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ABSTRACT
Pulmonary sarcomatoid carcinoma (PSC) is an uncommon subtype of lung cancer, and immune check-
point blockade promises in clinical benefit. However, virtually nothing is known about the expression of 
common immune checkpoints in PSC. Here, we performed immunohistochemistry (IHC) to detect nine 
immune-related proteins in 97 PSC patients. Based on the univariable Cox regression, random forests were 
used to establish risk models for OS and DFS. Moreover, we used the GSEA, CIBERSORT, and ImmuCellAI to 
analyze the enriched pathways and microenvironment. Univariable analysis revealed that CD4 (P = 0.008), 
programmed cell death protein 1 (PD-1; P = 0.003), galectin-9 (Gal-9) on tumor cells (TCs; P = 0.021) were 
independent for DFS, while CD4 (P = 0.020), PD-1 (P = 0.004), Gal-9 (P = 0.033), and HLA on TILs (P = 0.031) 
were significant for OS. Meanwhile, the expression level of CD8 played a marginable role in DFS (P = 
0.061), limited by the number of patients. The combination of Gal-9 on TC with CD4 and PD-1 on TILs 
demonstrated the most accurate prediction for DFS (AUC: 0.636-0.791, F1-score: 0.635–0.799), and 
a dramatic improvement to TNM-stage (P < 0.001 for F1-score of 1-y, 3-y, and 5-yDFS). A similar finding 
was also observed in the predictive ability of CD4 for OS (AUC: 0.602-0.678, F1-score: 0.635–0.679). CD4 
was negatively associated with the infiltration of neutrophils (P = 0.015). PDCD1 (coding gene of PD-1) was 
positively correlated to the number of exhausted T cells (Texs; P = 0.020) and induced regulatory T cells 
(iTregs; P = 0.021), and LGALS9 (coding gene of Gal-9) was positively related to the level of dendritic cells 
(DCs; P = 0.021). Further, a higher combinational level of CD4, PDCD1 on TILs, and LAGLS9 on TCs were 
proved to be infiltrated with more M1-type macrophages (P < 0.05). We confirmed the expression status of 
nine immune-related proteins and established a TNM-Immune system for OS and DFS in PSC to assist 
clinical risk-stratification.
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Introduction

Pulmonary sarcomatoid carcinoma (PSC) is an uncommon 
non-small cell lung cancer (NSCLC), with a proportion of 
0.1%-0.4% among all lung cancers1 World Health Organization 
(WHO) classified PSC into pleomorphic, spindle cell, giant cell 
carcinoma, carcinosarcoma, and pulmonary blastoma.2 The 
5-ysurvival rate of PSC is limited to 15–25%3–6, due to the highly 
heterogeneous and aggressive clinical course.

The adoptation of immune checkpoint blockades, for 
instance, the inhibitor of programmed death-1 (PD-1)/ pro-
grammed death-ligand 1 (PD-L1), has reformed the remedial 
scenery and clinical outcome of NSCLC patients7. Our pre-
vious work has revealed that a series of immune checkpoints, 
such as PD-1, PD-L1, PD-L28, human leukocyte antigen 
(HLA)9, tumor necrosis factor superfamily member 4 
(OX40), tumor necrosis factor ligand superfamily member 4 
(OX40L)10, galectin-9 (Gal-9)11, played significant implications 
on the prognosis of squamous cell carcinoma (LUSC) and 

adenocarcinoma (LUAD). Previously, PD-L1 was proved to 
be highly expressed on PSC tissues, which was correlated to 
the poor prognosis of PSC12-14. However, virtually nothing is 
known about the expression level of the rest immune check-
points and their effect on survival in PSC patients.

Moreover, the benefit of regular chemotherapy and radiother-
apy to PSC is controversial, resulting in a high rate of 
recurrence.15,16 In this context, PD-L1 inhibitors have offered 
the promise of clinical benefit for PSC, with an overall response 
rate (ORR) of 40%.17,18 Existing evidence indicates that combina-
tional immune checkpoint inhibitors, for instance, the combina-
tional blockades of PD-1 and cytotoxic T-lymphocyte-associated 
protein 4 (CTLA-4), present a more robust efficacy than single- 
agent treatments.19 Therefore, delineating the expression or co- 
expression status of other novel immune checkpoints in PSC, 
besides PD-1/PD-L1, is the foundation of developing combina-
tional immunotherapy, which could further improve the thera-
peutic efficacy.

CONTACT Yayi He yayi.he@tongji.edu.cn; Caicun Zhou caicunzhoudr@126.com Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji 
University Medical School Cancer Institute, Tongji University School of Medicine, No 507 Zhengmin Road, Shanghai 200433, China
#These authors contribute equally.

Supplemental data for this article can be accessed on the publisher’s website

ONCOIMMUNOLOGY                                        
2021, VOL. 10, NO. 1, e1947665 (16 pages) 
https://doi.org/10.1080/2162402X.2021.1947665

© 2021 The Author(s). Published with license by Taylor & Francis Group, LLC. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits 
unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0002-2820-9119
https://doi.org/10.1080/2162402X.2021.1947665
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/2162402X.2021.1947665&domain=pdf&date_stamp=2021-07-12


Thus, we explored the expression status of nine immune 
proteins in PSC tissue by immunohistochemistry (IHC) and 
unearthed the relation of these proteins to survival outcomes. 
Further, we conducted a risk-stratification system based on these 
proteins and the tumor, nodes, and metastasis (TNM) stage to 
assist the decision-making of clinicians. Finally, bioinformatics 
was performed to analyze these immune-related proteins’ effects 
on components and functions of PSC microenvironments.

Materials and methods

Patient population and clinical outcome

Ninety-seven PSC patients who received a surgical resection 
between 2013 and 2017 at Shanghai Pulmonary Hospital were 
enrolled, with a follow-up deadline of January 2021. All patients 
were diagnosed with PSC and had never received any treatment 
before the surgery. The patients who did not meet the diagnosis 
or lacked complete follow-up information were excluded. We 
measured overall survival (OS) and disease-free survival (DFS) 
as clinical outcomes. The OS time was the time length from the 
surgery to death, while the DFS time was the time length that 
the patient survives without any signs or symptoms of PSC.

The TNM stage of all patients was in terms of the eighth 
edition of the TNM classification. Shanghai Pulmonary Hospital 
Ethics Committee approved this study (approval number: K18- 
203Y), and all patients signed the written informed consent.

IHC and scoring

We performed the IHC staining on three duplicate slides of 
each marker in each patient. The expression level of each 
marker was calculated as the average value of three slides, 
and all evaluation was performed within the PSC areas by 
two independent pathologists.

IHC experiments were performed as previously described. 
The primary antibodies for cluster of differentiation 3 (CD3; 
1:100, Dako, #A0452); CD4 (1:80, Dako, #M7310); CD8 (1:100, 
Dako, #M7103); PD-1 (1:100, Golden bridge zhongshan, 
Beijing, #ZM-0381), PD-L1 (1: 300, Cell Signaling 
Technology, #13684S); PD-L2 (1: 200, Cell Signaling 
Technology, #82723S); Gal-9 (1:150, Novusbio, #NBP2- 
45619); HLA DP DQ DR (1:100, Abcam, #ab7856); OX40L 
(1:500, Abcam, #ab203220) were incubated at 4°C overnight, 
and secondary antibodies (goat-anti-rabbit or mouse IgG) were 
incubated for 1 hour at room temperature. Further, two inde-
pendent pathologists reviewed all slides and scored the percen-
tages of each marker on tumor cells (TCs) or tumor-infiltrating 
lymphocyte (TILs). The distinguishment of TCs and TILs was 
based on cell morphology by two independent pathologists.

Cutoff values of continuous variables

X-tile is a software to select the best cutoff point of biomarkers 
for survival analysis without validated normal ranges, based on 
the minimum P-value or maximum chi-square value.20 Here, 
we introduced the X-tile software (Yale University; V.3.6.1) to 
determine the cutoff points of all continuous variables and 
multiple categorical variables, which were included in Cox 

regressions, Kaplan–Meier curves, and random forests. All 
the cutoff point values are presented in Table 1 and Table S1.

Random forest for risk-stratification

Random forest is a classic machine learning algorithm used in 
computational biology,21 which could construct a predictive 
model with a supervised learning approach and rank the pre-
dictive ability of each variable. Thus, the scikit-learn Python 
implementation of the random forest was applied to establish 
a risk model for DFS and OS. The number of trees (n_estima-
tors) was set to 50, and the max number of levels in each 
decision tree (max_depth) was set to 5, while the random 
generator (random_state) was set to 2021.

It is worth mentioning that the censored data for each mea-
sured timepoint were deleted to ensure the reliability of the ran-
dom forest. Sixty-nine, 80, and 68 patients were remained for 1-y, 
3-y, and 5-y OS, while 65, 79, and 73 patients were selected for 1-y, 
3-y, and 5-y DFS, respectively. However, the ratio of events to 
nonevents of OS or DFS is ~2, which could dramatically weaken 
the performance of machine learning. Hence, the scikit-learn 
Python implementation of the synthetic minority oversampling 
technology (SMOTE)22 with default parameters was performed, 
which could randomly generate new synthetic points from the 
existing minority samples in imbalanced data. With the introduc-
tion of SMOTE, 11,24, and 44 samples were generated for 1-y, 3-y, 
and 5-y OS, while 21, 31, and 35 records were created for 1-y, 3-y, 
and 5-y DFS. Moreover, the whole cohort was randomly split into 
a training group (80% of all records) and a testing group (20% of 
all records), with 100 bootstrap resampling.

Further, the performance of risk models was assessed by the 
mean areas under time-dependent receiver-operating charac-
teristic (ROC) curves (AUCs) and the F1-score of 100 testing 
groups. The code of the whole process for this section is 
available on Github (https://github.com/phil329/PSC.git).

Public validation from the Gene Expression Omnibus 
(GEO) database

To explore the molecular mechanisms of different expressions 
of the combinational immune-related proteins, we applied 
a sole RNA sequencing result of PSC (GSE110205) from the 
GEO Database, including 14 PSC samples and 3 normal lung 
parenchyma samples. Further, “limma” package of R software 
was applied to screen differentially expressed genes (DEGs).

Gene Set Enrichment Analysis (GSEA)

To analyze the biological pathways enriched in a higher expres-
sion of the combination of CD4, PD-1, and Gal-9, we applied 
the GSEA software23 with default parameters. The cutoff points 
of a single gene, CD4, PDCD1 (encoding gene of PD-1), and 
LGALS9 (encoding gene of Gal-9) were determined as the 
median value, and the high level of the combination of CD4, 
PDCD1, and LGALS9 was defined as two or three high among 
three genes. Also, the network among the most enriched path-
ways in patients with a high level of the combination of CD4, 
PDCD1, and LGALS9 (P < 0.0001, FDR < 0.01) was visualized 
by Cytoscape software (V.3.4.0; https:// cytoscape.org).24
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Table 1. Univariable and multivariable Cox regression for DFS.

Factor Number

Univariable analysis Multivariable analysisa Multivariable analysisb

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

Age (y) 0.061
≤70 81 1
>70 16 1.752 (0.996–3.176)
Gender 0.502
Female 82 1.259 (0.641–2.474)
Male 15 1
Smoking 0.896
No 52 1.033 (0.634–1.681)
Yes 45 1
Pathology 0.749
Pure PSC 89 1.180 (0.428–3.248)
PSC with other types 8 1
Chemotherapy 0.446
No 51 1.209 (0.741–1.973)
Yes 46 1
Radiotherapy 0.298
No 93 1.704 (0.618–4.703)
Yes 4 1
T-Stage 0.002 0.026
1–3 81 1 1
4 16 2.641 (1.442–4.905) 2.151 (1.098–4.214)
N-Stage 0.070
0–1 75 1
2 22 1.657 (0.959–2.864)
M-Stage 0.093
0 92 1
1 5 2.400 (0.864–6.666)
Stage <0.0001 0.008
1–2 61 1 1
3–4 36 2.524 (1.539–4.137) 2.014 (1.204–3.368)
CD3 0.147
Low (≤25%) 46 1.436 (0.879–2.346)
High (>25%) 51 1
CD4 0.008 0.012 0.012
Low (≤10%) 63 2.034 (1.193–3.466) 1.998 (1.167–3.424) 1.997 (1.166–3.418)
High (>10%) 34 1 1 1
CD8 0.061
Low (≤45%) 76 1.889 (0.961–3.713)
High (>45%) 21 1
PD-1-TIL 0.003 <0.0001 <0.0001
Low (≤30%) 94 1 1 1
High (>30%) 3 6.182 (1.852–20.639) 9.397 (2.696–32.751) 10.782 (3.051–38.101)
PDL1-TIL 0.078
Low (≤10%) 93 1
High (>10%) 4 2.759 (0.850–8.949)
PDL1-TC 0.235
Low (≤75%) 70 1.406 (0.799–2.475)
High (>75%) 27 1
PDL2-TIL 0.961
Low (=0%) 96 1
High (>0%) 1 1.051 (0.145–7.616)
PDL2-TC 0.206
Low (≤20%) 96 21.172 (0.016–28141.140)
High (>20%) 1 1
GAL9-TIL 0.084
Low (=0%) 13 1.800 (0.916–3.539)
High (>0%) 84 1
GAL9-TC 0.021 0.015 0.021
Low (≤10%) 34 1.774 (1.084–2.901) 1.850 (1.128–3.034) 1.785 (1.090–2.923)
High (>10%) 63 1 1 1
OX40L-TIL 0.315
Low (≤20%) 76 1
High (>20%) 21 1.355 (0.747–2.456)

(Continued)
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The landscape of immune cells infiltration

To elucidate each sample’s immune cell infiltration, we 
introduced the Immune Cell Abundance Identifier 
( ImmuCel lAI ;  ht tp : / /bioinfo . l i fe .hust .edu.cn/web/  
ImmuCellAI)25 and CIBERSORT (https://cibersort.stan 
ford.edu)26, which were two online tools for clarifying 
immune infiltration components from RNA sequencings. 
The difference of immune infiltration landscapes between 
different levels of a single gene, CD4, PDCD1, and 
LGALS9, was analyzed by ImmuCellAI, while CIBERSORT 
revealed the association of the combinational level of CD4, 
PDCD1, and LGALS9 with immune infiltration.

Statistical analysis

Kaplan–Meier survival curves with log-rank tests were 
exerted to contrast the survival rate or time. The features 
whose P value is less than 0.05 in the univariable Cox 
proportional hazard regression were inputted into the mul-
tivariable Cox regression, which was performed by the 
method of backward LR. The Fisher exact test and analysis 
of variance (ANOVA) was applied to compare rates 
between two and multiple groups, respectively. The t-test 
was exerted to detect the difference of the mean or median 
values between groups. Two-sided tests were used for all 
statistical analysis, and the statistical significance was 
defined with a P < 0.05. R packages of “corrplot” and 
“volcano” were used to generate matrix correlations and 
volcano plots, respectively. All analysis was performed by 
SPSS (V.23.0, SPSS Inc), Graphpad software (V.8.0, 
GraphPad Prism), and R software (V.4.0.4, R Core Team).

Results

The characteristics of the cohort

We included 97 patients diagnosed with PSC in this study 
(Table 1), whose mean age was 63 y. The vast majority 
(91.8%; 89/97) of patients were pure PSC, while four 
patients (4.12%) were mixed with adenocarcinoma 

(LUAD), three patients (3.09%) were mixed with squamous 
cell carcinoma (LUSC), and one patient (1.03%) was mixed 
with large cell neuroendocrine carcinoma (LCNEC). And 
84.5% (82/97) of the patients were male, and over 50% of 
the cohort (53.6%; 52/97) had a history of smoking. The 
TNM-stage of 33.0% (32/97), 29.9% (29/97), 32.0% (31/97), 
and 5.15% (5/97) of patients were I, II, III, and IV, 
respectively.

Moreover, all these patients received a surgical resec-
tion between March 2013 and May 2017 in Shanghai 
Pulmonary Hospital. In this study, 52.6% (51/97) of 
patients received postoperative adjuvant chemotherapy, 
one patient (1.03%) received radiotherapy, and three 
patients (3.09%) received both chemotherapy and 
radiotherapy.

Expressions of immune-related proteins varied in PSC

CD3, CD4, and CD8 were unique to TILs, while PD-L1, 
Gal-9, OX40L, and HLA were expressed both on TCs and 
TILs. Since PD-1 was mostly expressed on TILs,27 we only 
analyzed the PD-1 expression on TILs in this study. It is 
worth mentioning that PD-L2+ TILs were only presented in 
one patient’s PSC tissue, with a proportion of 1% among 
TILs. The representative IHC images of CD4, PD-1, Gal-9, 
and HLA were shown in Figures 1(a–e) and the rest of the 
immune-related proteins were shown in Fig. S1.

Gal-9 [mean ± standard error of mean (SEM); 342.901%] 
displayed the highest positive cell proportion of TILs (P < 
0.001; Figure 1f), followed by CD3 (32.91 ± 2.285%), CD8 
(29.202.504%), HLA (15.491.951%), OX40L (14.281.931%), 
CD4 (11.951.276%), and PD-L1 (2.1650.9295%). As for the 
expression on TCs, PD-L1 (41.35 ± 3.308%) and Gal-9 
(34.002.901%) were significantly ahead of HLA (16.04 ± 
2.287%), OX40L (11.962.546%), PD-1 (6.7531.001%), and 
PD-L2 (1.505 ± 0.6226%; P < 0.001; Figure 1f). 
Meanwhile, there existed a considerable correlation among 
CD3, CD4, CD8, PD-1, and PD-L1 (Figure 1g). The expres-
sion on TCs and TILs of OX40L and HLA also demon-
strated a moderate correlation (Figure 1g).

Table 1. (Continued).

Factor Number

Univariable analysis Multivariable analysisa Multivariable analysisb

HR (95% CI) P value HR (95% CI) P value HR (95% CI) P value

OX40L-TC 0.268
Low (≤45%) 83 1.554 (0.708–3.410)
High (>45%) 14 1
HLA-TIL 0.108
Low (≤10%) 62 1.530 (0.908–2.578)
High (>10%) 35 1
HLA-TC 0.085
Low (≤70%) 93 5.709 (0.787–41.436)
High (>70%) 4 1

Abbreviations: DFS, disease-free survival; HR, hazard ratio; PSC, pulmonary sarcomatoid carcinoma; NSCLCs, non-small cell lung cancers; TC, tumor cell; TIL, tumor- 
infiltrating lymphocyte; CD3, cluster of differentiation 3; CD4, cluster of differentiation 4; CD8, cluster of differentiation 8; PD-1, programmed death-1; PD-L1, 
programmed death-ligand 1; PD-L2, programmed death-ligand 2; Gal-9, galectin-9; OX40L, tumor necrosis factor ligand superfamily member 4; HLA, human 
leukocyte antigen. 

Note: Considering the collinearity between T-stage and TNM-stage, we included them separately in two multivariable regression. 
aThe multivariable Cox regression included T-stage. 
bThe multivariable Cox regression included TNM-stage.
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To explore what caused the difference among the above 
meaningful proteins, we compared the patients’ clinico-
pathological features with different statuses of these pro-
teins (Table S2). According to Fisher’s exact test, patients 
with a high expression of CD4 consisted of more stage I-II 
disease (55.6% vs. 76.5%, P = 0.0459). Those with a high 
expression of the combination of Gal-9 on TC with CD4 
and PD-1 on TILs consisted of more female (13.0% vs. 
25.0%, P = 0.0071), while those with a low combinational 
expression of CD4, PD-1, Gal-9 on TILs, and HLA 
on TILs presented a higher frequency of metastasis 
(11.1% vs. 0%, P = 0.0190). The factors such as advanced 
age, male, metastasis, and advanced TNM-stage were 
concentrated in the high-risk populations we screened, 
which also partially revealed the mechanism 
why these immune-related proteins were related to OS 
or DFS.

Immune-related proteins presented dependent prognostic 
values
According to the univariable analysis, the expression level 
of CD4 (P=0.020), PD-1 on TILs (P = 0.004), Gal-9 on TILs 
(P = 0.033), and HLA on TILs (P = 0.031), along with age (P = 
0.015), T stage (P = 0.002), M stage (P = 0.024), and TNM- 
stage (P = 0.011), were independently associated with OS 
(Table S1). Meanwhile, the expression level of CD4 (P = 
0.008), PD-1 on TILs (P = 0.003), Gal-9 on TCs (P = 0.021), 
along with T stage (P = 0.002) and TNM-stage (P < 0.0001), 
were significant for DFS (Table 1). Moreover, the expression 
level of CD8 played a marginable significant role in DFS (P = 
0.061). When exerting multivariable analysis, T stage (P = 
0.005), CD4 (P = 0.028), and PD-1 on TILs (P < 0.0001) were 
an independent predictive factor for OS (Table S1). As for 
DFS, we separately included T-stage and TNM-stage into two 
multivariable regression to avoid interference (Table 1). 

Figure 1. The expression status of nine detected immune-related proteins and their correlation. The representative of IHC images of high and low levels of CD4(a), PD-1 
(b), Gal-9 on TIL(c), Gal-9 on TC(d), and HLA on TIL (e). (f) The percentages of each type of positive TCs or TILs were demonstrated in the bar chart, and the P value was 
calculated by the analysis of variance (ANOVA). ***P < 0.001. (g) The correlation matrix of the percentages of all positive types of positive TCs or TILs, and the coefficients 
(>0.3) marked in red indicate a correlation between a pair of proteins. The scales of A to C were ×400. Abbreviations: IHC, immunohistochemistry; TC, tumor cell; TIL, 
tumor-infiltrating lymphocyte; CD3, cluster of differentiation 3; CD4, cluster of differentiation 4; CD8, cluster of differentiation 8; PD-1, programmed death-1; PD-L1, 
programmed death-ligand 1; PD-L2, programmed death-ligand 2; Gal-9, galectin-9; OX40L, tumor necrosis factor ligand superfamily member 4; HLA, human leukocyte 
antigen.
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Although all variables included in two multivariable models 
presented dependent significance for DFS, we chose the mul-
tivariable regression including TNM-stage for further analy-
sis. In this model, the expression of CD4 (P = 0.012) and Gal-9 
on TC (P = 0.021), PD-1 on TILs (P < 0.0001), and TNM- 
stage (P = 0.008) were significantly related to DFS (Table 1).

As expected, patients with a higher level of CD4 expres-
sion [P = 0.0077; hazard ratio (HR)=1.997 (1.227-3.250)], 
a lower level of PD-1 expression on TILs [P = 0.0007; HR = 
106.4 (7.155–1583)], and a higher Gal-9 expression on TC 
[P = 0.0206; HR = 1.770 (1.041-3.009)] held a significantly 
longer DFS (Figures 2(a–c)). Meanwhile, the expression 
level of CD8 could also stratify the DFS with 
a marginable significance [low vs. high: P =0.0604; HR = 
1.882 (1.077–3.287)], which could be attributed to the lim-
ited size of patients (Figure 2d). The similar prognostic 
impacts of CD4 [low vs. high: P = 0.0181; HR = 1.985 
(1.162–3.392)], PD-1 on TILs [high vs. low: P = 0.0013; 
HR = 5.427 (0.4073–72.31)], Gal-9 on TILs [low vs. high: 
P = 0.0287; HR = 2.173 (0.8318–5.674)], HLA on TILs [low 
vs. high: P = 0.0280; HR = 1.921 (1.120–3.296)] were found 
in the survival analysis for OS (Figures 3(a–d)). 
Considering the dramatic prognostic value of CD4, PD-1, 

Gal-9, and HLA, the further modeling and validation would 
be primarily based on these four proteins.

Combinational immune-related proteins served as a risk 
model for OS and DFS

In order to establish a risk model for PSC based on these 
prognostic combinational immune-related proteins, we 
applied a random forest on proteins that were independent 
variables for OS and DFS in the univariable Cox regression. To 
improve the reliability of this data set, we also performed the 
preprocessing of SMOTE and bootstrapping (×100). 
According to the variable importance measures, Gal-9 on 
TCs was the most critical factor for 1-y DFS and 5-y DFS, 
while CD4 was slightly more important for 3-y DFS than Gal-9 
on TCs (all P < 0.001; Figure 4a). Moreover, the combination of 
Gal-9 on TCs with CD4 and PD-1 on TILs presented 
a significantly stronger predictive ability for DFS than all single 
parameters (1-y DFS: F1-score = 0.7880.096, AUC = 0.776 ± 
0.085; 3-y DFS: F1-score = 0.7990.086, AUC=0.791±0.078; 
5-y DFS: F1-score = 0.635 ± 0.096, AUC = 0.636 ± 0.075; 
Figures 4(b–d), all P < 0.001).

Figure 2. Kaplan–Meier survival curves with log-rank tests for DFS between patients with different levels of CD4 (a), PD-1 (b), Gal-9 on TC (c), and CD8 (d). 
Abbreviations: DFS, disease-free survival; HR, hazard ratio; TC, tumor cell; CD4, cluster of differentiation 4; CD8, cluster of differentiation 8; PD-1, programmed 
death-1; Gal-9, galectin-9.
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However, as for OS, CD4 was a more important pre-
dictive biomarker than the rest of protein or combina-
tional proteins (Figure 5a). Additionally, the predictive 
performance of CD4 (1-y OS: F1-score = 0.679 ± 0.105; 
AUC = 0.663 ± 0.099; 3-y OS: F1-score = 0.678 ± 0.105, 
AUC = 0.678 ± 0.093) and the combinational model 
of CD4, PD-1 on TILs, HLA on TILs, and Gal-9 on TILs 
(F1-score = 0.650 ± 0.128; AUC=0.651 ± 0.095; 3-y OS: 
F1-score = 0.653 ± 0.104, AUC=0.664±0.087) did not 
present any significantly difference (Figures 5(b,c)). 
When it comes to 5-y OS, CD4 (5-y OS: F1-score 
= 0.635 ± 0.106, AUC = 0.601 ± 0.082) presented 
a more accurate prediction than the combinational 
model (5-y OS: F1-score = 0.584 ± 0.124, AUC = 0.605 
± 0.090) and other single variables (Figure 5d). Like the 
combinational model for DFS, the higher expression 
level of CD4 tended to predictive a better OS in 
different TNM-stages, but without a significant difference, 
due to the limited size of patients’ number (Figs. S2A- 
S2C).

Immune risk models assist TNM-Stage in predicting DFS 
and OS
As the combination of CD4, PD-1 on TILs, and Gal-9 on TCs 
demonstrated the best effectiveness for DFS prediction, we 
applied this combinational immune system to the TNM-stage, 
which could significantly improve the predictive ability of the 
TNM-stage (Figures 6(a,b)). The F1-score of the TNM-Immune 
system (TNM-stage + the combination of CD4, PD-1 on TILs, 
and Gal-9 on TCs) for 1-y (0.840 ± 0.138 vs. 0.681±0.087, P < 
0.001), 3-y (0.844 ± 0.069 vs. 0.620±0.128, P < 0.001), and 
5-y DFS (0.664 ± 0.069 vs. 0.590±0.107, P < 0.001) were far 
ahead of the TNM-stage alone (Figure 6a). The AUC values of 
1-y (TNM-Immune vs. TNM: 0.847 ± 0.087 vs. 0.756 ± 0.082, 
P < 0.001), 3-y (TNM-Immune vs. TNM: 0.844 ± 0.065 vs. 0.721 
± 0.073, P <0.001), but 5-y DFS (TNM-Immune vs. TNM: 0.678 
± 0.074 vs. 0.693 ± 0.063, P = 0.1421) also demonstrated a similar 
comparative result (Figure 6b). These results demonstrated 
a potential risk model based on the expression level of CD4, 
PD-1 on TILs, and GAL-9 on TCs, which could assist the TNM- 
Stage to risk-stratify recurrence and metastasis for PSC patients.

Figure 3. Kaplan–Meier survival curves with log-rank tests for OS between patients with different levels of CD4 (a), PD-1 (b), Gal-9 on TIL (c), HLA on TIL (d). 
Abbreviations: OS, overall survival; HR, hazard ratio; TC, tumor cell; CD4, cluster of differentiation 4; PD-1, programmed death-1; Gal-9, galectin-9; HLA, human 
leukocyte antigen.
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For OS, CD4, and the combination of CD4, PD-1 on TILs, 
Gal-9 on TILs, and HLA on TILs demonstrated evenly good 
performance. Thus, we supplemented both CD4 alone and the 
combination of four proteins to the TNM-stage, respectively. 
CD4 demonstrated a slightly stronger auxiliary function to the 
TNM-stage than the 4-protein combination in 1-y (F1-score: 
CD4 vs. CD4+TNM vs. 4-protein combination + TNM, 0.550 
± 0.162 vs. 0.589 ± 0.141 vs. 0.587 ± 0.140) and 2-y OS (F1- 
score: CD4 vs. CD4+TNM vs. 4-protein combination + TNM, 
0.524 ± 0.127 vs. 0.625 ± 0.130 vs. 0.613 ± 0.119; AUC: CD4 vs. 
CD4+TNM vs. 4-protein combination + TNM, 0.619 ± 0.086 
vs. 0.641 ± 0.097 vs. 0.650 ± 0.087) prediction (Figures 6(c,d)). 
Considering the simplicity of the model, CD4 could be con-
sidered a single predominant marker to be supplemented to the 
regular TNM-stage for OS risk-stratification.

Enriched pathways differed with expression levels of 
immune-related proteins

Since the combination of CD4, PD-1, and Gal-9 exhibited 
significant prognostic values on recurrence and survival 

with the robust predictive ability for DFS, we explored 
the biological pathway that contributed to the level of 
these three molecules by GESA analysis. Here we applied 
the transcriptome gene expression of 14 PSC tissues from 
GSE110205 to GESA analysis and classified these 14 sam-
ples into two groups: low expression level (none or one 
high of CD4, PDCD1, and LGALS9) and high expression 
(two or three high of CD4, PDCD1, and LGALS9). Most 
clinical factors did not correlate to these gene expression 
(Figs. S3-S5). The expression levels of CD4 and LGALS9 
in elder patients were significantly higher than those in 
younger patients (Figs. S3A and S4A), while the expres-
sion level of CD4 was higher in T-stage 1-2 than that in 
T-stage 3-4 (FigureS3C). A total of 3323 gene sets were 
upgraded in the high expression group, and 1975 gene sets 
were upregulated in the low expression group. Four most 
enriched Gene Ontology (GO) pathways were screen out 
with the highest normalized enrichment score (NES) 
among those with an enrichment score (ES)>0.6, a false 
discovery rate (FDR) <0.25, and a nominal P value <0.05, 
which were “regulation of alpha-beta T cell activation,” 
“non-membrane spanning protein tyrosine kinase 

Figure 4. The performance of immune-based risk models for DFS. (a) The rank of relative importance of Gal-9 on TC, CD4, and PD-1 for DFS according to the random 
forest. The F1-score and AUC of CD4, PD-1, Gal-9, and the combination of the three proteins for 1 y- (b), 3-y (c), and 5-y DFS (d). The heights of the columns represent the 
average of 100 testing groups, and vertical lines represent the standard error of mean (SEM) of 100 testing groups. ***P < 0.001. Abbreviations: DFS, disease-free 
survival; HR, hazard ratio; TNM, tumor, nodes, and metastasis; TC, tumor cell; CD4, cluster of differentiation 4; PD-1, programmed death-1; Gal-9, galectin-9; AUC, areas 
under time-dependent receiver-operating characteristic curves.
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activity,” “positive regulation of cell adhesion mediated by 
integrin,” and “T cell migration” (Figure 7a). Ten genes 
were overlapped among these four pathways (Figure 7b), 
and two genes (SYK and ZAP70) co-occurred in three 
pathways.

Further, 27 significant pathways were selected with 
FDR<0.01 and nominal P value <0.0001. The Cytoscape 
revealed that most of these pathways (22/27) demonstrated 
a considerable similarity among each other (edge cut-
off>0.5; Fig. S6A). Among the 115 genes enriched in the 
high expression or low expression group (ES>0.6 or ES< 
−0.6), five genes (NECAB2, GSDMC, NEDD9, RASGEF1B, 
and RTKN2) were also DEGs between 14 PSC tissues and 
three normal lung parenchyma tissues (Figures 7(c,d)). 
NECAB2 was the gene that was more enriched in the 
low expression groups and significantly downregulated in 
the normal lung parenchyma, which could be a potential 
therapeutic target. Besides, according to the leading-edge 
analysis, the number of occurrences peaked at the range of 
Jaccard values of 0.02-0.04 and 0.06-0.08 (Fig. S6B).

The prognostic immune-related proteins were associated 
with immune infiltration landscapes
To make a thorough inquiry of the mechanism of how CD4, 
PD-1, and Gal-9 correlated to the prognosis, we analyzed the 
difference of immune infiltration status of 14 PSC tissues from 
GSE110205 via ImmuCellAI. The level of CD4 was negatively 
related to the infiltration of neutrophils (P = 0.015; Fig. S7A), 
while PDCD1 was positively correlated with exhausted T cells 
(Texs; P = 0.02) and induced regulatory T cells (iTregs; P = 
0.021; Fig. S7B). Meanwhile, the higher level of LGALS9 
boosted the infiltration of dendritic cells (DCs; P = 0.021; Fig. 
S7C). All these different immune infiltration landscapes can 
rationalize our conclusions on the prognostic effects of these 
single immune-related proteins.

As for the combinational effect of CD4, PD-1, and Gal-9, we 
analyzed the immune infiltration landscapes of the low expres-
sion group and high expression group of CD4, PDCD1, and 
LGALS9 by CIBERSORT. The PSC samples with a P value 
<0.05 from GSE110205 and their immune infiltration land-
scape are shown in Figure 8a. Most of the infiltrated immune 

Figure 5. The performance of immune-based risk models for OS. (a) The rank of relative importance of Gal-9 on TIL, HLA on TIL, CD4, and PD-1 for OS according to 
the random forest. The F1-score and AUC of CD4, PD-1, Gal-9 on TIL, HLA on TIL, and the combination of the four proteins for 1 y- (b), 3-y (c), and 5-y OS (d). The heights 
of the columns represent the average of 100 testing groups, and vertical lines represent the standard error of mean (SEM) of 100 testing groups. *P < 0.05; **P < 0.01; 
***P < 0.001; ns, not significant. Abbreviations: OS, overall survival; HR, hazard ratio; TIL, tumor-infiltrating lymphocyte; CD4, cluster of differentiation 4; PD-1, 
programmed death-1; Gal-9, galectin-9; HLA, human leukocyte antigen; AUC, areas under time-dependent receiver-operating characteristic curves.
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cells represented a moderate correlation with each other, espe-
cially M0-macrophages and resting NK cells (correlation coef-
ficient = 0.89), eosinophils, and activated dendritic cells 

(correlation coefficient = 0.90), and follicular T helper cells 
and CD4+ resting memory T cells (correlation coefficient = 
−0.81; Figure S8). Among all samples, the high expression 

Figure 6. The improvement brought by the immune-based models to the TNM-Stage for the F1-Score (a) and AUC (b) of DFS predictions, and for the F1- 
Score (c) and AUC (d) of OS predictions. The heights of the columns represent the average of 100 testing groups, and dots represent the standard error (SE) of 100 
testing groups. ***P < 0.001; ns, not significant. Abbreviations: OS, overall survival; DFS, disease-free survival; TC, tumor cell; TNM, tumor, nodes, and metastasis; CD4, 
cluster of differentiation 4; PD-1, programmed death-1; Gal-9, galectin-9; AUC, areas under time-dependent receiver-operating characteristic curve.

Figure 7. The enriched pathways and genes in the samples with a high level of CD4, PDCD1, and LAGLS9 by GESA. (a) The top four significant enrichment plots 
in samples with a high level of CD4, PDCD1, and LGALS9, compared with those in a low expression. (b) The heatmap of the overlap between subsets: the darker the 
color, the greater the overlap between the subsets. (c) The volcano map of the genes enriched in the group with high expression of CD4, PDCD1, and LGALS9 (ES>0.6 or 
ES<-0.6). The red dots and blue present the genes significantly downgraded and upgraded in the PSC samples compared with normal tissues, respectively (FDR<0.05, 
log2|fold change|>1). (d) The mRNA level of five DEGs between PSC and normal tissues. *P < 0.05. Abbreviations: GESA, Gene Set Enrichment Analysis; FDR, false 
discovery rate; RPM, reads of exon model per million mapped reads; DEGs, differentially expressed genes; ES, enriched score.
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group (two or three high of CD4, PDCD1, and LGALS9) 
tended to be infiltrated with more M1-type macrophages 
(P <0.05) than the low expression group (none or one high of 
CD4, PDCD1, and LGALS9) (Figure 8b). In conclusion, 
recruiting more M1-type macrophages into the PSC microen-
vironment might be a promising immunotherapeutic 
direction.

Discussion

In this study, we illustrated the expression status of nine 
immune-related proteins in PSC and clarify their effect on 
patients’ prognosis. Among these proteins, CD4, Gal-9 on 
TCs were independently positive biomarkers for DFS, while 
CD4, Gal-9 on TILs, and HLA on TILs were significant 

protective factors for OS. Meanwhile, PD-1 was 
a significant risk factor for both DFS and OS, and the com-
bination of PD-1, CD4, and Gal-9 on TC even demonstrated 
a dramatic stratification ability for DFS in the subgroup 
analysis of stage-II. Further, risk models based on these 
independent factors were conducted by random forests, 
where the combination of CD4, PD-1 on TILs, and Gal-9 
on TC was the one with the best performance for DFS, and 
CD4 was the most concise but vital model for OS. Moreover, 
these two models brought a dramatic improvement to the 
predictive ability of the TNM-stage for DFS and OS, which 
indicated the potential of building a TNM-Immune system in 
PSC. Additionally, the bioinformatics analysis on the RNA 
sequencing from public data validated the single parameter. 
The combination of CD4, PD-1, and Gal-9 presented 
a substantial impact on the PSC microenvironment, which 

Figure 8. The landscapes of immune infiltration of the two groups with the low and high expression of CD4, PDCD1, LGALS9. (a) The stacked histogram of the 
proportion of 22 types of cells in ten PSC tissues with a P value<0.05 according to CIBERSORT. (b) The comparison of the percentage of each cell between the two groups 
in all samples. The black dots in the violins represent the mean of the group, and the vertical lines represent the standard of error (SE). *P < 0.05; ns, not significant. 
Abbreviations: PSC, pulmonary sarcomatoid carcinoma.

ONCOIMMUNOLOGY e1947665-11



could both explain our results and provide an idea for future 
immunotherapeutic targets.

Based on the Cox regression and survival analysis, CD4, 
Gal-9, and HLA were protective proteins for DFS or OS, con-
sistent with our previous findings in LUAD, LUSC,9,11 and 
small cell lung cancer (SCLC),28 or other pan-cancer 
studies29–32 . As a member of β-galactosidase-binding animal 
lectins, Gal-9 has been reported to involve in enhanced CD8+ 
T-cell-mediated anti-tumor immunity,33 boosted interferon- 
gamma (IFN-γ) production,33 and competitively blockade of 
other immunosuppressive pathways mediated by TIM-334. 
HLA-II is an indispensable component for CD4+ T cell activa-
tion and has been validated to upgrade immune-mediated 
tumor rejection in vivo.35 The higher expression of HLA is 
associated with a higher number of CD4+ and CD8+ TILs, 
which indicates a hot tumor or a better response to ICIs.35,36 

These mechanisms and conclusions are in line with our results 
and have been confirmed in PSC in this study.

CD3 and HLA are the general markers of total T cells, 
including CD8+ cytotoxic T lymphocytes (CTLs),37 CD4+ 

helper T cells,38 NKTs,39 Foxp3+Tregs,40 and exhausted 
T cells.39 Considering the diametrically opposed immunomo-
dulatory effect between effector/helper T cells with Tregs, the 
expression level of CD3 or HLA might not be an ideal marker 
for immune activity. As for CD8+ T cells, they have been 
reported to kill tumor cells via secreting cytotoxic molecules, 
such as granzymes, perforin, and IFN-γ.41 In this study, CD8 
played a marginable significant role in DFS (P = 0.061), and the 
Kaplan–Meier plot indicated that the DFS time could be stra-
tified by the level of CD8 (Figure 2d). Thus, the statistical 
analysis of CD8 in this study did not achieve the threshold of 
P < 0.05 could be attributed to the limited number of patients.

In this study, we chose the combination of CD4, PD-1 on 
TILs, and Gal-9 on TCs, to establish a predictive model for 
DFS, and screened out CD4 as the best risk-stratification para-
meter for OS. These immune-based prognostic models could 
further improve the stratification ability of the TNM-stage, 
which is similar to the TNM-Immune system first proposed 
in colon cancers.42 TNM-iImmune system, a combination of 
TNM-stage and the score immune cell infiltration or immune- 
related proteins based on IHC, has the potential to predict the 
immunotherapeutic response and has been widely explored in 
other NSCLCs.43–45 However, no TNM-Immune system has 
been established in PSC due to the rare resected samples. Thus, 
this is an originally predictive TNM-Immune system proposed 
in PSC, which is expected to assist clinicians in treatment 
decisions with future large-scale validation.

GSEA analysis revealed that the four pathways, “regulation 
of alpha-beta T cell activation,” “non-membrane spanning 
protein tyrosine kinase activity,” “positive regulation of cell 
adhesion mediated by integrin,” and “T cell migration,” were 
enriched in the patients with a higher level of CD4, PDCD1, 
and LGALS9, who might present a better prognosis. Alpha– 
beta T cells are the source of peripheral CD4+ and CD8+ 
T cells after the selection in the thymus,36 and T cell migration 
is vital to the interaction between T cells and antigen- 
presenting cells (APCs),46 which is the core of T cell immune 
responses. The loss of cell adhesion malignant cells has been 
known to assist TCs to degrade the extracellular matrix and 

progress to metastasis.47 Thus, the positive regulation of cell 
adhesion is not conducive to tumor invasion. Although the 
alternation of membrane-spanning tyrosine kinase resulting in 
cancer cell growth and invasion,48 the role of non-membrane 
spanning protein tyrosine kinase in lung cancer is still con-
troversial and not well reported. JAK/STAT pathways have 
been reported as an inhabitation on K-RAS-driven LUAD,49 

while SCR is one of the primary targets for anticancer tyrosine 
kinase inhibitors (TKIs) .50 Thus, how non-membrane span-
ning protein tyrosine kinase activity impacts PSC progression 
is worthy of future attention and exploration. Moreover, 
NECAB2 was the gene enriched in the PSC with higher levels 
of CD4, PDCD1, and LGALS9 and significantly downgraded in 
normal tissues. NECAB2 is a Ca2+ binding protein predomi-
nantly expressed in brain and cancer cells, including lung 
cancer cells.51 Although the correlation between NECAB2 
with lung cancer is unknown, its homologous protein, 
NECAB3, could reduce the level of hypoxia-inducible factor- 
1 (HIF-1), which is a critical pathway for glycolysis in cancer 
cells.51 Thus, NECAB2 is expected to be a potential therapeutic 
target for PSC with future studies of relevant mechanisms.

Further, CD4, PDCD1, LGALS9, and their combination 
have a critical role in tumor microenvironment components. 
PDCD1 and LGALS9 were positive related to iTregs/Texs and 
DCs, respectively, while CD4 was negatively correlated with 
neutrophils. Meanwhile, a high level of the combination of 
CD4, PDCD1, and LGALS9 indicated a higher infiltration of 
M1-type tumor-associated macrophages (TAMs). The negative 
correlation between CD4 and tumor-associated neutrophils 
(TANs) has been proved in lung cancer that TANs highly 
expressed myeloperoxidase (MPO) and factor associated with 
factor associated with suicide (Fas)/factor associated with sui-
cide ligand (FasL) forming a TANs-mediated inhabitation of 
CD4+ T cells.52 Thus, TANs have been deemed as a prognostic 
index for poor survival in multiple human cancers.53–55 The 
previous mouse model revealed that Gal-9 increased the num-
ber of T cell immunoglobulin and mucin domain-containing 
protein 3+ (TIM3+) CD86+ mature DCs in vivo and in vitro,56 

which could vigorously promote anticancer immunity.57 

Furthermore, the PSC with a combinational level of CD4, 
PD-1, and Gal-9 was infiltrated with more M1-type TAMs, 
which was more attributed to CD4 and PD-1 than Gal-9. 
A cognate interaction between CD4+ Th1 cells and TAMs 
could polarize macrophages to M1 rather than M258, and 
increased M1-type TAMs with reduced M2-type TAMs were 
observed with the blockade of PD-159. Taken together, our 
conclusions are in line with previous observations and revealed 
novel combinational immunotherapeutic targets in PSC, such 
as blocking the infiltration of M2-TAMs and TANs.

Considering the suppressive effect of tumor-associated innate 
immune cells on anti-tumor immunity, the blockade of innate 
immune checkpoints has been proposed. CD47 and CD24 are 
two innate immune checkpoints in the spotlight. A research team 
from Stanford revealed that the combination of CD47 on TC and 
signal-regulatory protein α (SIRPα) on macrophages could dra-
matically weaken the phagocytic ability of macrophages.60–66 The 
inhibition of the CD47-SIRPα pathway reduced the tumor 
growth by enhancing the killing effect of innate immunity and 
has been applied in multiple cancers preclinically.63–66 
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Meanwhile, CD24 was another novel checkpoint on TCs, which 
could specifically combine with sialic-acid-binding Ig-like lectin 
10 (Siglec-10) on macrophages.67 The CD24-Siglec-10 pathway 
negatively regulates the danger-associated molecular patterns 
(DAMPs) signaling,68 which is essential for recruiting inflamma-
tory macrophages. Interestingly, the expression of CD24 signifi-
cantly increased with the inhabitation of CD4767. Thus, the 
inhibition of CD47 and (or) CD24 should be the focus of future 
PSC innate immunotherapy research.

This study remained several limitations. First, the number 
of patients included in this study was relatively small, which 
might lead to the marginal significance of CD8 in DFS. 
Although bootstrap resampling and cross validation have 
been performed to minimize the offset, relevant conclusions 
need to be verified in future larger studies. Second, the primary 
research method used of this study was single IHC, which 
cannot visually demonstrate the co-expression of immune- 
related proteins. Due to the limited number of samples in 
this retrospective study, there is no condition for the continued 
implementation of immunofluorescence. Therefore, future 
prospective studies were essential to reveal the co-expression 
of these immune-related proteins. Third, the subtypes of 
pathology among these PSC patients were missing, due to the 
retrospective study design. Meanwhile, the analysis on differ-
ences of staining between the sarcomatous and non- 
sarcomatous portions was absent. Further, the scarce incidence 
of PSC results in little information in public datasets. Thus, we 
did not realize the validation of the above proteins and risk 
models on PSC patients’ survival from public datasets.

In conclusion, we explored the expression level of nine 
immune proteins in PSC tissues and revealed their relationship 
to OS and DFS. Meanwhile, this study established a risk model 
for DFS based on the combination of CD4, PD-1 on TILs, and 
Gal-9 on TCs, and confirmed that CD4 was the most optimized 
predictive parameter for OS, both of which could further 
improve the performance of the TNM-stage. The transcrip-
tome analysis of related proteins from public datasets further 
validated and revealed these risk models.
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