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Conclusion: Our work will make the Dysf™<™

Background: Mouse models of dysferlinopathies are valuable tools with which to investigate the pathomechanisms
underlying these diseases and to test novel therapeutic strategies. One such mouse model is the Dysf™" ™ strain,
which was generated using a targeting vector to replace a 12-kb region of the dysferlin gene and which features a
progressive muscular dystrophy. A prerequisite for successful animal studies using genetic mouse models is an
accurate genotyping protocol. Unfortunately, the lack of robustness of currently available genotyping protocols for the
mouse has prevented efficient colony management. Initial attempts to improve the genotyping protocol
based on the published genomic structure failed. These difficulties led us to analyze the targeted locus of the dysferlin

Methods: In this study we resequenced and analyzed the targeted locus of the Dys

Results: We found that instead of a deletion, the dysferlin locus in the Dys
This genetic characterization enabled us to establish a reliable method for genotyping of the Dysf™"*““™ mouse, and

mouse model more attractive for animal studies of dysferlinopathies.
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AR mouse and developed a

fAMIRAm moyse carries a targeted insertion.

Background

Mouse models of dysferlinopathies have been devel-
oped so that the pathomechanism responsible for the
dysferlinopathies can be studied, and these strains are
also expected to be valuable in testing novel thera-
peutic strategies. Among four distinct dysferlin-
deficient mouse models that have been published, two
occur naturally [1, 2] and two were generated by a
DNA recombination strategy [3, 1]. The first pub-
lished targeted dysferlin-deficient mouse (Dysf”*<“*"")
was generated using a targeting vector intended to re-
place a 12-kb region containing the four coding exons
(51-54) of the dysf gene; this includes exon 54, which
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encodes the transmembrane domain [3]. Analysis
using an anti-dysferlin antibody directed against the
C-terminus indicated that homozygous Dysf”"““”* mice
do not express dysferlin protein. Moreover, histological
signs of muscular dystrophy are detectable by the age of
2 months, and the pathology progresses with age [3]. By
the time mice are 8 months of age, the proximal muscles
develop the pathological hallmarks of a muscular dys-
trophy (i.e., regenerating fibers, split fibers, myofiber
necrosis with macrophage infiltration and muscle re-
placement by fatty tissue), and isolated muscle fibers
from the homozygous Dysf”'*““” mice are defective
for Ca**-dependent repair of the sarcolemma [3]. The
Dysf™ <™ mouse model has been used in several
studies seeking to establish a better understanding of
the pathomechanism of the dysferlinopathies [4-9].
We set out to establish a colony of the Dysf”*“*"" mice
in order to investigate new therapeutic strategies for
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dysferlinopathies. However, during heterozygous breeding
of these mice, we encountered difficulties in genotyping
the Dysf”' ““" progeny. When initial attempts to im-
prove the genotyping protocol based on the published
genomic structure failed, we genetically analyzed the tar-
geted locus of the dysferlin gene of the Dysf”“““"* mouse
in greater detail. In doing so, we discovered that instead of
the predicted deletion, the mice harbored a targeted inser-
tion that accounted for the difficulties in genotyping. In
this study, we resequenced and characterized the targeted
locus of the Dysf”™ " ““” mouse to facilitate its future use
by our research groups and others. Moreover, we used
smaller amplicons than those previously published, thereby
reducing cycling times leading to a faster genotyping
protocol.

Methods

Mice

The mouse strain B6.129-Dysf”"X““ ] (stock # 013149)
was obtained from The Jackson Laboratory. Mice were
maintained by breeding of heterozygotes in a conventional
animal facility with a fixed light and dark cycle. All experi-
ments involving animals were performed in accordance
with the Swiss regulations and were approved by the vet-
erinary commission of the Canton Basel-Stadt (Kantonales
Veterindramt BS; #2391).

PCR amplification of genomic DNA and sequencing
Genomic DNA was extracted from liver from heterozy-
gous B6.129-Dysf” ' /] mice, homozygous counter-
parts, and wild-type mice, by phenol chloroform
extraction [10]. PCR was performed using either 5x FIRE-
pol Master Mix (Solis BioDyne) (Fig. 1) or the Expand
Long Template PCR system (Roche) (Fig. 2), according to
the manufacturer’s instructions. In brief, the PCR was per-
formed in 25 pl containing the following: 2.5 pl 10x buffer
2 (Roche), 0.25 ul 10 mM deoxynucleoside triph osphates
(Sigma), 0.5 pl DNA polymerase (Roche), 1.25 pl of
each specific primer (10 pM), and 2 pl DMSO.
Thirty-five cycles of denaturation (92 °C, 10 s), annealing
(56 °C, 30 s), and primer extension (68 °C, 1.5 min) were
carried out, followed by a single extension step at the end
(68 °C, 2 min), in a thermocycler (StepOnePlus, Applied
Biosystems). The PCR products were sent for Sanger
sequencing.

For the PCR products in Fig. 1, the following primer
pairs were used:

5'-CAG AGA GCA AGA TCC CAG CA-3' forward,
5-TGG GGC ACA AGG ATA AGA CA-3' reverse
(exon 51-408 bp);

5'-ATC ACT CTG CCA CAG GCT CT-3' forward,
5'- ATC TTC TTC TCG CCC TCC TC-3' reverse
(exon 52-187 bp);
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5-AAG CTG GAA ATG ACC TTG GA-3' forward,
5'-CAC TAT CCT CCT GCC TCA GC-3' reverse
(exon 53-330 bp);

5-GCG CCC CGA TAC TTC TTT-3' forward
5'-AGG CTG CAG TTT CTG AGA GTT T-3' reverse
(exon 54-312 bp

5-GGA GCT CAG GTG TCC AGT GT-3' forward,
5-GCC TGA AGA ACG AGA TCA GC-3' reverse
(neomycin cassette-312 bp).

For the PCR products in Fig. 2, the following primer
pairs were used:

5-GGA GCT CAG GTG TCC AGT GT-3' forward,
5'-CCC TGT CAC CAA GAG GCT TCT CC-3’
reverse (PCR1);

5-GAA TGT GTG CGA GGC CAG AG-3' forward,
5-TGG GCT GGT AGG TGA CAA GAG-3' reverse
(PCR2);

5-TGC TGC TTC TGA GGA TTA AGT CTG G-3'
forward,

5-TAG AAT TCG AAC CCC TTC GGA TCC-3'
reverse (PCR3);

5-GCC AGG TCA GCA AGC AGA AAG-3' forward,
5-GGT GAT GTT GAA GGG AGG TCC A-3' reverse
(PCR4).

The primers were designed based on the genomic se-
quence obtained from the UCSC Genome Browser
(NCBI37/mm9 assembly, chr6:83958584—84166036).

Protein extraction and Western blotting

Mouse muscles (quadriceps) were frozen in liquid nitro-
gen and pulverized (with mortar and pestle) on dry ice
and then resuspended in RIPA buffer supplemented with
protease inhibitor cocktail tablets (Roche). The lysates
were sonicated two times for 15 s, incubated on ice for
2 h, and then centrifuged at 15,000 rpm for 20 min at
4 °C. Total protein levels in the lysates were determined
using the BCA Protein Assay (Pierce). Proteins were
separated on SDS polyacrylamide gel and blotted onto a
nitrocellulose membrane. Membranes were blocked for
1 h in TBS containing 3 % BSA and 0.5 % Tween, and
incubated for 16 h with the indicated antibody in the
same buffer as above. Monoclonal antibodies against
dysferlin were purchased from Abcam (Romeo I) and
Vector Laboratories (NCL-Hamlet, clone Haml1/7B6),
and that against a-actinin was from Sigma Aldrich. The
membranes were washed with TBS containing 0.5 %
Tween and incubated for 1 h with secondary antibody
(HRP-conjugate goat anti-mouse IgG or HRP-
conjugated goat anti-rabbit IgG) in TBS containing 3 %
BSA and 0.5 % Tween (1:10,000 dilution). Membranes
were washed in TBS containing 0.5 % Tween and devel-
oped using the LumiGLO Chemiluminescent substrate
system (KPL).
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Fig. 1 Detection of the locus targeted for deletion in homozygous Dysf™""““™ mice. a Schematic drawing of the wild-type locus and the
expected deletion. The arrows depict the two homologous arms used for targeted deletion. b Results of a genotyping PCR using DNA
from toe biopsies of wild type, heterozygous mutant (Dysf™"%““™*) and homozygous mutant (Dysf™<cem/mIkeam) mice, as well as a no
template control (NTC). As expected, PCR to detect the targeting vector was negative for wild type mice, and positive for heterozygous

and homozygous Dysf™" ™ mice. However, PCR to amplify the sequence encompassing exons 51-54, which had been targeted for deletion in
generating the Dysf™" ™ Jine, was positive in all mice, suggesting that homologous recombination had failed to delete the targeted region

Improved genotyping PCR protocol

DNA was prepared by heating a mouse toe in 200 pl
lysis Chelex-100 buffer (Biorad cat. # 142—-1253) +5 pul
Proteinase K (20 mg/ml) (Qiagen cat. # 19131) [11] at
55 °C for 120-180 min under constant shaking (800-
900 rpm), and then centrifuging (14,000 rpm) the mix-
ture for 1 min to pellet the debris, boiling for 8 min at
100 °C, and recentrifuging (14,000 rpm) for 8 min. For
genotyping, 2 ul of a 1:10 dilution of the supernatant

was used directly in the PCR. The genotyping protocol
consists of a four-primer PCR. One primer pair identifies
the wild-type allele (exon 48/intron 50) using the primer
pair for_wt (5'-CAG GGG AAG CTA CAG ATG TGG
ATT GA-3’) and rev_wt (5'-TTT CTG GTG GAC CCT
ACT GCC ATC T-3"), producing an amplicon of 2043 bp.
The second primer pair identifies the mutated allele (neo-
mycin cassette) using primer pair neo_for (5'-AGG ATC
TCC TGT CAT CTC ACC TTG CTC CTG-3') and
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Fig. 2 Genomic structure of the targeted dysferlin locus in the Dysf™ ™ mice. a Schematic drawing of the locus analyzed by PCR and sequencing.
b Schematic drawing of the sequenced region, with the four PCR products generated (covering overlapping genomic regions of the
targeted dysferlin locus) shown on gel and schematically. Indicated in the drawing are the neo cassette, the inverted short arm harboring

PCR #4
(1334 bp)

neo_rev (5'- AAG AAC TCG TCA AGA AGG CGA
TAG AAG GCG-3’), producing an amplicon of 493 bp.
Oligonucleotides were purchased from Microsynth (Bal-
gach, CH). Both amplicons are produced in heterozygous
mice. The PCR was performed in 20 pl containing the fol-
lowing: 4 pl Expand Long Range buffer with MgCl,
(Roche 04829034001), 0.5 pl of 10 mM deoxynucleoside
triphosphates from the Expand Long Range dNTPack
(Roche 04829034001), 0.25 ul Expand Long Range En-
zyme Mix (Roche 04829034001), 0.5 pl of each wild-type
specific primer (10 puM), 0.25 pl of each neo primer
(10 pM), and 2 ul DMSO (Roche 04829034001).
Thirty-five cycles of denaturation (92 °C, 10 s), annealing
(56 °C, 15 s), and primer extension (68 °C, 105 s) were
performed, followed by a single extension step (68 °C,
2 min), in a thermocycler (StepOnePlus, Applied Biosys-
tems). The amplicons were analyzed by electrophoresis on
a 2 % agarose gel, in 0.5 % TAE buffer.

Results and discussion

Despite the recent development of an improved protocol
for genotyping of the Dysf”“““ mouse [12], the PCR re-
mains challenging due to the large size of the amplicons

(3904 and 4846 bp). In an attempt to make the genotyping
more efficient and more reliable, we switched to one of
the genotyping protocols suggested by the supplier of the
mice (Jackson Lab). This protocol consists of two separate
PCR amplifications and is designed to detect the presence
of the neo cassette (targeting vector) in the dysferlin locus
and the absence of exon 53 in mutant mice. Using this
protocol and the primer set specific for the mutant geno-
type, we found (as expected) that a ~300-bp amplicon
(neomycine cassette) was produced from the genomic
DNA of both heterozygous and homozygous mice, but
not from that of wild-type mice (Fig. 1). The presence or
absence of this amplicon was congruent with the geno-
types. Unexpectedly, however, we were able to detect the
presence of exons 51-54, which had been targeted for de-
letion (Fig. 1). This was the case for all genotypes, includ-
ing what were thought to be homozygous knock-out
mutants (Fig. 1). This revealed that the targeted region
had not, in fact, been deleted in the Dysfmm“”’ mice.

We therefore performed another set of PCR reactions
(Fig. 2b), followed by sequencing, to characterize the site
of insertion of the neomycin cassette within the dysferlin
locus of the homozygous Dysf”"“““" mouse. Sequencing
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Fig. 3 Absence of detectable dysferlin protein. Western blot of
quadriceps muscle from wild-type and homozygous Dysf™Kcam/imiKeam
mice using antibodies that recognize the C-terminal (NCL-Hamlet) and
N-terminal (Romeo I) domains of the dysferlin protein. To demonstrate
equal loading of protein, an antibody against actinin was used

revealed that the genomic locus of the mutant mouse
was indeed disrupted by the insertion of the targeting
vector, but that the targeted deletion of exons 51-54 had
not been achieved (Fig. 2, and Additional file 1: Supple-
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neomycin cassette is positioned 3" of exon 50, followed by
an inverted short arm of the targeting vector that contains
exon 55 and part of the thymidine kinase cassette.
Sequencing also revealed that the neomycin cassette is
flanked by two LoxP sites and contains additional copies
of a cloning linker; this likely led to the inverted insertion
of the short arm into the targeting vector. Down-
stream of this vector, the genomic locus of dysferlin
continues, with exon 48 followed by the remainder of
the wild-type locus, including the targeted exons 51-54
(Fig. 2, and Additional file 1: Supplementary material).
Importantly, despite the presence of exons 51-54, the
homozygous Dysf” %™ mice do not synthesize full-
length dysferlin (Fig. 3): neither an antibody recognizing
an N-terminal epitope (Romeo I) nor one recognizing a
C-terminal region of the dysferlin protein (NCL-Ham-
let) detected full-length dysferlin on Western blots of
muscle extracts from homozygous Dysf”"“"* mice.
Based on this new sequence information on the dysfer-
lin locus in Dysf™"“““"" mice, we were able to improve
the genotyping PCR by designing primers that reduce
the amplicon size from ~4 kb to ~2 kb (Fig. 4). This also
reduces the amplification time from the 3 h used in the
most recently published protocol [12] to 1.75 h. The re-

mentary material). Instead, in the Dysf”""““*” mouse, the  ductions in amplicon size and amplification time led to a
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Fig. 4 Novel genotyping PCR of Dysf™'*“™ a Schematic drawing of the targeted dysferlin locus in wild type and Dysf™ "™ mice, with binding
sites of primers used for genotyping shown in pink. The genotyping primers previously described by Han et al. [12] are depicted in blue (#2290,
#2581, #4768). b Results of a genotyping PCR using DNA from toe biopsies of homozygous mutant (Dysf™ @™/ mIkam) ‘heterozygous mutant
(Dysf™ <™ %) and wild type mice, as well as a no template control (NTC)
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robust and reliable genotyping protocol, with an error
rate of about 2 %.

The finding that an insertion in the dysf gene rather
than a deletion of several of its exons is responsible for
the dysferlin deficiency in the Dysf”'*““” mouse strain
explains why attempts to improve genotyping based on
published information on this locus of the Dysf™ =™
mouse [3] have failed. We hypothesize that a homologous
recombination event on the long arm led to insertion of
the targeting vector, and that the reverse orientation of
the short arm prevented the second recombination event
that would have been necessary for the deletion of exons
51 to 54.

Despite harboring an insertion rather than a deletion
on the genomic level, the Dysf™ ™ mouse is a valid
model of dysferlin deficiency, given that no full-length
dysferlin protein could be detected in homozygous mice
using either an N- or a C-terminally directed antibody.
Homozygous Dysf™ " ““ mice show a progressive mus-
cular dystrophy similar to that in the knock-out mouse
model generated by Ho et al. [1], and the studies per-
formed with the Dysf”'“““" mouse model retain their
validity [4, 7, 5, 6, 8, 9].

Conclusions

We found the novel PCR protocol described here to be
reliable and efficient. Due to the insertion, the size of
the sequence amplified to distinguish the wild type from
the mutant allele could not be reduced to below the
2 kb range. It is possible that in the past, other dysferlin-
deficient mouse strains have been studied more exten-
sively than Dysf™ " because of the genotyping diffi-
culties encountered with the latter model. The new
protocol described here will allow easier characterization
of this valuable dysferlinopathy mouse model, and is ex-
pected to promote its use in future studies.

Additional file

Additional file 1: Supplementary material Dysftm1Kcam.txt;
nucleotide sequence of the sequenced region as shown in Fig. 2b.
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