
Sequence analysis

OGRE: Overlap Graph-based metagenomic Read

clustEring

Marleen Balvert 1,2,3,*, Xiao Luo1, Ernestina Hauptfeld2,4,

Alexander Schönhuth1,2,† and Bas E. Dutilh 2,†

1Life Sciences & Health, Centrum Wiskunde & Informatica, Amsterdam 1098 XG, The Netherlands, 2Theoretical Biology &

Bioinformatics, Utrecht University, Utrecht 3512 JE, The Netherlands, 3Department of Econometrics & Operations Research, Tilburg

University, Tilburg 5000 LE, The Netherlands and 4Laboratorium of Microbiology, Wageningen University & Research, Wageningen

6700 HB, The Netherlands

*To whom correspondence should be addressed.
†The authors wish it to be known that, in their opinion, the last two authors should be regarded as Joint Last Authors.

Associate Editor: Pier Luigi Martelli

Received on December 13, 2019; revised on August 19, 2020; editorial decision on August 20, 2020; accepted on August 25, 2020

Abstract

Motivation: The microbes that live in an environment can be identified from the combined genomic material, also
referred to as the metagenome. Sequencing a metagenome can result in large volumes of sequencing reads. A promis-
ing approach to reduce the size of metagenomic datasets is by clustering reads into groups based on their overlaps.
Clustering reads are valuable to facilitate downstream analyses, including computationally intensive strain-aware
assembly. As current read clustering approaches cannot handle the large datasets arising from high-throughput
metagenome sequencing, a novel read clustering approach is needed. In this article, we propose OGRE, an Overlap
Graph-based Read clustEring procedure for high-throughput sequencing data, with a focus on shotgun metagenomes.

Results: We show that for small datasets OGRE outperforms other read binners in terms of the number of species
included in a cluster, also referred to as cluster purity, and the fraction of all reads that is placed in one of the
clusters. Furthermore, OGRE is able to process metagenomic datasets that are too large for other read binners into
clusters with high cluster purity.

Conclusion: OGRE is the only method that can successfully cluster reads in species-specific clusters for large
metagenomic datasets without running into computation time- or memory issues.

Availabilityand implementation: Code is made available on Github (https://github.com/Marleen1/OGRE).

Contact: m.balvert@tilburguniversity.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Metagenomics aims at identifying and characterizing the micro-
organisms that live in an environment by analyzing their combined
genomic material. Second-generation sequencing allows for sequenc-
ing genomic material at a relatively low cost, and results in a dataset
that contains large amounts of short reads. Splitting these metage-
nomic datasets into smaller and more manageable clusters of similar
genomes facilitates downstream analyses. For example, several
strain aware assemblers work well for small datasets, such as viral
quasispecies, but may have difficulties processing metagenome-sized
datasets (Baaijens et al., 2017; Baaijens and Schönhuth, 2019;
Gregor et al., 2016) that may contain � 107 read pairs of 2�150 nt.
Clustering reads into smaller groups based on overlaps prior to as-
sembly would scale down the problem: a cluster is much smaller

than the full metagenome, while still keeping reads from similar
genomes together. Thus, clustering reads based on overlaps is a promis-
ing approach towards reconstructing strain-specific genomes (Howe
et al., 2014; Tanaseichuk et al., 2012; Wu and Ye, 2011). This article
presents a novel overlap graph-based read clustering approach to
cluster short reads from metagenomics data at the species level.

Clustering reads into groups that belong to the same species is
readily done by mapping the reads to a reference genome, but this is
infeasible for organisms without close relatives in the database.
Several reference-free read binners for metagenomic short read data-
sets are available. All of these are based on k-mer profiles.
Similarities in the coverage and relative frequency of short k-mers
are used to identify reads that originate from the same genome
(Wang et al., 2012; Wu and Ye, 2011). Abundancebin (Wu and Ye,
2011), TOSS (Tanaseichuk et al., 2012) and MBBC (Wang et al.,

VC The Author(s) 2020. Published by Oxford University Press. 905

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestrictedreuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 37(7), 2021, 905–912

doi: 10.1093/bioinformatics/btaa760

Advance Access Publication Date: 1 September 2020

Original Paper

http://orcid.org/0000-0002-2376-9301
http://orcid.org/0000-0003-2329-7890
https://github.com/Marleen1/OGRE
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/


2015) use this property to derive the species’ abundances and cluster
reads accordingly. These methods rely on the assumption that spe-
cies in the metagenome tend to occur at different abundance levels.
MetaCluster 5.0 (Wang et al., 2012) first filters reads from extreme-
ly low abundant (�5�) species based on their k-mer frequencies.
Next, long k-mers (36 nt), which are unique to a genome, are used
to cluster reads from high-abundance species (>10�). The remain-
ing reads (from low-abundance species) are clustered based on inter-
mediate length k-mer profiles (22 nt).

As demonstrated in our results (Section 3.2), the existing read
binning methods are capable of providing a clustering for small
datasets (<2.5 million reads). There are currently no methods avail-
able that can group commonly sized (� 107 read pairs of 2�150 nt)
metagenome datasets into taxonomically meaningful clusters.

In this article, we present OGRE, an Overlap Graph-based Read
clustEring method. Earlier work (Baaijens et al., 2017) pointed out
that overlap graph-based instead of k-mer based approaches can
have decisive benefits when trying to distinguish between genomes
at the strain level. The intuition behind overlap graph-based cluster-
ing and assembly is as follows: if one were to construct an overlap
graph from reads that stem from a single genome, then the graph
consists of a single component when horizontal coverage is complete
and vertical coverage over the entire genome is sufficiently high.
When an overlap graph contains reads from multiple genomes (i.e. a
metagenome) then the components belonging to different genomes
will be connected only in regions where two genomes are highly
similar. An overlap graph is thus an intuitive tool for metagenomic
read clustering, as connected components can be identified with
groups of reads that stem from similar genomes.

While the use of overlap graphs is not uncommon for Next-
Generation Sequencing (NGS)-based assembly (Baaijens et al.,
2017; Simpson and Durbin, 2010), no efficient implementation of
an overlap graph-based clustering approach exists in the current lit-
erature. In this article, we present OGRE, the first computationally
feasible overlap graph-based read clustering approach for high-
throughput sequencing data, with a focus on shotgun metagenomes.
OGRE constructs an overlap graph where reads are represented as
nodes and edges reflect overlaps between reads. The algorithm
employs Minimap2 (Li, 2018) to identify overlaps between reads.
We make use of machine learning to predict which of these overlaps
correspond to reads from the same species. For each step, we de-
velop algorithmic approaches to enable OGRE to handle
metagenome-sized read data. Finally we use Mash (Ondov et al.,
2016) to combine highly similar clusters. We show that OGRE is
capable of clustering large metagenomic datasets into species-
specific clusters without running into memory- or time issues. This
makes OGRE, to the best of our knowledge, the first method to
yield clusters of reads with high species purity from high-diversity
shotgun metagenomic datasets.

2 Materials and methods

It is our aim to design a method that clusters metagenomic reads
into species-specific clusters by constructing an overlap graph and
identifying the connected components within this graph. The algo-
rithm needs to be able to efficiently construct an overlap graph from
a large metagenomic dataset typically containing tens of millions of
reads, and efficiently identify the clusters in the overlap graph. Here,
we first give a global overview of OGRE, further details are dis-
cussed in the following sections.

OGRE consists of four steps: (1) construct an overlap graph, (2)
from the list of overlaps select those that are expected to link two
reads from the same species, (3) cluster reads that are in the same
connected component in the overlap graph and (4) merge highly
similar clusters (Fig. 1). In steps (3) and (4), one can impose a max-
imum cluster size to avoid unrealistically or inconveniently—for
downstream analysis—large clusters.

For overlap graph construction, we use Minimap2 (Li, 2018), a
tool that uses a heuristic approach to rapidly identify read overlaps.
For each overlap, we compute a quality score to obtain an overlap
graph with weighted edges, where high weights correspond to

overlaps linking reads that are likely to stem from the same species.

Weights are in the interval [0,1], and edges (overlaps) with a weight
<0.5 are removed from the graph. We then cluster reads such that

pairs of reads with a high overlap score are in the same cluster using
an efficient parallel implementation of single linkage clustering. We
observed that two or three clusters may cover the same part of the

genome (see Section 3). Therefore, clusters that show high sequence
similarity are merged using Mash (Ondov et al., 2016). These four

steps are further described in Sections 2.1, 2.2, 2.3 and 2.4,
respectively.

2.1 Overlap graph construction
Minimap2 outputs a list of pairs of overlapping reads with informa-

tion corresponding to this overlap. It offers two possible output for-
mats: a PAF file (Li, 2016) and a SAM file (Li et al., 2009). We
experienced issues with the PAF format, as it often reported only

part of the overlap between two reads, which could then be mis-
taken for an overlap in the middle of a read and removed by our

post-processing procedure. The SAM format does not suffer from
this, as it outputs the CIGAR string from which the complete over-
lap range can be deduced. After running Minimap2, we discarded

overlaps in the middle of reads as these make no sense in terms of
clustering or assembly. This leaves us with a list of overlapping pairs
of reads, hence a list of overlap graph edges. We chose settings for

Minimap2 that allowed for identification of a large number of over-
laps with a length of �60 bases (k¼21, w¼11, s¼60, m¼60,

n¼2, r¼0, A¼4, B¼2, –end-bonus¼100, see https://lh3.github.
io/minimap2/minimap2.html). For an evaluation of several
Minimap2 parameter settings, see Supplementary Table S3.

The list of overlaps produced by Minimap2 contains overlaps
where both reads originate from the same species as well as pairs

where the reads come from different species. We aim to discard the
latter by predicting for each overlap whether the reads originate

from the same species based on a measure of overlap strength. For
this, we compute two metrics that could be relevant: the overlap
length and a matching probability based on Phred scores [also used

in Baaijens et al. (2017)]. The predictive power of these metrics will
be assessed in the results (Section 3.4).

The Phred-based overlap score is computed as follows. Suppose
we have an overlap for which we observe the two read sequences
s1; s2 2 fA;C;G;Tgn with corresponding Phred score sequences p1,

p2. While s1 and s2 denote the observed read sequences, we denote
the true (unknown) read sequences by r1 and r2. The probability

that s1 and s2 have the same base in the ith position can be calcu-
lated as follows:

Pðr1;i ¼ r2;iÞ ¼
X

b¼A;C;G;T

Pðr1;i ¼ r2;i ¼ bÞ

¼
X

b¼A;C;G;T

Pðr1;i ¼ bÞPðr2;i ¼ bÞ;

where

Fig. 1. Workflow of OGRE

906 M.Balvert et al.

https://lh3.github.io/minimap2/minimap2.html
https://lh3.github.io/minimap2/minimap2.html
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data


Pðr1;i ¼ bÞ ¼
1� 10

�p1;i
10 if s1;i ¼ b

1

3
10

�p1;i
10 otherwise:

8<
:

From this, we compute the Phred-based matching probability,
i.e. the probability that two sequences are identical, which is defined
as the probability that two bases are identical multiplied over the
full overlap: ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiYn

i¼1

Pðr1;i ¼ r2;iÞn

s
:

Using the nth root prevents that long overlaps are penalized
more heavily than short ones, while longer overlaps of equal quality
should be preferred over shorter ones.

Minimap2 produces a SAM file containing a large header and
for each overlap the read IDs, CIGAR strings, mapping positions,
segment sequences and Phred scores. In our initial tests with a data-
set (CAMI_low, see Section 2.5) of approximately 50 million reads,
thus approximately 50 000 0002 pairs of reads, the output file
exceeded 1 TB—once the file reached a size of 1 TB, we stopped the
process to prevent storage issues, so we do not know how large the
file could get. However, for our purposes, we only need a list of
overlaps characterized by the read IDs, the overlap length and the
Phred-based overlap quality score, which requires a substantially
smaller amount of space. To prevent the production of a large out-
put file we split the set of reads into k equal subsets s1; . . . ; sk and
ran Minimap2 for every pair of subsets
ðsi; sjÞ 2 fs1; . . . ; skg � fs1; . . . ; skg. Due to its heuristic nature
Minimap2 produces a slightly different output for (si, sj) compared
to (sj, si), i 6¼ j, that is, it matters which subset is used as a reference
and which one as a query. We therefore ran both, resulting in k2 � k
small output files. Note that when i¼ j we only need to run
Minimap2 once. For each file, we only kept the read IDs, CIGAR
strings, read sequences and Phred scores and removed the remaining
redundant information. We computed the overlap length and the
Phred-based matching probability from the CIGAR strings, the read
sequences and Phred scores, after which the latter three were dis-
carded. This approach is good practice when using parallel resources
(Hadoop, 2019).

Next, for each pair of subsets (si, sj), we combined the two over-
lap files (one obtained with the first subset as reference and the se-
cond as query, and one obtained with the reverse) and removed all
overlaps that occurred twice. The resulting kþ ðk� 1Þ þ � � � þ 2þ
1 ¼ k � ðkþ 1Þ=2 overlap files were merged into a single overlap file
that contained a list of overlaps characterized by the corresponding
read IDs, overlap length and Phred-based overlap score. This file is
the list of overlap graph edges.

2.2 Filtering overlaps between reads from different

species
We wish to give each edge a weight that indicates the strength of the
overlap, and remove overlaps with a low weight as we suspect those
to be linking reads from different species. We use logistic regression
to determine the edge weights. Logistic regression is a machine
learning method that predicts for each sample a binary class based
on a sigmoid function applied to a linear transformation of sample
characteristics:

f ðxÞ ¼ 1

1þ expð�b0 �
Pm
i¼1

bixiÞ
;

where x 2 R
m is the vector of sample characteristics. Note that

f ðxÞ 2 ½0; 1�. Samples with f ðxÞ > 0:5 are predicted to be in one
class, the other samples in another. In our case, the classes are ‘same
species’ and ‘different species’, where f ðxÞ > 0:5 corresponds to
‘same species’, x represents an edge, and the characteristics are the
overlap length and the Phred-based overlap score. The edge weights
in the overlap graph are defined as the output value of the logistic re-
gression f(x), and edges with f ðxÞ < 0:5 are removed. Values for

b0; . . . ; bm are obtained by training the model on past data where
the true class of each sample is known. The CAMI database
[Critical Assessment of Metagenomic Interpretation, Sczyrba et al.
(2017)] contains many synthetic datasets that can be used as training
data. When applying OGRE to one of the CAMI datasets, we
trained the logistic regression model on the other datasets to avoid
overlap between training and testing data. Examples of training
datasets and resulting regression coefficients are provided in
Supplementary Table S4. A ready-to-use training dataset is included
on Github, but one could supply their own training data if desired.
We further discuss our training approach in Section 3.5.

2.3 Implementation of single linkage clustering

algorithm
Single linkage clustering was selected as it was the most efficient
clustering algorithm. The list of overlaps—constructed as described
above—describes the overlap graph and forms the starting point of
the clustering algorithm. Initially each read forms a cluster by itself,
and every iteration the single linkage algorithm merges the two clus-
ters with the highest overlap score between them. The overlap score
between clusters A and B is defined as the maximum overlap score
over all pairs of read ends r ¼ ðr1; r2Þ; r1 2 A; r2 2 B (Fig. 2).
Sorting the overlaps by decreasing overlap score provides the order
in which clusters are merged. After sorting, the merging algorithm’s
complexity is linear in the number of edges: for each line in the file,
the two clusters that contain the reads of that line are merged.

While looking for the connected components in a graph all edges
are used, so the order in which clusters are merged may seem irrele-
vant. However, one may wish to limit the cluster size. The cluster
size threshold depends on why a user performs the read clustering in
the first place. For example, if the end goal is strain-aware assembly,
then the maximum cluster size depends on the assembler’s capacity.
An additional advantage is that connected components may contain
multiple species, so limiting the cluster size improves cluster purity,
see Section 3.5.

The above algorithm has a complexity of Oðn log nþ nÞ, namely
the complexity of the merge sort algorithm used by the bash com-
mand ‘sort’ plus the complexity of the single linkage algorithm,
where n is the number of edges in the graph or overlaps. Note that n
is in the order of 109 (Supplementary Table S6). This makes execut-
ing the algorithm non-trivial: any serial clustering algorithm has to
go through all the edges in the overlap list and will thus take an in-
feasible amount of time. We therefore use several techniques to
speed up the method.

Hash table We store our clustering in a hash table where each
key is a node (read ID) and its value is the ID of the cluster the read
belongs to (see left part of Fig. 3a). Recall that initially each read
forms a cluster on its own, and in each iteration, two clusters are
merged. Merging two (single-node) clusters is done by updating the
value of one node to be equal to the read ID of the other node in-
stead of the cluster ID. This results in a cluster with two nodes where
the value of one node is the read ID of the second node, and the
value of the second node is the cluster ID (Fig. 3a). When merging
two clusters that contain multiple nodes we update only the value of
the node that points to the cluster ID, referred to as cluster head, in
one of the clusters to be equal to the head of the other cluster
(Fig. 3b). As a result, only a single value needs to be updated when

Fig. 2. Example of the single linkage clustering. The solid lines denote edges between

nodes in the same cluster, the dashed lines denote edges between nodes from differ-

ent clusters with their overlap scores. The overlap score between clusters A and B is

the maximum overlap score over the four connections between the clusters, which

equals 0.8

Overlap Graph-based metagenomic Read clustEring 907

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data


two (potentially large) clusters are merged. See below for details on
obtaining the cluster head.

Updating the cluster with the shorter maximum chain Suppose
we have arrived at an iteration where the algorithm considers the
overlap between reads r1 and r2. Then the clusters containing reads
r1 and r2, denoted by C1 and C2, respectively, need to be merged.
We need to identify the heads of C1 and C2 by traversing the path
through the hash table from reads r1 and r2 to the respective cluster
heads. The number of operations for this procedure equals the
length of the path from r1 to the head of cluster C1 plus the length of
the path from r2 to the head of cluster C2. For example, consider the
cluster in the lower part of Figure 3b, and suppose the right-most
node in this cluster is r1. To find the cluster ID (the square), one
needs to traverse three nodes, hence four operations are required.
We thus need to keep the length of the longest chain in each cluster
short. When merging two clusters, we therefore redirect the head of
the cluster with the shorter maximum chain within the cluster to the
head of the other cluster. The length of the maximum chain for each
cluster is stored in a dictionary. As a result, the maximum chain
within a cluster of size m will never exceed 1þ bm=2c, see Appendix
D for a proof. This leads to an overall complexity of the single link-
age clustering algorithm of Oðn log nþ nmþ nÞ.

Parallelization of the single linkage clustering algorithm
Although the single linkage clustering algorithm, an inherently se-
quential algorithm, is very fast and simple, the overlap file contains
from tens of millions up to billions of overlaps and going through
these one by one could take up to months for a metagenomic data-
set. After going through a number of these lines, hence after several
clusters have been merged, many overlaps become redundant: they
are overlaps between pairs of reads that are in the same cluster al-
ready, or merging their clusters yields a too large new cluster. We
prefilter these redundant edges using a parallel process, see Figure 4.
First, the overlap file is split up in batches of a predetermined num-
ber of overlaps, and the batches are processed iteratively. At iter-
ation i, batch i is split into minibatches from which redundant edges
are removed. To determine whether an overlap is redundant, the al-
gorithm checks whether the two reads are in the same cluster al-
ready which has complexity Oðn log nþ nmþ nÞ, see the previous
paragraph. If the reads are in different clusters the algorithm checks
whether the total size of the two clusters does not exceed the max-
imum allowed cluster size, which can be done efficiently since the al-
gorithm keeps track of all cluster sizes using a hash table. The
minibatches are processed in parallel and the remaining edges are
returned to the main process. Starting from the clustering obtained
in iteration i – 1, the main process then continues merging clusters
based on this reduced list of edges. The resulting clustering forms
the starting point for the next iteration. After several iterations more
than 99.9% of the edges have become redundant, so the main pro-
cess has only few edges left for merging clusters which largely speeds
up the process.

2.4 Merging clusters with Mash
Steps (1)–(3) may result in parts of the genome of one species being
covered by reads that are in two or more different clusters (see
Section 3.6). Such clusters yield a reduced read coverage which is
undesirable for strain-aware assembly. Therefore, we use Mash
(Ondov et al., 2016) to combine read clusters based on sequence
similarity. In short, Mash utilizes MinHash sketches to rapidly esti-
mate the Mash distance between large sequences, sequence sets or
read sets. The Mash distance is highly correlated with alignment-
based metrics such as the average nucleotide identity (Ondov et al.,
2016). We applied Mash to compute the distance between any two
read clusters as well as the P-value to estimate the confidence of a
given distance, corrected for multiple testing using a Benjamini–
Hochberg correction. Two clusters were merged when both the
adjusted P-value and the distance were small.

2.5 Data
We tested OGRE on datasets provided by the first CAMI challenge
as well as a subset from the mousegut dataset from the second
CAMI challenge (Sczyrba et al., 2017), see Supplementary Table S1.
For the mousegut data, we selected five samples (S5, S31, S33, S54,
and S57) such that for several species more than 10 strains were
included. All datasets contain simulated short Illumina reads from a
mixture of strains that can be grouped into species. The datasets dif-
fer in complexity: they contain between 	50 million (CAMI_low)
up to 	77 million (toy_medium) read pairs, 27 (CAMI_low) up to
405 (CAMI_mousegut) species and 30 (toy_low) upto to 1074
(CAMI_high) strains. Reads were quality trimmed using cutadapt
(Martin, 2011) with a quality cutoff of 30, and reads shorter than
80 nt (after quality trimming) were removed.

3 Results

This section is organized as follows. In Sections 3.1 and 3.2, the per-
formance of OGRE is compared to other read binners for small and
medium datasets, respectively. Section 3.3 presents runtime and
memory usage, and Sections 3.4–3.6 discuss the performance of
steps 2–4 of OGRE individually. All experiments are run on a sys-
tem with 24 CPUs and 128 GB of RAM.

3.1 Only OGRE and Abundancebin can successfully

cluster datasets with 5–10 million paired-end reads
We first tested the performance of Abundancebin (Wu and Ye,
2011), MetaCluster 5.0 (Wang et al., 2012), MBBC (Wang et al.,
2015)—three state-of-the-art reference-free clustering methods—

(a) (b)

Fig. 3. Merging two clusters of (a) a single node each and (b) multiple nodes by

changing the value of one node to be equal to the ID of the other node. An arrow

points from a key to its value in the hash table. An arrow from a circle to a square

indicates that this read is in the cluster corresponding to the square. An arrow from

one circle to another indicates that the read from which the arrow departs is in the

same cluster as the read that the arrow points to. Fill patterns allow for identifica-

tion of nodes between the two steps

Fig. 4. Schematic overview of the parallellization approach. In each iteration, each

parallel process receives a set of edges (square brackets). It removes redundant edges

and passes the remaining edges on to the main process, which then merges clusters

908 M.Balvert et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data


and OGRE on small datasets containing 5–10 million paired-end
reads of 2–4 species. These datasets were obtained by including only
the reads that belong to a chosen subset of the species in the
CAMI_low dataset. We created three datasets with varying abun-
dance distributions and number of species, see Supplementary Table
S2. Results are provided in Supplementary Table S5. OGRE was run
without Mash and unlimited cluster size. We could not run OGRE
on datasets provided in the papers of the other tools and directly
compare our results, as for these datasets, only fasta files are avail-
able while OGRE uses the additional information contained in the
Phred scores.

For the dataset with the smallest number of reads (2species_a),
MBBC did not complete the read clustering within 2 months, so we
terminated it. We therefore did not attempt to run MBBC on larger
datasets.

MetaCluster 5.0 gave clusters containing reads from a single spe-
cies. However, these clusters were very small: < 1% of the reads
were clustered. This may be because MetaCluster 5.0 can only pro-
cess data where all reads have the same length, which forced us to
truncate the reads at the length of the shortest read after QC (80 nt).

Abundancebin allows the user to predefine the number of clus-
ters. When Abundancebin was provided with the correct number of
clusters, it could not cluster subset 2species_b. For both 2species_a
and 4species, when Abundancebin was instructed to find two or
four clusters, those clusters contained reads from multiple species.
Abundancebin clustered all reads. Not providing the number of clus-
ters to Abundancebin resulted in a single cluster with all reads for
subset 2species_a, and did not finish within 2 months for the other
datasets.

OGRE found clusters for all datasets. Note that OGRE does not
require the number of clusters as an input. For all datasets OGRE
provided single-species clusters, and the number of clusters per spe-
cies varied from 1 to 333. For species with high read coverage
>98% of all reads were placed in a cluster, whereas for low-
coverage species only 3% of the reads were clustered, which is inev-
itable as low coverage implies few overlaps, if any.

In summary, for the datasets where Abundancebin found clusters
it was able to cluster all reads but could not achieve single-species
clusters. MetaCluster 5.0 obtained pure clusters, but only less than
1% of reads were clustered. OGRE provided pure clusters and clus-
ters more than 98% of the reads for species with high read coverage
(>10�).

3.2 Clustering CAMI_low with available read clustering

methods gives memory and time issues
We have attempted to perform read clustering of the CAMI_low
dataset (Supplementary Table S1) using Abundancebin (Wu and Ye,
2011), MetaCluster 5.0 (Wang et al., 2012) and MBBC (Wang
et al., 2015). These methods were unable to finish within reasonable
time when applied to subsets of the data. MBBC spent over a month
on a subset containing 5% of the species before we stopped the pro-
cess. Abundancebin was able to handle this subset, but after running
it on 20% of the reads for 3 weeks, we stopped the process.
MetaCluster 5.0 could manage 20% of the data, again clustering
1% of the reads, but was not able to handle the full dataset. Table 1
shows for each method which datasets it can handle.

3.3 No memory- and runtime issues with OGRE for all

but one dataset
Runtimes for OGRE are presented in Supplementary Table S6,
where we ran steps 1–3 of OGRE and no limit on the cluster size.
Note that the toy_low dataset is missing: our method could not be
run on this dataset within reasonable time. This was due to the large
number of overlaps that Minimap2 identified, resulting in a prohibi-
tively large runtime and overlap file. For the remaining five datasets
our parallelization approach made overlap graph-based clustering
feasible on a multicore system. The overall procedure took between
60 and 160 h on a 24 CPU system.

The main issue with constructing an overlap graph by directly
running Minimap2 on the CAMI data is the excessively large output

file (over 1 TB). The algorithm described in Section 2.1 was devel-
oped to overcome this issue, hence the main performance indicator
for this step was the size of the resulting overlap files. The final over-

lap file had an acceptable size (up to 360 GB, see Supplementary
Table S6).

3.4 The prediction step removes many different species

overlaps and keeps most same species overlaps
For a given overlap, we aim to predict whether the corresponding
reads originate from the same genome based on the overlap length

and a Phred-based matching probability.
First, we compared the distributions of the overlap length and

the Phred-based matching probability for same-species versus
different-species pairs of reads. We randomly selected overlaps from
each of the datasets: 1 000 000 same-species pairs and 1 000 000

different-species pairs. Comparing the distributions for overlap
length and Phred-based matching probability for same-species over-

laps and different-species overlaps (Supplementary Fig. S1) shows
that the Phred-based probability score can be a valuable predictor
for whether an overlap corresponds to reads from the same species,

while the overlap length seems less indicative.
Supplementary Table S7 shows train and test accuracies for the

five datasets from the first CAMI challenge. The first column indi-
cates the dataset for which the reads are to be clustered (the test

data). The training data were constructed by randomly selecting
10 000 overlaps between reads from the same species and 10 000
overlaps between reads from different species from each of the four

datasets other than the test data, and combining those into a single
training dataset. Note that there was a big gap between the training
and the test accuracy, which is due to a combination of two factors.

The test data (containing the complete overlap graph) were highly
unbalanced: over 99% of the edges corresponded to an overlap be-

tween reads from the same species. This, combined with the model
being far better at recognizing same species overlaps than different
species overlaps, yielded a higher accuracy for the test data than for

the training data.
This step aims to discard as many overlaps between reads from

different species as possible—such overlaps lead to merging clusters
with reads from different species—while keeping most of the same-

species overlaps. We consider the fraction of same species- and dif-
ferent species overlaps that were discarded by the logistic regression
classifier. Supplementary Table S7 shows that while for most data-

sets more than 90% of the same species overlaps were kept, around
half of the overlaps that link different species were discarded, and

for CAMI_low this was even over 90%.

Table 1. An overview of four clustering methods, showing whether

these methods are able to cluster the datasets considered in this

article within a month on a 24 CPU system

Dataset MBBC Abundancebin MetaCluster 5.0 OGRE

2species_a No Yes Yes Yes

2species_b No No Yes Yes

4species No Yes Yes Yes

CAMI_low—5%a No Yes Yes Yes

CAMI_low—20%a No No Yes Yes

CAMI_low No No No Yes

CAMI_medium No No No Yes

CAMI_high No No No Yes

toy_low No No No No

toy_medium No No No Yes

toy_high No No No Yes

a5 and 20% of the species were randomly selected and included in the

subset.

Overlap Graph-based metagenomic Read clustEring 909

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data


3.5 Clustering obtained after step 3 gives sensible

results for all datasets but one
For each dataset the clustering was performed with a maximum
cluster size of 3300, 17 000 and 33 000 reads (corresponding to at
most 1 million, 5 million and 10 million base pairs, respectively), as
well as with unlimited cluster size (i.e. with all overlaps included).
All clusters of <20 reads were discarded, and these reads were con-
sidered as not clustered. We first evaluated the clustering obtained
after step 3 (Fig. 1). The effects of applying Mash, step 4, will be
presented in Section 3.6.

In a perfect clustering each read is clustered, all reads from the
same species are in one cluster and each cluster contains reads from
only one species. We thus assessed the fraction of reads that was
clustered, the number of clusters per species and the number of spe-
cies per cluster. The fraction of reads clustered was generally high
for species with high read coverage (>10�, Supplementary Fig. S2).
As maximum cluster size increased, the number of clustered reads
increased as well. For toy_high only 0.01% of the reads were clus-
tered regardless of the maximum cluster size (Supplementary Fig.
S2e). The reads from species with a low read coverage were spread
over many clusters, while reads from a high coverage species were
placed in a single cluster (Supplementary Fig. S3). The maximum
number of species in a cluster increased with maximum cluster size,
while the total number of clusters decreased (Supplementary Fig.
S4).

To gain insight in the trade-off between the number of species
per cluster and the number of clusters per species we looked at sensi-
tivity and specificity. Two reads in the same cluster that stem from
the same (different) species are a true (false) positive, while two
reads in different clusters from the same (different) species are a false
(true) negative. Figure 5 shows that when the maximum cluster size
increased, sensitivity increased at the cost of specificity. These differ-
ences were major when comparing unlimited cluster size to limited
cluster size, while the differences among the clusterings with limited
cluster size were minor. The low sensitivity indicates that many pairs
of reads from the same species were in different clusters, and thus
many clusters per species existed. Figure 6 shows the maximum di-
vergence between any two genomes in a cluster, averaged over the
clusters. Here, global divergence is the divergence over the full gen-
ome, while local divergence solely considers the part where two
genomes overlap. Naturally divergence increased with cluster size.

3.6 Merging clusters with Mash improves the clustering
We evaluated the effect of using Mash (step 4, see Fig. 1), to obtain
clusters of size at most m1, and compared it to a clustering obtained
with steps 1–3 where cluster sizes after step 3 (single linkage cluster-
ing, see Fig. 1) were restricted to be at most m2 ¼ m1. Note that
when Mash produces clusters of size at most m1, step 3 should give
clusters of size at most m2 < m1. Mash used under 12 h on 12
CPUs.

Figure 5 shows no decisive benefit from using Mash as a fourth
step over clustering with steps 1–3 only, it merely leads to a different
trade-off between specificity and sensitivity. This is supported by
Supplementary Figures S3 and S4, which show that applying Mash
in step 4 reduced the number of clusters but increased the number of
species per cluster. However, Mash had clear benefits when looking
at within-cluster genome divergence: a clustering of maximum size
17 000 or 33 000 obtained with Mash had a lower divergence than
clusters with the same maximum size obtained with steps 1–3 only
(Fig. 6).

Figure 7a shows a part of the source genome of one strain with
reads that are mapped to their original (known) positions. Reads
with the same color belong to the same cluster. Rows 1, 3 and 6 in
Figure 7a show that step 3 often resulted in two clusters covering
the same part of the genome, while Mash often merged these clusters
into one (rows 2 and 4). For m1 ¼ 33 000 and m2 ¼ 17 000 (row 5)
Mash did not merge the two visible clusters, since these two clusters
each contained 17 000 reads.

To obtain an aggregate overview of the clustering performance
of Mash based on the number of clusters that cover a position on

the source genome, we introduce the Diversity of Covered Clusters
(DCC):

DCCk ¼ �
Xc

i¼1

pi logðpiÞ;

with k a coordinate on the source genome, c the number of clusters
covering position k and pi the proportion of reads covering position
k that belong to cluster i as a fraction of the total number of reads
covering position k. A low DCC indicates that few clusters cover a
base position, and ideally DCC ¼ 1. We calculated DCCk for three
million randomly chosen base positions on the source genomes of
CAMI_low. The distribution of DCCk (Fig. 7b) shows that Mash
lowered the DCC index significantly, and that the best results were
obtained when running OGRE with a maximum cluster size of 3300
after step 3 and 33 000 after step 4.

3.7 Multispecies clusters correspond to conserved

genomic regions
Several clusters contained multiple species. For datasets CAMI_low,
CAMI_medium and CAMI_high, many of the reads in clusters that
contained at least two species map to protein-coding genes
(Supplementary Fig. S5). Zooming in on some of the clusters with
two species showed that the regions linking the different genomes
corresponded to genes encoding highly conserved protein products,
including DNA-directed RNA polymerase subunit beta. This indi-
cates that the overlap graph contained hubs that correspond to

Fig. 5. Sensitivity (fraction of pairs of reads from the same species that are in the

same cluster) and specificity (fraction of pairs of reads from different species that are

in different clusters) obtained with various settings of OGRE. Two reads in the

same cluster that stem from the same (different) species are a true (false) positive,

while two reads in different clusters from the same (different) species are a false

(true) negative. The complete figure is shown on the left. m1 is the maximum

allowed clustering size after step 4, m2 is the maximum allowed cluster size after

step 3. If m1 is not given the clustering was obtained without step 4. The figure on

the right zooms in on the region in the top left corner of the full figure and does not

show the results obtained with unlimited cluster size.

Fig. 6. Maximum divergence between two genomes in the same cluster, averaged

over all clusters. m1 is the maximum allowed clustering size after step 4, m2 is the

maximum allowed cluster size after step 3. If m1 is not given the clustering was

obtained without step 4. Global divergence is the fraction of the bases that is not

matched between two reads. For local divergence only the overlapping regions of

two reads are considered

910 M.Balvert et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data


shared sequences in the genome, explaining why an overlap graph-
based read clustering approach yields some multispecies clusters.

3.8 Weak clustering for toy_high inherent to the data
The toy_high dataset is the only dataset for which a weak clustering
was obtained. This is due to the low read coverage per strain: 47%
of the strains has a read coverage below 2�, and 75% of the strains
has a read coverage below 5�. This, in combination with the short
read length of the toy datasets, makes both clustering and assembly
nearly impossible.

3.9 Testing the use of OGRE to enhance assembly
As described before, there is substantial motivation for clustering
reads before assembly to enhance metagenome assembly at strain-
level resolution (Howe et al., 2014; Tanaseichuk et al., 2012; Wang
et al., 2012). We conducted a preliminary test, while leaving the de-
velopment of a complete clustering and assembly pipeline for future
work. We assembled reads in three steps: (1) cluster reads using
OGRE, (2) assemble reads of each cluster separately using SPAdes
(Bankevich et al., 2012) and (3) assemble the full dataset of unas-
sembled reads with SPAdes using the contigs obtained in step (2) as
a guidance with the SPAdes option-trusted contigs. Note that step
(3) is necessary as for some species reads are present in different
clusters. We used an OGRE clustering with
m1 ¼ 33 000; m2 ¼ 3300, as these settings led to the best DCC
(Fig. 7) and performed well in terms of divergence (Fig. 6). The as-
sembly was compared with directly assembling the full read dataset
and assembly based on a random clustering. MetaQUAST was used
to assess the quality of the assembly (Mikheenko et al., 2016). We
did not use MetaSPAdes, as earlier work shows that it is outper-
formed by SPAdes even for metagenome data (Baaijens et al., 2017).

Supplementary Table S8 shows that OGRE improved the contig
length (N50 and NA50) quite substantially, and reduced the number
of partially unaligned contigs (except for CAMI_medium) and the
number of misassemblies compared to an assembly of an equal num-
ber of randomly selected reads, and of all reads. Both a random clus-
tering and clustering with OGRE led to an improvement in the
recovered fraction of the genome compared to assembly of all reads
(Supplementary Table S8).

4 Discussion

This article presents OGRE, an overlap graph-based read clustering
approach for clustering the reads in large metagenomic datasets. It
(1) constructs an overlap graph using Minimap2, (2) filters out a
large fraction of the overlaps between reads from different species,
(3) clusters reads using single linkage clustering and (4) merges high-
ly similar clusters using Mash. Even though these four key processes
of OGRE all have low computational complexity, we encountered
computational difficulties due to the size of metagenomic datasets
that were resolved within OGRE. First, Minimap2 resulted in an un-
acceptably large overlap file for our test cases. OGRE therefore
applies Minimap2 to parts of the data, removes redundant

information from the separate overlap files and merges the resulting
files. Second, while the single linkage algorithm is a highly efficient
approach for clustering reads from the overlap graph, it is sequential
in nature and applying it to the long edge list resulted in unaccept-
able computation times. As 99% of these overlaps were redundant,
we developed a preprocessing approach that filters redundant reads
from subsets of the edge lists in parallel and as such made clustering
computationally feasible.

Only OGRE and Abundancebin were able to cluster small data-
sets. While Abundancebin was able to cluster more reads than
OGRE, its clusters contained a mix of species as opposed to the
single-species clusters provided by OGRE. Abundancebin could only
obtain results when the number of clusters is given a priori. OGRE
was the only clustering approach that could handle metagenome-
sized datasets.

For the toy_high dataset insufficient overlaps were found due to
the low coverage of the genomes in the dataset. Conversely, OGRE
was unable to cluster toy_low due to the long list of overlaps identi-
fied by Minimap2. One can set Minimap2 parameters such that it
stores fewer overlaps, see Supplementary Table S3.

OGRE allows for limiting the cluster size after both steps 3 and
4. Several configurations were tested, where each provides a differ-
ent trade-off between sensitivity and specificity. Mash was able to
reduce both local divergence and DCC, which reflects the number of
clusters that cover a position on the source genome. For all datasets,
the best local divergence and DCC were obtained with a maximum
cluster size of 3300 after step 3 and 33 000 after step 4.

The logistic regression uses a cutoff for edge removal. This cutoff
represents a trade-off between the number of clusters and cluster
purity. A low cutoff means that more edges are kept and clusters are
merged further, leading to fewer and larger clusters per species and
more species per clusters. Conversely, a higher cutoff leads to more
and smaller clusters and fewer species per cluster.

In practice, there are two challenges with the concept of overlap
graph-based read clustering. First, a connected component in the
overlap graph may contain reads from multiple genomes that share
part of their sequence. We indeed observed some clusters that con-
tain reads from multiple species. The low local divergence between
genomes within a cluster indicates that this corresponded to identi-
cal subsequences in genomes, leading to hubs in the overlap graph.
This is a common feature in metagenomics data (Koren et al.,
2011). A possible future avenue for resolving this could include
removing hubs from the network and adding the associated reads to
multiple remaining clusters. Second, reads from a single genome
may cluster into multiple separate connected components in the
overlap graph when read coverage is low. This is consistent with our
observations: while the clustering approach worked well for species
with a relatively high read coverage, many reads from species with
low read coverage (below 
15�) remained unclustered. Applying a
k-mer-based read clustering method to the remaining reads may re-
solve this issue. This is left for future research.

A species-specific read clustering approach for metagenomics
such as OGRE may contribute to metagenome assembly by breaking
down the complexity of the dataset (Namiki et al., 2012).
Combining OGRE with strain-aware assemblers will be valuable for

(a) (b)

Fig. 7. A comparison of six clustering strategies for CAMI_low. (a) A fraction of the source genome with reads mapped to their source position viewed through IGV (Robinson

et al., 2011). The colors of the reads indicate the cluster they belong to for six different clustering strategies. (b) The distribution of the Diversity of Covered Clusters (DCC)

index over the three million randomly selected positions on the source genome for six clustering strategies

Overlap Graph-based metagenomic Read clustEring 911

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa760#supplementary-data


strain tracking in metagenomic datasets. Specifically, we expect that
strains that occur in the datasets with a genomic read coverage of
>10� will allow species-specific read clusters to be generated that
represent >99% of the genome. These smaller read clusters may
then be assembled with strain-aware assemblers such as Snowball
(Gregor et al., 2016) or Polyte (Baaijens and Schönhuth, 2019).

5 Conclusion

This article presents OGRE, an overlap graph-based read clustering
approach. We developed a parallelized approach such that an over-
lap graph-based method becomes feasible even for realistic large
metagenomic datasets. This makes OGRE the only direct read clus-
tering method that can handle large datasets.

Funding

M.B. and A.S. were supported by the Netherlands Organization for Scientific

Research (NWO) Vidi grant 639.072.309. M.B. and B.E.D. were supported

by NWO Vidi grant 864.14.004. XL was supported by the Chinese

Scholarship Council.

Conflict of Interest: none declared.

References

Baaijens,J. et al. (2017) De novo assembly of viral quasispecies using overlap

graphs. Genome Res., 27, 835–848.

Baaijens,J.A. and Schönhuth,A. (2019) Overlap graph-based generation of

haplotigs for diploids and polyploids. Bioinformatics, 35, 4281–4289.

Bankevich,A. et al. (2012) Spades: a new genome assembly algorithm and its

applications to single-cell sequencing. J. Comput. Biol., 19, 455–477.

Gregor,I. et al. (2016) Snowball: strain aware gene assembly of metagenomes.

Bioinformatics, 32, i649–i657.

Apache Hadoop, (2019) MapReduce Tutorial. Apache software foundation.

Howe,A.C. et al. (2014) Tackling soil diversity with the assembly of large,

complex metagenomes. Proc. Natl. Acad. Sci. USA, 111, 4904–4909.

Koren,S. et al. (2011) Bambus 2: scaffolding metagenomes. Bioinformatics,

27, 2964–2971.

Li,H. (2016) Minimap and miniasm: fast mapping and de novo assembly for

noisy long sequences. Bioinformatics, 32, 2103–2110.

Li,H. (2018) Minimap2: pairwise alignment for nucleotide sequences.

Bioinformatics, 34, 3094–3100.

Li,H. et al.; 1000 Genome Project Data Processing Subgroup. (2009)

The sequence alignment/map format and SAMtools. Bioinformatics, 25,

2078–2079.

Martin,M. (2011) Cutadapt removes adapter sequences from high-throughput

sequencing reads. EMBnet. J., 17, 10.

Mikheenko,A. et al. (2016) Metaquast: evaluation of metagenome assemblies.

Bioinformatics, 32, 1088–1090.

Namiki,T. et al. (2012) Metavelvet: an extension of velvet assembler to de

novo metagenome assembly from short sequence reads. Nucleic Acids Res.,

40, e155–e155.

Ondov,B.D. et al. (2016) Mash: fast genome and metagenome distance estima-

tion using MinHash. Genome Biol., 17, 132.

Robinson,J.T. et al. (2011) Integrative genomics viewer. Nat. Biotechnol., 29,

24–26.

Sczyrba,A. et al. (2017) Critical assessment of metagenome interpretation-a

benchmark of metagenomics software. Nat. Methods, 14, 1063–1071.

Simpson,J.T. and Durbin,R. (2010) Efficient construction of an assembly

string graph using the FM-index. Bioinformatics, 26, i367–i373.

Tanaseichuk,O. et al. (2012) A probabilistic approach to accurate

abundance-based binning of metagenomic reads. In: International

Workshop on Algorithms in Bioinformatics. Springer, Berlin, Heidelberg,

pp. 404–416.

Wang,Y. et al. (2012) Metacluster 5.0: a two-round binning approach for

metagenomic data for low-abundance species in a noisy sample.

Bioinformatics, 28, i356–i362.

Wang,Y. et al. (2015) Mbbc: an efficient approach for metagenomic binning

based on clustering. BMC Bioinformatics, 16, 36.

Wu,Y. and Ye,Y. (2011) A novel abundance-based algorithm for binning

metagenomic sequences using l-tuples. Journal of Computational Biology,

18, 535–549.

912 M.Balvert et al.


	tblfn1

