions	in	at	least	4	of	the	5	subjects.	Blue	voxels:	
above-chance	within-modality	classification	(train	on	voice	and	test	on	voice;	train	on	face	and	test	on	face);	
Yellow	voxels:	above-chance	cross-modal	classification	(train	on	voice	and	test	on	face;	train	on	face	and	test	
on	voice).	Panels	show	for	selected	clusters	the	individual	values	(coloured	shapes:	Subjects	1–5)	of	the	cluster-
average	difference	between	classification	accuracy	and	the	empirical	chance	level	(determined	via	permutations	
for	each	voxel)	for	each	of	the	four	classification	schemes.	Bars	indicate	standard	deviation	across	the	group	
mean.	Voice:	train	and	test	on	voice;	Face:	Train	and	test	on	face;	Voice-Face:	train	on	voice	and	test	on	face;	
Face-Voice:	train	on	face	and	test	on	voice.



www.nature.com/scientificreports/

4Scientific RepoRts | 6:37494 | DOI: 10.1038/srep37494

Face	stimulus	classification	could	be	performed	based	on	the	local	fMRI	signal	in	regions	of	fusiform	and	
occipital	cortex	(Fig. 2,	Table 1).	This	result	is	consistent	with	previous	reports	of	face	identity	classification	based	
on	local	fMRI	clusters	in	fusiform	areas19–22	suggesting	that	activity	in	these	areas	of	the	core	face	processing	net-
work	already	contain	sufficient	identity	information	to	discriminate	between	facial	identities.	We	did	not	observe	
face	classification	in	more	anterior	areas	of	the	anterior	temporal	lobe	reported	by	some	studies19,20,23.

Voice	classification	based	on	local	fMRI	clusters	is,	to	our	knowledge,	a	novel	result.	Previous	reports	have	
demonstrated	classification	of	speaker	identity	based	on	fMRI	responses	to	voices24,25	but	this	classification	was	
based	on	large	number	of	voxels	non-continuously	drawn	from	extended	areas	of	cortex.	In	Formisano	et al.24’s	
pioneering	study	all	voxels	in	auditory	cortex	were	initially	considered	for	training	and	testing	the	SVM	classifi-
ers,	then	uninformative	voxels	were	progressively	eliminated	(“recursive	feature	elimination”28).	This	procedure	
resulted	in	maps	of	voxels	spanning	discontinuously	the	whole	auditory	cortex	and	that	collectively	resulted	in	
above-chance	classification	of	speaker’s	voice	or	vowel24.	These	findings	have	been	interpreted	as	evidence	for	a	
distributed	coding	of	speaker	identity,	where	information	on	speaker	identity	is	possibly	represented	across	multi-
ple	cortical	areas.	Here	we	show	that	significant	voice	classification	is	possible	based	on	much	smaller	sets	of	vox-
els,	suggesting	that	cortical	representations	of	speaker	identity	in	the	temporal	lobe	are	not	necessarily	distributed	
over	large	cortical	areas.	Thus	speaker	recognition	could	involve	both	local	as	well	as	distributed	representations	
depending	in	particular	on	the	relevant	stimulus	features.

Note	that	the	above	results	should	be	interpreted	with	caution:	the	face	(or	voice)	classification	observed	
here	does	not	necessarily	imply	face	(or	voice)	identity	classification.	Previous	studies	having	examined	identity	
classification	have	used	multiple	stimuli	for	each	identity	(e.g.,	faces	viewed	from	different	viewpoints;	speakers	
pronouncing	different	words)	such	that	the	classifier	had	to	generalize	over	several	different	instances	of	the	
identity—in	effect	solving	the	invariance	problem	our	brain	is	confronted	with	when	assessing	identity19–22,24,25.	
Here	we	only	used	a	single	stimulus	per	modality	per	identity,	such	that	accurate	face	or	voice	classification	by	a	
classifier	does	not	imply	that	this	classifier	could	generalize	to	other	stimuli	from	the	same	identity.	We	tested	for	
low-level	stimulus	classification,	not	higher-level	identity	classification.	Of	course,	this	limitation	disappears	when	
training	and	testing	sets	correspond	to	stimuli	from	different	modalities	(cf.	below).

The	first	clue	towards	multi-modality	in	cortical	representations	of	identity	comes	from	the	overlap	of	the	
(within-modality)	face	and	voice	classification	maps.	All	participants	showed	such	areas	of	overlap	of	face	and	
voice	classification	in	which	local	fMRI	clusters	resulted	in	above-chance	classification	for	both	faces	and	voices	
with	right	pSTS	being	the	only	region	consistently	located	across	participants	(Fig. 2).	This	result	is	consistent	with	
a	growing	body	of	evidence	on	the	multi-modal	nature	of	stimulus	representations	in	pSTS29–32.	Watson	et al.12		
found	that	areas	in	pSTS	show	comparable	BOLD	signal	increases	compared	to	baseline	when	participants	were	
stimulated	with	faces	or	voices12.	Right	pSTS	was	also	highlighted	in	the	first	report	of	cross-modal	adaptation	
in	processing	facial	and	vocal	expressions	of	emotion:	activity	in	this	area	measured	in	response	to	emotional	
face-voice	was	greater	when	the	emotion	expressed	by	the	face	of	a	stimulus	was	different	from	the	emotion	
expressed	by	the	voice	of	previous	stimulus	and	smaller	when	the	facial	and	vocal	emotions	were	similar33.	

Cortical Area X Y Z Cluster size Classification

Within-Modality	Classification

	 Left	Fusiform	Gyrus −	38 −	72 −	14 12 Face

	 Left	Posterior	Temporal −	44 −	64 6 23 Voice

	 Left	STS −	58 −	30 −	2 35 Voice

	 Right	Inferior	Temporal	Gyrus 50 −	58 −	12 43 Face

	 Right	Middle	Temporal	Gyrus 60 −	28 −	14 6 Voice

	 Right	Middle	Temporal	Gyrus 54 −	30 −	4 7 Voice

	 Right	Posterior	STS/STG 52 −	64 14 50 Face,	Voice

Across-Modality	Classification

	 Left	Inferior	Frontal	Gyrus −	50 16 6 74 Both	directions

	 Left	Inferior	Temporal	Gyrus −	54 −	58 −	6 15 Face->	Voice

	 Left	Superior	Temporal	Sulcus −	54 −	6 −	14 32 Both	directions

	 Left	Middle	Temporal	Gyrus −	54 −	34 −	2 52 Face->	Voice

	 Left	Middle	Temporal	Gyrus −	58 −	58 10 23 Both	directions

	 Right	Supramarginal	Gyrus 66 −	26 28 13 Voice->	Face

	 Right	Inferior	Temporal	Gyrus 48 −	68 −	8 34 Both	directions

	 Right	Inferior	Temporal	Gyrus 64 −	36 −	14 19 Voice->	Face

	 Right	Middle	Temporal	Gyrus 54 0 −	20 23 Face->	Voice

	 Right	Middle	Temporal	Gyrus 66 −	40 4 29 Both	directions

	 Right	Superior	Temporal	Sulcus 64 −	24 −	4 19 Both	directions

	 Right	Superior	Temporal	Pole 48 16 −	18 24 Voice->	Face

Table 1.	  Classification peaks.	For	each	cluster	of	sphere	centers	resulting	in	above-chance	(q	<		0.01	FDR)	
classification	accuracy	in	4	or	5	participants	are	given	approximate	cortical	area	names,	MNI	coordinates	(in	
mm),	cluster	size	(in	voxels)	and	type	of	classification.
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Together,	these	results	highlight	right	pSTS	as	an	important	region	of	convergence	of	the	visual	and	auditory	
streams	of	person-related	information	processing.

The	most	novel	result	of	the	present	study	is	our	observation	of	cross-modal	classification	of	identity	in	several	
areas	of	cortex.	We	show	for	the	first	time	that	training	SVM	classifiers	with	BOLD	signal	read	from	local	clusters	
of	fMRI	voxels	in	response	to	identities	presented	in	one	modality	can	successfully	decode	the	same	identities	
presented	in	the	other	modality.

Most	such	cross-classifying	areas	were	found	along	the	STS/MTG	bilaterally,	consistent	with	the	notion	of	a	
stream	of	person-related	information	processing	directed	towards	anterior	temporal	lobe2.	Unexpectedly	right	
pSTS	does	not	appear	in	the	group-level	map.	Cross-classifying	clusters	are	found	in	the	right	pSTS	at	the	indi-
vidual	level	(in	all	subjects	except	P3,	cf.	Figure S1)	but	less	consistently	located	across	subjects	than	clusters	
located	more	inferiorly	and	anteriorly	and	so	not	appearing	on	the	coincidence	map.	Why	the	anterior	temporal	
poles	were	not	observed	in	our	results,	despite	their	likely	involvement	in	multimodal/amodal	representations	of	
individuals1,	remains	unclear.	This	is	unlikely	due	to	signal-to-noise	ratio	differences	in	anterior	compared	to	pos-
terior	temporal	regions22	as	we	found	above-chance	classification	for	other	classification	schemes	in	some	quite	
anterior	temporal	lobe	clusters	(Fig. 2).	We	also	observed	identity	cross-classification	in	left	inferior	prefrontal	
cortex.	Although	this	region	is	not	typically	part	of	identity-processing	areas,	it	could	reflect	the	local	processing	
of	linguistic	information	accessible	from	both	face	and	voice	modalities:	the	persons’	names.	Indeed,	several	
aspects	of	the	stimuli	and	task	performed	by	the	participants	other	than	identity	processing	could	account	for	
some	of	the	results	observed,	including	covert	naming	of	the	familiar	persons	viewed	or	heard,	as	well	as	recall	
of	semantic	information	and	episodic	memories	associated	with	these	persons.	It	is	probably	those	aspects	of	the	
experimental	task	that	are	reflected	by	the	involvement	of	the	inferior	frontal	gyrus	and	supra-marginal	gyrus	
(Table 1).

Importantly,	the	limitations	of	a	single	stimulus	per	identity	per	modality	discussed	above	do	not	bear	on	the	
interpretation	of	the	cross-modal	results:	the	training	and	test	sets	of	fMRI	data	were	acquired	not	just	on	differ-
ent	stimuli	from	the	same	identities,	as	has	been	performed	by	other	‘unimodal’	studies19–22,24,25	but	on	different	
stimuli	in	different	sensory	modalities	–	arguably	a	more	complex	generalization	problem	than	that	posed	by	
different	person-related	stimuli	in	the	same	modality26.	So	the	cross-classification	observed	here	is	a	‘true’	identity	
classification,	as	opposed	to	the	stimulus	classification	of	our	within-modality	results.

This	evidence,	combined	with	previous	results,	provides	crucial	novel	insight	into	the	nature	of	the	representa-
tion	of	person-related	information	in	the	human	brain.	The	format	of	person	representation	in	some	cortical	areas	
appears	abstracted	enough	from	the	input	modality	as	to	allow	correspondence	between	different	modalities.	In	
some	areas	cross-classification	only	worked	in	a	single	direction,	but	most	of	these	cross-classifying	cluster	com-
bined	slightly	different	regions	that	cross-classified	in	the	two	opposite	directions	(face	to	voice,	and	voice	to	face).

These	results	are	suggestive	of	a	hierarchy	of	representations	of	person-related	information	with	increasingly	
abstract,	modality-free	representations.	Person	representations	starting	in	unimodal	areas	of	visual	and	audi-
tory	cortex	would	be	tied	to	a	sensory	modality,	possibly	allowing	classification	of	different	stimuli	from	a	same	
identity	but	only	in	that	modality.	These	representations	would	be	characterized	by	a	first	point	of	convergence	
in	right	pSTS,	in	which	the	representations	in	the	different	modalities	would	start	to	become	merged,	possibly	
via	an	increasing	proportion	of	multimodal	neurons33	in	this	area	located	at	the	junction	of	auditory	and	visual	
processing	streams.	These	representations	would	then	become	increasingly	abstracted	from	the	input	modal-
ity	along	a	rostro-caudal	stream	along	STS/middle	temporal	gyrus	possibly	directed	towards	the	anterior	tem-
poral	lobes2:	such	modality-free,	or	amodal,	representations	of	identity	would	in	particular	be	able	to	support	
cross-classification	of	identity.

Overall,	our	results	are	consistent	with	a	distributed	cerebral	PIN,	implemented	as	a	series	of	representa-
tions	increasingly	abstracted	from	the	input	modality	ranging	from	unimodal	(in	visual	and	auditory	cortex),	to	
multi-modal	(in	right	pSTS),	to	amodal,	possibly	oriented	along	STS/MTG.	The	recognition	of	individuals	based	
on	their	face	and	voice	would	flexibly	emerge	from	the	complex,	multidirectional	interactions	between	these	dif-
ferent	representations	as	a	function	of	information	conveyed	by	each	modality,	context,	etc.	Future	studies	com-
bining	large-scale	neuroimaging	techniques	with	local	recordings	and/or	perturbation	of	single-cell	or	population	
activity	in	animal	models,	including	careful	examination	of	effective	connectivity	between	the	different	areas,	will	
be	key	to	precise	the	exact	mechanisms	underlying	such	hierarchy	at	the	neuronal	level2.

Methods
Participants. Five	healthy	volunteers	participated	in	this	study	(Four	females	and	one	male,	mean	age	±		s.d.:	
26.8	±		2.4	years).	All	participants	were	members	of	the	Institute	of	Neuroscience	and	Psychology	at	Glasgow	
University.	They	had	self-reported	correct	hearing	and	vision	with	no	history	of	any	hearing,	visual	or	neurolog-
ical	conditions.	The	ethics	committee	at	the	Institute	of	Neuroscience	and	Psychology	approved	the	study	which	
was	conducted	in	accordance	with	the	guidelines	from	the	British	Psychological	Society.	Participants	provided	
written	informed	consent	and	were	compensated	£6	per	hour	for	their	time.

Stimuli. Four	speakers	were	recorded	for	this	study	(two	males	and	two	females)	in	a	sound	proof	room	
under	standard	studio	lighting	condition.	Speakers	faced	the	camera	directly	and	at	a	distance	sufficient	to	show	
the	whole	face	in	the	frame.	Videos	were	recorded	at	a	25	frames/sec	rate	with	a	resolution	of	640	×		480	pixels	
using	a	HD	Sony	camcorder.	Audio	was	recorded	at	a	sampling	rate	of	48	kHz	and	a	16	bits	per	sample	resolu-
tion	using	an	M300	condenser	microphone	(Microtech	Gefell	GmbH,	Germany).	All	speakers	were	members	of	
the	Institute	and	familiar	to	all	the	participants	via	daily	interaction	over	the	course	of	several	months	or	years.	
The	speakers	were	recorded	uttering	the	syllable	“had”.	Only	one	recording	per	speaker	was	used	in	the	experi-
ment.	iMovie	(Apple	Inc.)	was	used	to	crop	the	stimuli	to	400	with	average	delay	between	face	and	voice	onset	at	
52	±		19	ms	(face	leading	voice).	As	a	result	three	versions	of	the	stimuli	were	produced:	I)	Voice:	only	the	audio	
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is	presented.	II)	Face:	only	the	silent	video	is	presented.	III)	Face-Voice:	the	audio-visual	stimulus	is	presented	
without	modification.

Stimuli	were	presented	in	the	scanner	using	Media	Control	Functions	(DigiVox,	Montreal,	Canada)	via	elec-
trostatic	headphones	(NordicNeuroLab,	Norway).	Sound	pressure	level	was	set	at	80	dB	SPL(C)	as	measured	
using	a	Lutron	Sl-4010	sound	level	meter.	Once	the	participants	were	installed	in	the	scanner	they	were	presented	
with	sound	samples	to	verify	that	the	sound	pressure	level	was	balanced	and	loud	enough	to	compensate	for	the	
scanner	noise.

Experiment Design and Task. Each	identity	(n	=		4)	was	presented	in	the	three	different	conditions:	Voice,	
Face,	and	Face-Voice,	resulting	in	12	conditions	in	total.	Participants	were	presented	with	a	stimulus	correspond-
ing	to	one	of	the	four	identities	in	a	randomized	order,	and	participants	were	instructed	to	classify	the	identity	of	
the	stimulus	by	pressing	one	of	four	buttons	with	the	right	hand.	No	feedback	was	given	to	the	participant.	The	
experiment	was	controlled	using	Matlab	(The	Mathworks,	Inc,	USA)	and	Psychtoolbox34.	Participants	were	given	
time	to	practice	the	experiment	and	the	mapping	between	buttons	and	identities	before	entering	the	scanner.

Experimental	design	followed	a	slow	event-related	paradigm	to	minimize	contamination	of	consecutive	
hemodynamic	responses,	and	hence	minimize	any	potential	cross	talk	between	BOLD	responses	to	the	V	and	F	
stimuli.	Inter-stimulus	interval	was	set	randomly	between	10	and	18	seconds	with	the	onset	of	the	stimuli	locked	
to	BOLD	volume	acquisition.

Data	were	recorded	from	each	participant	over	several	sessions	each	containing	6–8	blocks	(number	of	total	
blocks	per	participant	(mean	±		s.d.):	29.2	±		5.4).	Each	block	lasted	around	8	minutes	with	each	condition	pre-
sented	twice.	Two-minute	breaks	were	given	between	each	two	consecutive	blocks,	during	which	the	participants	
were	instructed	not	to	move	their	head.	Overall	700.8	±		129.7	trials	were	presented	corresponding	to	the	4	iden-
tities	and	three	modalities	for	each	participant.

Participants	were	instructed	to	perform	a	4-alternative	forced	choice	identity	classification	task	using	4	but-
tons	of	an	MR	compatible	response	pad	(NordicNeuroLab,	Norway).	Reaction	times	(relative	to	sound	onset	for	
V	condition	and	face	onset	for	F	and	FV	conditions)	were	collected	within	a	response	window	limited	to	two	
seconds	after	stimulus	onset.

fMRI Data Acquisition. Scanning	was	carried	out	in	the	Centre	for	Cognitive	Neuroimaging	at	the	
University	of	Glasgow.	A	3-Tesla	Siemens	(Erlangen,	Germany)	TIM	Trio	scanner	was	used	with	a	32-channel	
head	coil.

Functional Scans. High	spatial	resolution	(2	×		2	×		2	mm3)	functional	images	of	the	whole	brain	were	col-
lected.	A	relatively	long	TR	was	used	(TR	=		3.6	s)	to	ensure	full	coverage	of	the	brain.	Echo	time	(TE)	=		39	ms,	
flip	angle	=		82	degrees,	slices	=		51	×		2	mm	thickness	×		10%	gap,	field	of	view	(FOV)	=		192	mm,	matrix	=		96	×		96,	
iPAT	acceleration	factor	=		2,	maximum	number	of	volumes	=		140,	and	maximum	acquisition	time	(TA)	=		8	min	
36	seconds.	The	first	10	seconds	of	the	functional	run	consisted	of	“dummy”	gradient	and	radio	frequency	pulses	
to	allow	for	steady	state	magnetization	during	which	no	stimuli	were	presented	and	no	fMRI	data	collected.

Anatomical Scans. High-resolution	(1	×		1	×		1	mm3)	T1-weighted	structural	images	were	collected,	once	on	
every	session.	The	scan	had	192	axial	slices	with	a	256	×		256	voxels	grid	and	TR	=		1900,	TE	=		2.92	ms	and	time	
to	inversion	=		900	ms.

fMRI Data Analysis. Preprocessing	Data	were	analysed	using	Statistical	Parametric	Mapping	(SPM8,	
Wellcome	Trust	Centre	for	Neuroimaging)	in	Matlab.	All	functional	and	anatomical	images	from	all	the	ses-
sions	were	reoriented	in	the	AC-PC	orientation.	The	volumes	in	every	block	were	realigned	to	the	first	volume	
in	the	session	to	correct	for	participant	motion.	T1-weighted	anatomical	image	was	then	co-reregistered	to	the	
mean	volume	of	all	the	sessions	(generated	in	the	previous	step).	No	normalisation	to	the	Montreal	Neurological	
Institute	(MNI)	space	or	smoothing	was	applied	for	MVPA	analysis	at	the	individual	participant	level.

Univariate analysis. A	general	linear	model	(GLM)	was	built	for	each	individual	participant’s	data	as	imple-
mented	in	SPM8.	Designing	the	regressors	of	the	GLM	with	the	aim	of	using	the	resulting	beta	parameters	in	
the	MVPA	framework	requires	a	careful	balance	between	the	number	of	regressors,	and	hence	betas,	and	quality	
of	the	estimated	model.	Using	one	regressor	per	trial	would	result	in	more	beta	parameters,	i.e.	more	samples	to	
train	and	decode,	however	this	usually	results	in	poor	estimates	of	the	parameters.	On	the	other	extreme	having	
few	regressors	will	generate	more	robust	estimates,	but	with	very	few	samples	for	classification.	In	this	study	we	
piloted	with	several	choices	of	the	regressors	and	we	found	that	a	reasonable	balance	can	be	achieved	by	using	one	
regressor	per	condition	per	block,	i.e.	two	trials	are	combined	per	regressor.	The	grey	matter	tissue	probability	
maps	generated	by	the	segmentation	processing	stage	were	used	as	explicit	masks	to	restrict	the	data	analysis	
to	grey	matter.	For	each	participant	the	following	univariate	contrasts	were	calculated:	three	T-tests	for	Face	vs.	
baseline,	Voice	vs.	baseline	and	Face-Voice	vs.	baseline;	three	F-tests	comparing	the	four	identities	for	each	pres-
entation	condition.

Multivariate analysis. The	main	GLM	design	resulted	in	a	dataset	with	350.4	±		64.84	beta	images	per	partici-
pant	covering	the	12	conditions.	To	decode	these	samples	a	whole-brain	searchlight	paradigm	was	used23.	In	this	
approach	cross-validated	classification	is	carried	out	at	the	level	of	a	small	sphere	scanning	the	whole	brain.	As	
a	result	each	voxel	in	the	output	image	contains	the	average	cross-validation	accuracy	of	the	sphere	centered	on	
it.	In	order	to	choose	a	consistent	number	of	voxels	per	sphere	among	all	participants	different	sphere	radiuses	
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were	tested,	between	3	and	8	voxels.	For	our	dataset,	a	4-voxel	radius	(8	mm)	produced	the	most	consistent	voxel	
number	per	sphere	(21.74	±		1.43).	Using	a	relatively	smaller	sphere	ensures	the	classifier	is	less	likely	to	over-fit	
on	training	samples	due	to	a	good	balance	between	the	number	of	samples	(observations)	and	the	number	of	
voxels	within	the	sphere	(features).	The	number	of	samples	is	large	enough	compared	to	their	dimensionality	so	
the	samples	are	not	too	sparse	in	the	feature	space35.	The	searchlight	analysis	covered	the	whole	brain,	but	a	sphere	
was	only	considered	in	the	analysis	if	more	than	50%	of	its	voxels	fell	within	the	grey	matter	mask	of	the	subject	
being	analysed,	in	order	to	restrict	analysis	to	grey	matter	across	the	whole	brain	in	each	subject.	The	number	of	
spheres	included	in	the	analysis	was	(mean	±		s.d.)	n	=		46500	±		6400.	In	each	sphere	the	cross-validation	analysis	
only	included	as	features	the	voxels	corresponding	to	grey	matter,	the	rest	being	discarded.

Each	participant’s	data	were	grouped	into	training	(80%	of	samples)	and	testing	(the	remaining	20%)	sets.	
The	training	samples	were	chosen	randomly	and	were	then	used	to	train	a	linear	Support	Vector	Machine	(SVM)	
classifier	(as	implemented	by	libSVM)	to	decode	the	four	identities	from	the	samples	in	the	testing	set.	This	
process	is	then	repeated	100	times	and	the	average	accuracy	value	is	assigned	to	the	voxel	in	the	centre	of	the	
sphere.	SVM	is	usually	able	to	solve	only	two	class	problems.	In	order	to	extend	it	to	4-class	problems,	we	used	the	
one-versus-one	approach	as	implemented	in	libSVM36.

Empirical Chance Level. In	theory	the	chance	level	is	c	=		1/n,	where	n	is	the	number	of	classes	(c	=		0.25	in	this	
study).	However,	practically	the	chance	level	might	differ	due	to	the	structure	of	the	data	or	bias	in	the	labelling	
that	affects	the	training	of	the	classifier.	To	address	this	issue	an	empirical	chance	level	(c’)	must	be	estimated.	For	
each	sphere	the	labels	of	the	training	set	were	shuffled,	i.e.	samples	were	assigned	wrong	labels,	before	feeding	
them	to	the	classifier.	The	classifier	was	then	tested	on	the	test	dataset.	This	step	is	usually	repeated	a	large	number	
of	times	(>	1000)	to	estimate	the	distribution	of	the	chance	level	per	voxel.	However,	due	to	the	large	number	of	
spheres,	this	was	impractical.	Here,	we	only	ran	the	chance	level	estimation	100	times	per	sphere	as	we	were	only	
interested	in	the	mean	value	of	the	empirical	chance	level.

Significance test. The	empirical	chance	level	estimated	per	sphere	was	used	in	conjunction	with	a	two-tailed	
binomial	test22,37.	The	resulting	p-value	maps	were	thresholded	at	an	FDR	q-value	of	0.01	to	correct	for	multiple	
comparisons.	The	surviving	voxels	are	then	clustered,	using	xjview	(http://www.alivelearn.net/xjview),	and	only	
clusters	with	more	than	20	voxels	were	considered	in	the	final	accuracy	maps.

Group Level. We	decided	to	collect	large	numbers	of	samples	in	a	small	number	of	participants:	this	allowed	us	
enough	statistical	power	to	perform	analyses	at	the	single-participant	level.	As	a	consequence	of	the	small	number	
of	subjects,	we	decided	not	to	run	random	effect	analyses	at	the	group	level,	which	would	be	underpowered,	but	
rather	to	examine	voxel	clusters	located	in	consistent	locations	across	participants	using	coincidence	maps:	the	
non-clustered,	FDR	corrected	individual	accuracy	maps	were	normalized	to	MNI	space	and	a	voxel	was	included	
in	the	group	image	if	it	was	significant	in	at	least	4	out	of	the	5	of	participant	maps.

This	multivariate	approach	was	repeated	for	four	different	conditions:	(1)	Face	Classification:	only	beta	
images	corresponding	to	face	stimuli	were	classified;	(2)	Voice	Classification:	only	beta	images	corresponding	to	
voice	stimuli	were	classified;	(3)	Face-Voice	Cross-Classification:	Face-related	beta	images	were	used	for	train-
ing	while	Voice-related	beta	images	were	used	for	testing	within	the	cross-validation	paradigm;	(4)	Voice-Face	
Cross-Classification:	Voice-related	beta	images	were	involved	in	training	the	classifier	while	the	Face-related	beta	
images	were	used	to	test	the	classifier.	The	first	two	conditions	were	termed	“within	modality	classification”	and	
the	last	two	conditions	were	termed	“cross-modality	classification”.
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