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Histone methyltransferase Dot1 and Rad9 inhibit
single-stranded DNA accumulation at DSBs
and uncapped telomeres
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Cells respond to DNA double-strand breaks (DSBs) and un-

capped telomeres by recruiting checkpoint and repair factors

to the site of lesions. Single-stranded DNA (ssDNA) is an

important intermediate in the repair of DSBs and is produced

also at uncapped telomeres. Here, we provide evidence that

binding of the checkpoint protein Rad9, through its Tudor

domain, to methylated histone H3-K79 inhibits resection at

DSBs and uncapped telomeres. Loss of DOT1 or mutations in

RAD9 influence a Rad50-dependent nuclease, leading to more

rapid accumulation of ssDNA, and faster activation of the

critical checkpoint kinase, Mec1. Moreover, deletion of RAD9

or DOT1 partially bypasses the requirement for CDK1 in DSB

resection. Interestingly, Dot1 contributes to checkpoint acti-

vation in response to low levels of telomere uncapping but is

not essential with high levels of uncapping. We suggest that

both Rad9 and histone H3 methylation allow transmission of

the damage signal to checkpoint kinases, and keep resection

of damaged DNA under control influencing, both positively

and negatively, checkpoint cascades and contributing to a

tightly controlled response to DNA damage.
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Introduction

Eukaryotic cells evolved a complex system to protect the

genome from spontaneous and exogenous DNA damage.

A central role is played by DNA damage checkpoint pathways,

signal transduction cascades coordinating DNA replication,

repair and recombination with cell cycle progression. The

defining feature of an active checkpoint is the arrest of cell

proliferation at the G1/S or G2/M transitions, or the slowing

down of DNA replication (Elledge, 1996; Nyberg et al, 2002).

Many details of the DNA damage checkpoint have been

established using genetic and biochemical approaches in

budding and fission yeast; the basic checkpoint response

has been shown to be conserved in other eukaryotes

(Longhese et al, 1998; Melo and Toczyski, 2002; Rouse and

Jackson, 2002; Lydall and Whitehall, 2005). In budding yeast,

it has been useful to examine the roles of checkpoint proteins

at uncapped telomeres and unrepaired double-strand breaks

(DSBs). Several repair, recombination and checkpoint factors

are recruited at a DSB site, according to a well-established

order (Lisby et al, 2004). DSB ends are initially processed to

generate long 30 single-stranded DNA (ssDNA) tails. The

Mre11, Rad50, Xrs2 (MRX) complex is involved in this

process, as mutations in the corresponding genes reduce

the resection rate (White and Haber, 1990; Ivanov et al,

1994; Lee et al, 1998). However, MRX is not likely to be the

nuclease itself: point mutations within Mre11 catalytic site do

not affect resection of DSB ends (Moreau et al, 1999; Lee et al,

2002; Llorente and Symington, 2004). The nature of the

nuclease(s) involved in DSB processing has been elusive;

moreover, we lack information on the regulatory mechanisms

governing DNA end resection (see Harrison and Haber, 2006

for a recent review). It has been recently shown that, both in

human cells and in Schizosaccharomyces pombe, CtIP, a

partner of the MRN complex, is required for efficient resec-

tion of DSB ends (Limbo et al, 2007; Sartori et al, 2007). In

budding yeast, CtIP seems to correspond to Sae2, which also

has a positive function in DSB processing (Clerici et al, 2005;

Sartori et al, 2007). Recent studies show that CDK1 kinase is

important for the generation of ssDNA tails; in fact, inhibition

of CDK1 strongly interferes with resection (Aylon et al, 2004;

Ira et al, 2004). ssDNA is bound by the RPA heterotrimer,

generating a structure important for recruiting checkpoint

factors (Kornbluth et al, 1992; Zou and Elledge, 2003; Zou

et al, 2003; Majka et al, 2006).

PI3-like kinases have essential functions in checkpoint

signal transduction in all eukaryotes. In budding yeast, the

Mec1/Ddc2 checkpoint protein kinase is stimulated both by

binding to RPA-coated ssDNA and by the checkpoint sliding

clamp (Rad17, Mec3 and Ddc1) (Zou and Elledge, 2003; Zou
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et al, 2003; Majka et al, 2006). Mec1 phosphorylates several

targets, among these Ddc2, Ddc1, Rad9 and the protein

kinases Chk1 and Rad53. Rad9 is a checkpoint adaptor

molecule, linking the upstream Mec1 kinase with down-

stream Rad53 and Chk1 kinases, and it is essential for

checkpoint function (Sanchez et al, 1996; Gardner et al,

1999; Blankley and Lydall, 2004). It is thought that Mec1-

dependent phosphorylation of Rad9 recruits and catalyses

Rad53 activation (Gilbert et al, 2001; Sweeney et al, 2005).

As well as being essential for cell cycle arrest, Rad9

contributes to DNA damage metabolism because Rad9 inhi-

bits the accumulation of ssDNA at uncapped telomeres

(Lydall and Weinert, 1995). This effect of Rad9 is not simply

checkpoint signal transduction dependent, because other

checkpoint proteins, such as Rad24, are also required to

signal cell cycle arrest at uncapped telomeres and yet have

the opposite resection phenotype (Lydall and Weinert, 1995).

However, so far, no biochemical mechanism by which Rad9

inhibits resection at uncapped telomeres has been discov-

ered. In addition, it was not known whether Rad9 inhibits

ssDNA accumulation at other types of lesion, such as DSBs.

Budding yeast Rad9 interacts with the methylated K79

residue of histone H3, through the Rad9 Tudor domain, and

this interaction regulates Rad9 function after DNA is

damaged (Giannattasio et al, 2005; Wysocki et al, 2005;

Grenon et al, 2007). Similar results were reported for S.

pombe Crb2, where the binding target seems to be methylated

H4-K20 (Sanders et al, 2004; Du et al, 2006), whereas for

human 53BP1 binding to both residues has been reported

(Huyen et al, 2004; Botuyan et al, 2006). Loss of methylation

of the K79 residue of histone H3 impairs Rad9 phosphoryla-

tion and activation of Rad53, after DNA damage in G1 cells.

Furthermore, a rad9Y798Q point mutation within the Tudor

domain prevents Rad9 binding to chromatin and Rad9 hyper-

phosphorylation after DNA damage (Giannattasio et al, 2005;

Wysocki et al, 2005; Grenon et al, 2007; Hammet et al, 2007,

and Supplementary Figure 1). The simplest explanation for

these data is that methylated histone H3-K79 is involved in

recruiting Rad9 to damaged chromosomes and that this

contributes to Rad9 hyper-phosphorylation and checkpoint

activation.

As H3-K79 appears to be constitutively methylated by the

Dot1 methyltransferase in undamaged cells (90% of H3 is

methylated at K79; van Leeuwen et al, 2002), it has been

proposed that the critical event for Rad9 recruitment may be a

DNA-damage-induced change in the status of chromatin,

allowing exposure of this methylated residue (Huyen

et al, 2004). Another intriguing option would be that

Rad9 is always weakly bound to methylated H3-K79; upon

damage Rad9 oligomerization may cause its accumulation at

the sites of lesion. Moreover, post-translational modifications

may induce changes in Rad9-binding mode and allow

it to interact with other partners (Du et al, 2006; Hammet

et al, 2007).

Here, we produce evidence that the interaction between

histone H3-K79 and Rad9 inhibits accumulation of ssDNA at

DSBs and at uncapped telomeres. This mechanism, requiring

methylation of histone H3 and the Tudor domain of Rad9,

regulates resection and appears to represent a strategy that

coordinates cell cycle arrest with nuclease progression, thus

limiting the amount of ssDNA generated during the cellular

response to DNA damage.

Results

Methylation of H3-K79 controls Mec1 kinase activation

after DNA damage

Dot1 is required for the G1/S DNA damage checkpoint

(Giannattasio et al, 2005; Wysocki et al, 2005). To investigate

the effect of the loss of DOT1 on Mec1 kinase activity directly,

we analysed the phosphorylation of its proximal target Ddc2,

after DNA damage. Ddc2 is a stable partner of Mec1 and is

directly phosphorylated by Mec1 in vivo and in vitro (Paciotti

et al, 2000; Rouse and Jackson, 2000; Wakayama et al, 2001).

Cells were arrested in G1 to avoid complications due to cell

cycle-dependent phosphorylation of Ddc2 during the S/G2

phases (Paciotti et al, 2000). Analogous experiments in

G2-arrested cells gave comparable results (Supplementary

Figure 2). Surprisingly, in time-course analyses, we observed

an increase in the phosphorylated form of Ddc2 in dot1D
cells. G1-arrested wild-type (WT) and dot1D cells, expressing

HA-tagged Ddc2, were treated with zeocine, which induces

DSBs, and Ddc2 phosphorylation was evaluated at different

times after the treatment. We consistently found that dot1D
cells showed a hyper-modification of Ddc2, after induction of

DSBs (Figure 1A and B). To verify that the increase in Ddc2

phosphorylation was due to Mec1 and not to another kinase,

we compared Ddc2 phosphorylation in WT, dot1D, mec1-1

and dot1D mec1-1 mutants. Figure 1C shows that all the

phospho-Ddc2 signal, detectable in WT and dot1D cells,

disappears when Mec1 is defective, demonstrating that the

increase in Ddc2 phosphorylation observed in dot1D cells is

indeed due to the Mec1 kinase. These results suggest that

more Mec1–Ddc2 kinase complexes can be activated after

DSB induction, in the absence of Dot1, and hence H3-K79

methylation.

Failure to recruit Rad9 to histone H3 leads to an increase

in Mec1 activation

Previous reports suggested that Dot1-dependent methylation

of H3-K79 is critical for docking Rad9 to damaged chromatin

(Wysocki et al, 2005; Toh et al, 2006). To test whether

impairment of Rad9 recruitment to histone H3 would,

similarly to a dot1D mutation, lead to an increase in Mec1

activity, we introduced a RAD9 allele carrying a Y798Q point

mutation in its Tudor domain; this mutation prevents Rad9

recruitment to damaged DNA, damage-dependent phosphor-

ylation of Rad9 and the activation of Rad53 (Wysocki et al,

2005; Grenon et al, 2007, and Supplementary Figure 1). The

kinetics of Mec1 activation after DSB induction was analysed

in rad9Y798Q and rad9D cells. Figure 1D shows that, simi-

larly to what was found in a dot1D strain, cells completely

lacking Rad9 or expressing rad9Y798Q exhibit faster Ddc2

phosphorylation after DSB induction; quantification of the

phospho-Ddc2 form confirmed the observation (Figure 1E).

Taken together, these results strongly suggest that loss of

Rad9 binding to methylated H3-K79 leads to a faster and

more robust activation of Mec1 kinase in response to DSBs.

A robust DNA damage checkpoint is not triggered by DSBs

themselves, but rather by processed DNA ends, containing

long stretches of ssDNA, which recruit Mec1–Ddc2 kinase

complexes (White and Haber, 1990; Lydall et al, 1996; Lee

et al, 1998; Usui et al, 2001; Harrison and Haber, 2006).

Therefore, the Mec1 hyper-activation detected in dot1D and
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rad9 mutants could be explained if DSBs were more rapidly

processed to ssDNA when Rad9 does not bind methylated H3.

Dot1 and Rad9 limit resection of DNA DSB ends

To test the hypothesis that more rapid activation of Mec1

kinase results from a faster production of ssDNA intermedi-

ates in dot1D, rad9Y798Q and rad9D cells, we investigated

the kinetics of ssDNA formation after a single unrepairable

DSB in these mutants, using an inducible HO endonuclease.

Cells were arrested in G2, to prevent cell cycle-dependent

effects on resection, and samples were collected at various

time points after induction of the nuclease. ssDNA regions in

genomic DNA were revealed by the loss of restriction sites

distal to the HO-cut site, leading to the accumulation of uncut

DNA fragments that were detected with a strand-specific

probe, after alkaline electrophoresis (White and Haber,

1990; Shroff et al, 2004; Clerici et al, 2006. See Figure 2B

for a map of the MAT locus and the location of probe used in

these experiments). The kinetics of appearance of longer

DNA fragments suggests that dot1D, rad9Y798Q and rad9D
cells all showed more rapid resection than WT cells

(Figure 2A). This finding was confirmed using a different

assay where resection leads to the disappearance of a specific

DNA restriction fragment in Southern blots (see Figures 5 and

6). These data suggest that the impairment of Rad9 binding to

methylated H3-K79, as seen in rad9D, rad9Y798Q, dot1D and

rad9Y798Q dot1D (not shown), leads to faster resection at an

HO-induced DSB.

Dot1 and Rad9 control DNA processing at uncapped

telomeres

The results reported so far suggest that a complex containing

methylated H3 and Rad9 on damaged DNA inhibits ssDNA

accumulation at DSBs. Consistent with this interpretation,

earlier studies showed that Rad9 inhibits the accumulation of

ssDNA at uncapped telomeres (Lydall and Weinert, 1995;

Zubko et al, 2004). To assess the role of methylated H3-K79,

and its relationship with Rad9, at uncapped telomeres, we

analysed both DNA processing and checkpoint activation in a

cdc13-1 mutant background. At temperatures higher than

261C, cdc13-1 cells accumulate ssDNA and block cell division

at the G2/M checkpoint (Garvik et al, 1995).

We first examined whether, as found above at DSBs, Dot1

inhibited resection at uncapped telomeres. We used QAOS

(quantitative amplification of ssDNA) (Booth et al, 2001;

Zubko et al, 2006) to measure the accumulation of ssDNA

in synchronous cultures of dot1D cdc13-1 strains. A bar1D
mutation was present in strains to ensure efficient G1 cell

cycle arrest with alpha factor and a cdc15-2 mutation was

present to ensure that checkpoint-deficient cells did not

initiate more than one round of DNA replication during the

course of an experiment because at 361C cdc15-2 mutants

arrest in late anaphase (Zubko et al, 2006). We measured
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ssDNA at the PDA1 locus, which lies about 30 kb away from

the end of ChV-R (Figure 3A), because ssDNA does not

accumulate at this locus in RADþ strains but does accumu-

late if Rad9 function is compromised (Figure 3B). As shown

in Figure 3B, dot1D cdc13-1 cells, similarly to rad9D cdc13-1

strains, had significantly increased levels of ssDNA at PDA1,

relative to cdc13-1 strains suggesting that Dot1, similar to

Rad9, protects subtelomeric DNA from nucleolytic degrada-

tion in cdc13-1 mutants.

Dot1 affects checkpoint activation in response

to telomere uncapping

As Dot1, the H3-K79 methylase, is important for activating

Rad9 in response to DSBs (Giannattasio et al, 2005; Wysocki

et al, 2005; Toh et al, 2006), we tested the checkpoint role of

Dot1 after telomere uncapping. Impairing checkpoint path-

ways, for example rad9D, partially suppresses the tempera-

ture sensitivity of cdc13-1 strains (Weinert et al, 1994; Zubko

et al, 2004). Figure 4A shows that Dot1 inhibits growth of

cells with uncapped telomeres because dot1D cdc13-1 strains

grow better than cdc13-1 strains at 26.51C. We note that

rad9D cdc13-1 strains grow better than dot1D cdc13-1 strains.

To test whether Dot1 growth inhibition of cdc13-1 cells is

mediated by the interaction of Rad9-Tudor domain with

H3-K79me, we analysed the effect of the rad9Y798Q mutation.

Even though we routinely observed that rad9Y798Q cdc13-1

strains grew better than dot1D cdc13-1 strains, rad9Y798Q

cdc13-1 mutants behave most similarly to dot1D cdc13-1 cells

and grow better than cdc13-1 cells but less well than cdc13-1

rad9D cells (Figure 4A). This can be explained if the
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rad9Y798Q point mutation affects the structure of Rad9 or its

interaction with other proteins. Moreover, loss of DOT1

causes redistribution of the SIR factors and this could also

influence the vitality of cdc13-1 cells. The epistatic relation-

ships between these mutations are shown in Supplementary

Figure 3. Taken together, these data suggest that the role of

Dot1 in responding to telomere uncapping is mediated by the

Tudor domain of Rad9. However, our finding that rad9Y798Q

cdc13-1 and dot1D cdc13-1 mutants do not grow as well as

cdc13-1 rad9D strains, at semi-permissive temperature, sug-

gests the existence of a Rad9-dependent mechanism acting

independently of the H3-K79me/Rad9 Tudor domain at un-

capped telomeres.

Our observations suggest a role for H3-K79 methylation in

checkpoint activation following telomere uncapping. To ad-

dress this directly, single cells were monitored for their ability

to form colonies at different temperatures (Figure 4B, and

Supplementary Figure 4). Figure 4B plots the fraction of

colonies that contain more than 20 cells for checkpoint and

nuclease-deficient cdc13-1 strains over a range of tempera-

tures. The higher the temperature the smaller the colony size

for both checkpoint-proficient and -deficient cells. At tem-

peratures higher than 261C, checkpoint proficient cdc13-1

cells divide slowly and form smaller colonies than check-

point- or nuclease-deficient strains (Figure 4B). At high levels

of telomere uncapping, for example, 301C and 361C, the

colonies of dot1D cdc13-1 strains are of similar size as those

of cdc13-1. At lower levels of uncapping, for example, 271C
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and 281C, dot1D cdc13-1 cells form larger colonies than cdc13-

1 strains (Figure 4B). However, dot1D cdc13-1 colonies are

smaller than cdc13-1 rad9D cells at 271C (Supplementary

Figure 4). This, and the spots tests shown in Figure 4A,

suggest that Dot1 has a partial function in checkpoint activa-

tion, a function that is only detectable at low levels of DNA

damage. Consistent with this interpretation, we saw complete

and efficient cell cycle arrest of dot1D cdc13-1 mutants in the

first cycle after G1 release in the ssDNA measurement experi-

ment shown in Figure 3 (data not shown).

The role of Dot1 in checkpoint activation at intermediate

temperatures was confirmed by measuring phosphorylation

of Rad53. At 231C, telomeres in cdc13-1 strains are capped

and Rad53 is largely hypo-phosphorylated (Figure 4C, lanes

1–3). In response to low levels of telomere uncapping (281C),

Rad53 is hyper-phosphorylated in a Dot1- and Rad9-depen-

dent manner (Figure 4C, lanes 4–6). However, at higher levels

of telomere uncapping (361C) a significant fraction of Rad53

is hyper-phosphorylated in dot1D cdc13-1 strains (Figure 4C,

lane 9). These observations suggest that at low levels of

telomere uncapping, Dot1 has a more important function in

Rad9-dependent checkpoint activation that it does at higher

levels of uncapping, when presumably alternative mechan-

isms ensure that Rad9 is activated.

Loss of Rad9 or Dot1 partially bypasses the requirement

for CDK1 in DSB resection

The molecular mechanisms controlling DNA end resection at

DSBs and uncapped telomeres are poorly understood. Recent

reports showed that CDK1 activity is necessary to obtain

effective resection, both at DSBs and uncapped telomeres

(Aylon et al, 2004; Ira et al, 2004; Vodenicharov and

Wellinger, 2006). Indeed, inhibition of CDK1, by overexpres-

sion of the inhibitor Sic1, leads to a notable reduction of 50–30

processing of DSB ends (Aylon et al, 2004; Ira et al, 2004, and

Figure 5B). To understand the relationships between the

Rad9-dependent and the CDK1-dependent mechanisms that

regulate resection, we analysed the processing of a DSB in

rad9D and dot1D cells after inhibition of CDK1 activity. We

used a yeast strain where a site-specific DSB can be repaired

by single-strand annealing (SSA) between two short regions

of homology flanking the cut site (Figure 5A) (Sugawara et al,

2000; Vaze et al, 2002). We chose this system for analysis of

resection because in this context we can follow simulta-

neously processing at sites close and far away from the

DSB; moreover, we can monitor the appearance of the repair

product, which being dependent upon the generation of

ssDNA is also a measure of the velocity of resection. At

various times after induction of the HO cut and after the

concomitant induction of CDK1 inhibitor Sic1, we monitored

both DNA end processing and DSB repair by SSA, through

Southern blot analysis. Our data show that loss of RAD9 or

DOT1 accelerates the appearance of the band corresponding

to the repaired chromosome (the SSA product in Figure 5B);

the repair product is clearly detectable 5 h after HO induction

in WT cells, whereas it is already visible at the 3 h time point

in the rad9D strain (Figures 5B and 6B). This confirms that

absence of RAD9 stimulates DSB resection and SSA and the

results with dot1D argue that this effect partially depends

upon H3-K79 methylation. Interestingly, whereas SIC1 over-

expression almost completely inhibits the generation of the

SSA product in a WT background, loss of RAD9 or DOT1

significantly reduces the effect due to the inhibition of CDK1

(Figures 5B and 6B). This may suggest that the CDK1-

dependent stimulation of resection could exert a function

by overcoming the inhibitory effect of Rad9 bound to

H3-K79me.

As SSA-based DNA repair depends upon annealing of two

complementary ssDNA, faster SSA product generation in this

experiment agrees with the faster resection observed in the

experiments described above (Figures 1 and 2), but a con-

tribution by a more efficient recombination mechanism could

not be excluded. To this aim, we tested the effect of RAD9

deletion in the absence of the critical recombination protein

Rad52. SSA is reduced 495% in the absence of Rad52.

Figure 5C shows that resection in rad52D rad9D double

mutant cells is accelerated, compared with rad52D cells.

This is also confirmed by measuring resection of the

his4Hleu2 fragment in Figure 5B (see quantifications in

Figure 6A) and by monitoring resection of the HO-cut frag-

ment in a yeast strain where the break cannot be repaired by

SSA (Supplementary Figure 5). These results suggest that loss

of RAD9 most likely accelerates SSA DNA repair through a

faster accumulation of ssDNA.

The identity of all the nucleases resecting DSB ends and

uncapped telomeres has not yet been fully elucidated, but

previous reports implicated the MRX complex and Exo1 in

this process (Llorente and Symington, 2004; Harrison and

Haber, 2006) as well as undefined nucleases, ExoX, ExoY

(Zubko et al, 2004; Harrison and Haber, 2006). To help

determine how Rad9 regulates resection at DSBs, we exam-

ined cells lacking Exo1 or Rad50. Figure 7 shows that loss of

Rad9 causes an accelerated resection in the absence of Exo1,

where the SSA product appears at the 3 h time point in a

rad9D background and at the 6 h time point in a RAD9

background. These results suggest that Exo1 is not required

for the rapid rates of resection observed in rad9D strains. On

the other hand, if RAD50 is missing, there is no strong effect

of the loss of RAD9, suggesting that Rad9 inhibits, at least in

part, a RAD50-dependent nuclease (Figure 7). Similar con-

clusions can be drawn analysing resection at the distal site

(Supplementary Figure 6).

Discussion

DNA damage checkpoint pathways are powerful intracellular

signal transduction cascades that, following genomic lesions,

inhibit cell cycle progression and coordinate DNA replication,

repair and recombination with cell division. DNA damage

checkpoint pathways are understood to be based on kinase-

dependent signal transduction cascades stimulated by da-

maged DNA (Longhese et al, 1998; Lydall and Whitehall,

2005); in this context, Rad9, the first checkpoint protein to be

identified, has been assigned a mediator function, necessary

to link the upstream kinase, Mec1, with activation of the

downstream kinases Rad53 and Chk1 (Gilbert et al, 2001;

Blankley and Lydall, 2004; Sweeney et al, 2005).

Rad9 has recently been shown to bind to methylated K79

residue of histone H3 through the Rad9 Tudor domain and

this interaction is important for the checkpoint role of Rad9

(Giannattasio et al, 2005; Wysocki et al, 2005). The finding

that other Tudor domain checkpoint mediator proteins bind

methylated histones suggests functional evolutionary conser-

vation of the interactions between checkpoint proteins and
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modified histones; in fact, mammalian 53BP1 and S. pombe

Crb2p interact with methylated H4-K20 (Sanders et al, 2004;

Botuyan et al, 2006; Du et al, 2006). We show here that Dot1,

the H3-K79 methylase, and the Tudor domain of Rad9, also

have a negative feedback function in the checkpoint response

to DSBs, where they inhibit processing of DSB ends and

activation of the Mec1 kinase. By analysing the extent of

phosphorylation of Ddc2, the most proximal target of Mec1,

after induction of DSBs, we observed that loss of methylation

of H3-K79 leads to more rapid activation of Mec1 and to an

increase in the level of phosphorylated species. Methylation

of histone H3 in nucleosomes, similar to histone tail acetyla-

tion, could alter chromatin structure directly or influence

susceptibility to nucleases, affecting Mec1 activation. On

the other hand, Dot1-dependent methylation of H3 could

help in the recruitment of other factors, such as Rad9, that

may influence Mec1 activity. Indeed, a mutation affecting

Rad9 Tudor domain or a deletion of RAD9, also caused hyper-

activation of Mec1, strongly suggesting that H3-K79 interac-

tion with Rad9 is important to limit Mec1 activation.

Moreover, although both the Rad9 Tudor domain and Dot1

contribute to the checkpoint response at low levels of telo-

mere uncapping, they are not necessary at high levels of

telomere uncapping.

Much of what we know on the mechanisms involved in

activation of Mec1 derives from studying the response to site-

specific DSBs. The DNA ends generated by the cleavage are

processed by nucleolytic activities, which leave long tails of
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ssDNA (see Harrison and Haber, 2006 for a review). RPA-

covered ssDNA appears to be a prerequisite for Mec1 activa-

tion (Zou and Elledge, 2003; Zou et al, 2003). Therefore, we

evaluated the effect of Dot1 and Rad9 on the amount of

ssDNA generated after a site-specific DSB. Our data show that

various genetic manipulations expected to cause loss of Rad9

binding to histone H3 lead to an increase in the speed of

resection both at DSBs and uncapped telomeres, suggesting

that chromatin-bound Rad9 could represent a functional or

physical barrier to exonucleolytic processing of DSBs and

uncapped telomeres.

How does the Rad9 H3-K79 interaction affect ssDNA

accumulation at telomeres and DSBs? The question is difficult

to address at this stage because important details about the

mechanisms by which ssDNA is generated are lacking. For

example, the nucleases responsible for generating ssDNA
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have not been fully defined yet, although there are roles for

Exo1, MRX and other nuclease activities (Llorente and

Symington, 2004; Zubko et al, 2004; Harrison and Haber,

2006). Moreover, the requirement for CDK1 activity in DSB

processing suggests that CDK1 may target a protein involved

in resection (Aylon et al, 2004; Ira et al, 2004). In S. pombe

the Rad9 orthologue, Crb2, mediates the effect of CDK1 on

DSB repair (Caspari et al, 2002). Moreover, phosphorylation

by CDK1 allows Crb2 to bind close to DSBs through the

interaction with Cut5, the orthologue of Dpb11, and this

suffices for activating the DNA damage response to DSB

(Du et al, 2006). To better define the mechanisms controlling

nucleolytic processing of DSBs, we investigated the effect of

CDK1 inhibition on resection in the absence of RAD9. Our

data show that deletion of RAD9 makes resection much less

sensitive to CDK1 inhibition; a similar, albeit reduced, effect

is detected in the absence of Dot1, suggesting that binding to

methylated H3-K79 is a critical regulatory process. A likely

explanation for this result is that one major requirement for

CDK1 in DSB processing relies on the removal of Rad9-

dependent inhibition of resection, even though a direct effect

on some nuclease or other factors cannot be excluded. It is

interesting that Rad9 has been shown to be phosphorylated

by CDK1 (Ubersax et al, 2003; Grenon et al, 2007) and this

may modulate chromatin accessibility by nucleases.

Intriguingly, the inhibitory effect of Rad9 on resection is

most evident when monitoring the disappearance of a DNA

fragment far away from a DSB or uncapped telomere, com-

pared with regions closer to the primary lesion

(Supplementary Figure 7, and Zubko et al, 2004). These

observations, together with the residual inhibition by

GAL-SIC1 in rad9D cells (Figure 5B), suggest that a different

CDK1 target could be involved in controlling resection initia-

tion, whereas Rad9 may be limiting the speed and amount of

DNA processing. This hypothesis would be consistent with

recent findings, reporting an important role for CtIP in the

control of DSB resection (Limbo et al, 2007; Sartori et al,

2007).

Further attempts to define the mechanism confirm that

Exo1- and Rad50-dependent nucleases participate in resecting

DSBs and suggest that the observed Rad9-dependent inhibi-

tion affects in part or in whole RAD50-dependent nuclease

activity. In contrast, at uncapped telomeres MRX is not

responsible for generating ssDNA, this function can be as-

cribed to unidentified nucleases (ExoX, ExoY) (Foster et al,

2006). Importantly, high levels of ssDNA accumulation after

telomere uncapping in exo1D rad9D double mutants indicate

that Rad9-dependent inhibition of ssDNA production may be

a general aspect of the DNA damage response (Zubko et al,

2004). Notably, the only transcriptional change caused by

deletion of DOT1, and therefore induced by loss of H3-K79

methylation, is overexpression of Y0 repeats, which are found

at the telomeres (van Leeuwen et al, 2002). It has been

postulated that this is because, in the absence of H3-K79

methylation, the Sir2 histone deacetylase moves from its

normal location at telomeres to spread more evenly around

the genome. This movement correlates with a loss of the

heterochromatic status at telomeres and may be responsible,

in part, for the enhanced resection at uncapped telomeres in

dot1 and rad9 mutants.

Figure 8 summarizes possible mechanisms by which the

Rad9 H3-K79 interaction may affect ssDNA accumulation at

DSBs and telomeres: Rad9, when bound to chromatin, may

represent a direct structural impediment to nuclease activity

or it may promote the formation of a chromatin structure that

inhibits exonucleolytic processing of DNA. This could be, in

part or completely, due to the interaction of the Tudor domain

of Rad9 with methylated H3. But other interactions between

Rad9 and chromatin may also contribute to inhibiting nucle-

ase activity; for example, the BRCT domain of Rad9 may

interact with phosphorylated checkpoint proteins, or his-

tones, at sites of DNA damage and inhibit nuclease activity

(see Du et al, 2006; Hammet et al, 2007). Consistent with the

idea of Rad9 affecting nuclease activity by more than one

chromatin interaction, yeast strains defective in H3-K79

methylation are not as defective at inhibiting resection as

rad9D mutants.

The eukaryotic DNA damage response requires the coor-

dinated interactions between many molecular players, in-

cluding damaged DNA, checkpoint proteins, chromatin,

chromatin modifiers, double-stranded DNA, ssDNA, RPA,

clamps, clamp loaders and kinases. Consequently, DNA

damage responses are powerful intracellular pathways,

which are potentially harmful for the cells; in fact, they

may cause inappropriate cell cycle arrest and amplification

of DNA damage if their regulation is lost. Previous work

showed that chromatin modification is necessary for generat-

ing high levels of ssDNA (van Attikum et al, 2004). We now

report the opposite role for a chromatin modification. Our

findings suggest that interactions between the checkpoint

protein Rad9 and methylated histone H3 inhibits ssDNA

accumulation at DSBs and in response to uncapped telo-

meres. Tudor domains are conserved across evolution, as

are methylated histone residues and we propose that Tudor

domain/histone interactions may regulate resection also in

other eukaryotic cell types.

Materials and methods

Strains and plasmids
Strains are listed in Supplementary Table 1. YFL399, YFL504 and
YFL419 were derived from JKM179. To construct strains, standard
genetic procedures of transformation and tetrad analysis were
followed (Adams et al, 1998). YFL502 and YFL504 were obtained by
integration of EcoRI-digested plasmid pFL37.1 at the RAD9 locus.
Pop-out events were selected on FOA plates. The Y798Q mutation in
Rad9 Tudor domain was checked by PCR. Y31, Y20, Y293, YMV037,
YMV038, YFL736, YFL738, YFL827, YFL809, Y28 and YFL802
derive from YMV80. Deletions and tag fusions were generated by
the one-step PCR system (Longtine et al, 1998). Serial dilution and
maximum permissive temperature analysis were performed as
described (Maringele and Lydall, 2002).

Plasmid pFL36.1 was obtained by cloning a RAD9-3HA fragment
into XhoI-NotI-digested pRS306. pFL37.1 was obtained introducing
the Tudor domain mutation by site-specific mutagenesis in pFL36.1.

99

H3H3

Figure 8 Potential mechanisms for the role of Rad9 in resection
inhibition in response to DSBs and uncapped telomeres. Rad9
bound to the methylated H3-K79 interferes with the action of the
nuclease(s) or generates a non permissive chromatin configuration.
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Microcolony assays
Cells were inoculated into 2 ml YEPD, grown overnight at 231C until
they reached saturation. The next morning, cells were sonicated
briefly and plated. Plates were incubated at the indicated
temperature for 20 h, photographed using a Leica DC 300F
microscope and the number of cells present in 20 colonies was
counted/estimated. The experiment was repeated four times, and a
representative experiment is shown.

G1 block and treatment with genotoxic agents
Cells were grown in YEPD medium at 281C to a 5�106 cells/ml and
arrested with a-factor (10mg/ml). Arrested cells (30 ml (untreated))
were mock treated and the rest of the culture was treated with
zeocine (50 mg/ml). Treated cells (30 ml) were spun and resus-
pended in 20% trichloroacetic acid (TCA) for protein extract
preparation at 0, 5, 10, 15 and 20 min after treatment. Cell cycle
profiles were analysed by standard flow cytometry.

SDS–PAGE and western blot
TCA protein extract was prepared (Muzi-Falconi et al, 1993) and
separated by SDS–PAGE. Western blotting was performed with anti-
Rad53, anti-HA (12CA5) or anti-tubulin antibodies using standard
techniques. Quantification was obtained with a Typhoon after
incubation with fluorescent secondary antibodies.

Analysis of Rad53 phosphorylation levels in cdc13-1 cells
Saturated cultures grown at 231C were diluted to 8�106 cells/ml
and allowed to double to 1.6�107 cells before incubation at 281C or
361C for a further 5 h. A control culture was grown in parallel at
231C. Cells were harvested, washed in H2O and proteins were
extracted with 10% TCA and solubilized in SDS–PAGE sample
buffer (Blankley and Lydall, 2004). Protein samples were analysed
by immunoblotting with anti-Rad53 antibody (DL58, kind gift from
D Durocher).

ssDNA measurements at telomeres
ssDNA was isolated from cultures and quantified using the QAOS
assay (Booth et al, 2001) as recently described (Zubko et al, 2006).

Measurement of DNA resection and SSA at DSBs
Cells grown in YEP lactate 3% medium at 281C to a concentration of
5�106 cells/ml were arrested with nocodazole (20 mg/ml). A DSB
was produced by adding 2% galactose and inducing the expression
of the HO endonuclease. The maintenance of the arrest was
confirmed by FACS analysis and monitoring of nuclear division.
Genomic DNA was isolated at intervals, and the loss of the 50 ends
of the HO-cleaved MAT locus was determined by Southern blotting
(Lee et al, 1998; Vaze et al, 2002; Clerici et al, 2005). All the
experiments have been repeated at least three times. In the
corresponding figures, one representative example is shown with
its quantification.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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