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Acute myocardial infarction and ischemic stroke are leading causes of morbidity and

mortality worldwide. Although reperfusion therapies have greatly improved the outcomes

of patients with these conditions, many patients die or are severely disabled despite

complete reperfusion. It is therefore important to identify interventions that can prevent

progression to ischemic necrosis and limit ischemia-reperfusion injury. A possible strategy

is ischemic conditioning, which consists of inducing ischemia – either in the ischemic

organ or in another body site [i.e., remote ischemic conditioning (RIC), e.g., by inflating

a cuff around the patient’s arm or leg]. The effects of ischemic conditioning have

been studied, alone or in combination with revascularization techniques. Based on

the timing (before, during, or after ischemia), RIC is classified as pre-, per-/peri-, or

post-conditioning, respectively. In this review, we first highlight some pathophysiological

and clinical similarities and differences between cardiac and cerebral ischemia. We report

evidence that RIC reduces circulating biomarkers of myocardial necrosis, infarct size,

and edema, although this effect appears not to translate into a better prognosis. We

then review cutting-edge applications of RIC for the treatment of ischemic stroke. We

also highlight that, although RIC is a safe procedure that can easily be implemented

in hospital and pre-hospital settings, its efficacy in patients with ischemic stroke

remains to be proven. We then discuss possible methodological issues of previous

studies. We finish by highlighting some perspectives for future research, aimed at

increasing the efficacy of ischemic conditioning for improving tissue protection and clinical

outcomes, and stratifying myocardial infarction and brain ischemia patients to enhance

treatment feasibility.
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INTRODUCTION

Myocardial infarction (MI) and ischemic stroke are leading
causes of morbidity and mortality (1, 2). Both conditions have
an acute onset and are due to blood vessel occlusion leading to a
certain extent of ischemic necrosis.

MI usually follows thrombotic occlusion of a coronary
artery due to a vulnerable plaque rupture. Ischemia-dependent
mitochondrial and metabolic alterations lead to systolic function
depression and, when persistent, to cardiomyocyte necrosis
followed by tissue scarring (3). Similarly, ischemic stroke results
from a lack of blood flow to the brain, which reduces oxygen,
glucose and nutrient supply, as well as, secondarily, catabolite
removal. Blood deprivation is typically caused by large artery
atherosclerosis, cardiac embolic events, small vessel occlusion, or
stroke of other etiologies (4).

In cardiac, as in brain ischemia, there is a clear major
effect of early restoration of blood flow through reperfusion
therapies on outcomes. These include pharmacologic (i.e.,
fibrinolytic therapy) or mechanical interventions, namely
primary percutaneous coronary intervention (PPCI) or
endovascular thrombectomy. More than 90% of MI patients
receive reperfusion therapy against ∼10% of acute ischemic
stroke patients (5). Among the factors that account for this
difference, the different time windows from symptom onset for
beneficial reperfusion treatment should be taken in account.
These are usually<12 h (or between 12 and 48 h in some patients
with persisting symptoms) for fibrinolytic therapy for ST-
segment elevation MI (STEMI), 4.5 h (9 h in some patients with
radiological signs of salvageable brain tissue) for thrombolysis
of brain ischemia, and <24 h for mechanical thrombectomy in
brain ischemia. Furthermore, an arterial occlusive thrombus
accessible to catheter-based intervention is found in about 90%
of MI patient, but only about half of computed tomography (CT)
angiograms performed for acute ischemic stroke (5). Indeed,
while there are few contraindications to coronary catheter-based
interventions, reperfusion therapies for ischemic stroke are
absolutely contraindicated if there is intracranial bleeding or
advanced ischemia. Another reason possibly accounting for the
difference in the percentage of patients that receive reperfusion
therapy between ischemic stroke and MI may be that time to
treatment is often longer in the former condition (6). Finally,
biomarkers of brain ischemia are missing (while troponins
are widely used in cardiovascular medicine), and neurological
diagnostic methods [CT or magnetic resonance imaging
(MRI)] are expensive, time-consuming, and not routinely
performed outside hospital or at the bedside (contrary to an
electrocardiogram) (5), although technological advances (such
as mobile CT or bedside MRI) may change this (7, 8).

Patients with MI or ischemic stroke who receive successful

reperfusion therapies are still exposed to certain risks, as
reperfusion itself is an important determinant of end-organ

damage. Indeed, ischemia triggers a vicious cycle of cell death,
inflammation, and oxidative stress, which is perpetuated by
reperfusion andmay increase the extent of infarction in otherwise
viable brain or cardiac tissue (9, 10), also in association
with cerebral edema and blood–brain barrier disruption (11).

Reperfusion injury is much more common and more often leads
to hemorrhagic transformation in brain infarct than MI (5).
Intracranial hemorrhage exposes the patient to life-threatening
intracranial hypertension, with the risk of brain herniation (5).

The risk of these detrimental effects is usually counterbalanced
by the fact that reperfusion therapies can save the border (or
marginal) zone of MI or the ischemic penumbra in ischemic
stroke, if administered promptly. The border zone (or penumbra
in ischemic stroke) is the salvageable tissue around the ischemic
core, in which reduced blood flow causes loss of cell function
with normal structural morphology, before irreversible damage,
which occurs instead in the ischemic core (12, 13). However,
the recanalization rate with thrombolysis in brain ischemia is
lower than with endovascular thrombectomy (14). Penumbral
salvage becomes more likely with endovascular thrombectomy,
which considerably improves clinical outcomes. Despite this,
only about half of successful thrombectomies lead to patients’
functional independence (15), mainly because the ischemic core
is already too large at the time of recanalization. This may
partially explain why most stroke patients are still disabled 3
months after treatment (15). As for MI patients, despite the
fact that timely PPCI is associated with better outcomes than
fibrinolysis, a significant number of patients with reperfused
STEMI display the no-reflow phenomenon, which predicts a
worse outcome, specifically a greater risk of ventricular wall
rupture and arrhythmias, adverse ventricular remodeling with
heart failure development, and cardiac death (3).

Reducing the burden of cardiac and cerebral ischemia-related
death disability requires the identification of interventions able
to “freeze the penumbra,” i.e., prevent the growth of the necrotic
ischemic core until partial or complete reperfusion, as well
as techniques to protect the ischemic tissue from subsequent
reperfusion injury (12, 13, 16). However, interventions that aim
to improve ischemic stroke and MI prognosis have, so far,
shown an inconsistent benefit (17–20). Alternative cytoprotective
strategies are being studied (21), but strong evidence on the
efficacy of any proposed mechanism is lacking.

An interesting paradigm may be ischemic conditioning
(22), first described in 1986 by Murry et al. (23) in
the setting of experimental MI. In ischemic conditioning,
transient, intermittent ischemia without necrosis is induced
either in the organ undergoing spontaneous ischemia (i.e.,
conventional conditioning), or at a distance from the affected
organ [i.e., indirect or remote ischemic conditioning (RIC)].
According to the timing of the intervention (before, during,
or after ischemia), remote ischemic pre-, per-/peri-, and post-
conditioning, respectively, can be defined. Pre-conditioning has
been defined as “an adaptive process of endogenous protection
in which small, sublethal doses of a harmful agent protect the
organism against a later lethal dose of the same agent” (24). In the
settings of acute MI and ischemic stroke, per- or post-ischemic
conditioning is more easily realized. This can be achieved by
the application of an inflatable cuff around the patient’s arm
or leg (22). After extensive evaluation in the field of cardiac
ischemia, the paradigm of RIC has recently been translated to
ischemic stroke (20), and seems to apply to other organs and
tissues. Plasma dialysate obtained from animals and humans
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treated with RIC has been shown to reduce MI size after ligation
of a coronary artery and subsequent reperfusion in isolated
heart preparations (25, 26), indicating that the effect may be
mediated (at least partially) by humoral substances released from
the tissues exposed to intermittent ischemia. In animal models,
remote ischemic pre- and post-conditioning have been shown to
reduce MI size and biomarkers of myocardial necrosis (27–29).
Similarly, in rat models of middle cerebral artery occlusion, brain
infarct size was reduced by remote pre-conditioning (30).

This review aims to discuss the existing clinical evidence
on RIC in brain and myocardial ischemia. We will first of all
synthetically recapitulate potential mechanisms of RIC, then
discuss main clinical findings in MI, first, and in ischemic stroke,
then, highlight the differences and similarities, as well as future
perspectives and therapeutic implications.

PUTATIVE MECHANISMS MEDIATING
PRE-, PER-, AND POST-RIC EFFECTS IN
PRE-CLINICAL MODELS

The exact mechanisms of this remote organ protection from
ischemia are unknown and could differ between pre-, per-, and
post-conditioning. While it is beyond the scope of this review
to detail all putative mechanisms, we will briefly recapitulate
the main ones in the paragraphs that follow and in Figure 1.
For further details on potential cardioprotective mechanisms,
please see Aimo et al. (31), while, for further details on putative
neuroprotective mechanisms, please see reviews by Basalay
et al. and Chen et al. (26, 32). Of note, more mechanisms
may be involved at the same time, and they may be more
or less important depending on the setting of pre-, per
or post-conditioning. Further investigations of the protective
mechanisms of RIC are needed to aid a safe and effective
translation to clinical practice. Muscle ischemia may release
autocoids (e.g. bradykinin, opioids or adenosine), which might
enter the systemic circulation (humoral hypothesis), or locally
activate somatic nerve afferents (neural hypothesis). Supporting
the neural hypothesis, in several preclinical models of brain
infarction peripheral nerve block (either pharmacological or
by resection) reduced or abolished RIC neuroprotective effects
(30). Further, RIC-dependent vagal nerve activation may have
an anti-inflammatory effect mediated by the spleen and liver
via the cholinergic anti-inflammatory signaling (24). However,
while it is logical to think that protective biomarkers that
may be generated by RIC are directly available for the cardiac
tissue, it is far from clear whether such molecules can cross
the blood-brain barrier and reach the cerebral tissue. Most of
the pathways activated by RIC are believed to ultimately affect
the mitochondria, preventing for example the formation of the
mitochondrial permeability transition pore (MPTP) or leading
to the cytoprotective nitrosylation of key mitochondrial proteins,
such as those forming complex I and complex IV. This could
reduce the generation of mitochondrial reactive oxygen species.
Finally, it ought to be noted that RIC has been shown to improve
cardiac function, which, in turn, is positively correlated with

FIGURE 1 | Main mechanisms of remote ischemic conditioning (RIC). RIC can

be performed before (pre-RIC), during (per-RIC), or after (post-RIC) an

ischemic event (ischemic stroke or myocardial infarction). RIC effects are

mostly mediated by humoral signaling, neural pathways, or modulation of

systemic immune system. These different pathways generate many effects

that have different importance in the setting of myocardial infarction (red, on

the right) or ischemic stroke (yellow, on the left), while some effects are likely of

similar importance in both conditions (in the white area in the middle). While

the same mechanisms may have different importance before, during or after

an ischemic event, there is not enough literature to attribute each mechanism

to a certain phase only. Upward blue arrows indicated increase and

enhancement, while downward black arrows indicate reduction and inhibition.

cerebral blood flux, and could therefore represent yet another
mediator of RIC-neuroprotective effects (33).

Putative Mechanisms Mediating Pre- and
Per-RIC Effects in Myocardial Infarction
The effects of pre-RIC-induced cardioprotection may be
mediated by humoral factors acting through the systemic
circulation (e.g., stromal cell-derived factor-1, interleukin-10,
microRNA 144, and nitrite, which, for example, may favor
vasodilation); by nervous reflexes or neurogenic transmission,
through the autonomic fibers activated by, for example,
adenosine or bradykinin (26, 31), or, as mentioned, by the effects
on circulating immune cells (e.g., inhibition of leucocyte CD11b
expression and a reduced number of cardiac macrophages and
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neutrophils), reducing inflammation, apoptosis, and oxidative
stress (22, 24).

Per-RIC mechanisms are probably similar to pre-RIC ones,
comprising humoral and neural autonomic pathways and vagal
nerve activation (enhancing the sympathovagal balance), as well
as inflammatory modulation (22, 24, 26, 31).

Putative Mechanisms Mediating Post-RIC
Effects in Myocardial Infarction
Contrary to pre- and per-RIC mechanisms, post-RIC effects
do not seem to be mediated by vagal activation and the
aforementioned humoral factors are likely to play a predominant
role in reducing inflammation and apoptosis (26, 31).

Putative Mechanisms Mediating Pre- and
Per-RIC Effects in Ischemic Stroke
Pre-RICmay have neuro- and cardio- protective effects, reducing
the damage of ensuing ischemia. These effects are believed to be
mediatedmainly by increase of cerebral blood probably mediated
by induction of nitric oxide synthase (24) and reduction of
inflammation (e.g., inhibition of leucocyte CD11b expression
and a reduced number of cardiac macrophages and neutrophils)
(22, 24), which is detrimental for ischemic tissue. This anti-
inflammatory action may also be mediated by vagal nerve
activation triggered by RIC.

In any case, at local levels, pre-RIC-induced neuroprotection
has been found to depend on inhibition of inflammatory
response and apoptosis in animal models of brain ischemia
(34, 35).

Per-RIC effects are likely mediated by an increase of cerebral
blood flow (24). Nitric oxide in particular may play an important
role in enhancing cerebral blood flow, as it has been shown
in animal models of ischemic pre- and per-conditioning (36).
As pre-RIC, also per-RIC has been shown in animal models of
brain ischemia to reduce ischemia-reperfusion-injury decreasing
infarct size, brain edema and neurological deficit scores,
through inhibition of pro-inflammatory signals, in particular the
TLR4/NF-κ pathway (37).

Putative Mechanisms Mediating Post-RIC
Effects in Ischemic Stroke
Post-RIC effects may be, at least in part, mediated by endogenous
neuroprotective and neurorepairing responses, such as increased
local production of neuronal nitric oxide synthase (38), BDNF or
endogenous opioids in the central nervous system, or stimulation
of cerebral angiogenesis and inhibition of oxidative stress and
inflammatory responses, possibly through vagal nerve activation
(39). Speculatively, it might be hypothesized that vagal nerve
activation modulates cerebral excitability, and this effect might
play a role in improving recovery, but further research is needed
on this point. Other potential mechanisms mediating post-
RIC neuroprotection involve inhibition of apoptotic signals,
alleviation of cerebral edema and enhancement of blood-brain
barrier and neurovascular unit integrity (39).

REMOTE ISCHEMIC CONDITIONING IN
MYOCARDIAL INFARCTION

Building on the experimental results mentioned in the
introduction, several studies have tested RIC in patients
with STEMI. In these studies, RIC is delivered together with
PPCI. Both peri- and post-ischemic conditioning, generally
induced by four 5-min cycles of limb cuff inflation and deflation,
were found to reduce the release of creatinine kinase-MB (CK-
MB) (41) and high-sensitivity troponin T at different timepoints
(42, 43), as well as infarct size (41, 44), microvascular obstruction
(44), edema (41), and other markers of myocardial salvage (45).
Also, peri-ischemic conditioning (four 5-min cycles of upper
arm cuff inflation to 200 mmHg and deflation) associated with
thrombolysis for STEMI reduced enzymatic markers of MI (46).
In another study of 333 patients with suspected first acute MI
undergoing PPCI, peri-ischemic conditioning with four cycles
of 5-min inflations and deflations of a blood-pressure cuff had
no effect on troponin T release nor infarct size (21). However,
peri-ischemic conditioning improved myocardial salvage index,
calculated as (area at risk–final infarct size)/area at risk (21).
A randomized controlled trial of 151 STEMI patients did not
find any additive effect of local ischemic post-conditioning (four
cycles of 1-min inflations and 1-min deflations of the angioplasty
balloon) to remote ischemic per-conditioning (three cycles
of 5-min inflations to 200 mmHg and 5-min deflations of an
upper-arm cuff) (47). The latter alone or the two combined had
a similar effect in reducing peak CK-MB, the ratio of CK-MB
area under the curve to myocardial area at risk, and the ratio
of peak CK-MB to the area at risk (47). However, differences in
CK-MB area under the curve between control, per-conditioning
alone, and per-conditioning with post-conditioning were not
statistically significant (47).

While these and other small randomized controlled trials
have shown that RIC in addition to reperfusion therapies
may blunt the release of myocardial necrosis enzymes and
infarct size, or improve myocardial salvage in STEMI patients,
results are heterogenous, and different biomarkers gave positive
results in different studies. Furthermore, the aforementioned
studies do not prove that RIC can improve clinical endpoints,
such as mortality or heart failure. Other studies have tried to
answer such questions, evaluating the effect of RIC on clinical
outcomes in STEMI patients undergoing PPCI. A prospective
randomized trial of 696 acute STEMI patients found that
combined remote ischemic per-conditioning (three cycles of
inflation of an upper-arm cuff for 5min followed by deflation
for 5min) and post-conditioning (four cycles of 30-s balloon
occlusions followed by 30 s of reperfusion) in addition to
PPCI slightly reduced the rate of major adverse cardiac events
(MACE) and heart failure development at a median of 3.6
years, although the study was not powered for detecting follow-
up clinical outcomes (48). However, post-conditioning alone
did not decrease MACE compared to controls who received
PPCI alone (48). Similarly, two randomized controlled trials
showed that remote ischemic per-conditioning in addition to
PPCI improved long-term clinical outcomes in patients with
STEMI (49, 50). However, these studies had a low statistic power
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and were not designed to prospectively detect differences in
clinical outcomes between patients receiving RIC and controls
(51). Furthermore, none of these trials showed an effect of RIC
on MI size reduction (19, 49–51). On the contrary, a large,
appropriately powered, international, prospective, randomized
controlled trial of 5,401 patients with STEMI who underwent
remote ischemic per-conditioning (three cycles of intermittent
5-min lower limb ischemia) did not find any effects on the
incidence of MACE at 12 months (51). In this study Hausenloy
et al. (51), used the RIC protocol that has been showed to be
the most effective in experimental studies (52). Notably, it has
been hypothesized that RIC might initiate a form of delayed
protection, the clinical benefits of which may not manifest for 2
years or longer (19, 53, 54).

REMOTE ISCHEMIC CONDITIONING IN
ACUTE ISCHEMIC STROKE

As in STEMI, pharmacological neuroprotective therapies for
ischemic stroke have been disappointing (55). RIC has been
shown to be effective in pre-clinical models of acute brain
ischemia, both alone and in combination with revascularization
therapies (56, 57). In humans, patients with transient ischemic
attack (58–60) or peripheral ischemic vascular disease (61) before
ischemic stroke have been proposed as possible “natural” models
of ischemic pre-conditioning. In both of these populations,
subsequent ischemic strokes were attenuated (smaller infarct
volumes and lower disability and mortality), compared to
ischemic stroke patients without clinical history of transient
ischemic attack (58–60) or without peripheral ischemic vascular
disease (61). However, these studies have some limitations, such
as their retrospective design and the challenges of anamnestic
identification of TIA, for instance.

In patients with symptomatic intracranial stenoses, RIC may
reduce recurrent stroke, improve cerebral perfusion (62, 63),
and decrease ischemic brain injury secondary to carotid artery
stenting (64, 65). Nevertheless, evidence of the efficacy of RIC in
acute ischemic stroke is lacking.

According to a recent systematic review (20), six studies
that applied remote ischemic per-conditioning to acute ischemic
stroke patients have been completed and 13 are ongoing. A
marked heterogeneity exists in the number of participants,
inclusion criteria, remote ischemic per-conditioning protocols,
and main endpoints. In most cases, remote ischemic per-
conditioning was applied to an unaffected upper limb, most
often with an automated device, sometimes manually. Remote
ischemic per-conditioning was only initiated in a pre-hospital
setting in three trials (20): REMOTE-CAT, RESIST, and a study
by Hougaard et al. (66).

The safety of RIC for brain ischemia patients undergoing
thrombectomy or thrombolysis has been reported in different
contexts by different groups (62, 64, 67, 68), including in octo-
and non-agenarians (62), in patients with acute ischemic stroke
(68), and in those undergoing thrombectomy (67). In particular,
remote ischemic post-conditioning after thrombolysis has been
investigated in a small, randomized trial in 30 patients (five

5-min cycles of inflation and deflation on the first day after
thrombolysis, and twice each day for 6 consecutive days), which
did not highlight any safety issues (64).

Trials evaluating RIC have mostly focused on surrogate
markers of efficacy, such as neuroimaging findings (e.g.,
brain infarct size or tissue at risk for infarction based on
cerebral perfusion). Alternatively, some studies have focused
on circulating biomarkers. These include putative mediators of
protective mechanisms of RIC [e.g., heat shock proteins, which
have been associated with ischemic tolerance (69)]; markers
of processes known to be detrimental in the course of brain
ischemia, such as inflammatory proteins [e.g., C-reactive protein
(CRP), serum amyloid protein (SAP), or tissue necrosis factor-
α (TNF-α)]; or other possible markers of neuronal degeneration
[e.g., S100B or matrix metalloproteinase-9 (70, 71)]. Thus,
biomarkers have been used to assess the efficacy of a RIC
protocol, either in reproducing the beneficial effects that RIC has
shown in animal models (56), or in limiting inflammation and
neuronal degeneration.

Most biomarkers did not change in patients with acute
brain ischemia undergoing RIC in the RECAST trial (68).
However, a significant increase in heat shock protein-27 and
reductions in SAP and TNF-α levels were measured in patients
undergoing RIC (four cycles of intermittent 5-min upper limb
ischemia and reperfusion) compared to controls (68, 72). These
results are particularly interesting as SAP levels before RIC
displayed a moderate, yet significant correlation with worse
clinical outcomes after brain ischemia, and were significantly
reduced after RIC compared to before the intervention in intra-
subject analyses (72). A decrease in high-sensitivity CRP in
stroke patients undergoing ischemic conditioning has also been
reported in a recent meta-analysis that included 13 clinical trials,
for a total of 794 patients, mainly of Asiatic ethnicity (73).

Pre-hospital manual RIC (four cycles of intermittent 5-min
upper limb ischemia and reperfusion) was found to reduce the
radiological risk of brain tissue infarction in 443 patients (66).
However, no difference in brain infarction volume growth at 24 h
after symptom onset was identified in a multicenter study of 188
carotid ischemic patients who were randomized to lower-limb
in-hospital remote ischemic per-conditioning (four cycles of 5-
min ischemia and reperfusion) after initial MRI in addition to
standard therapy or standard therapy alone (74). Other trials that
are investigating the effect of RIC on radiological biomarkers,
such as brain infarction volume [rtPA-RIC (NCT02886390);
PROTECT I (NCT03915782); REVISE-2 (NCT03045055); RICE
PAC (NCT03152799); REPOST (75)], are planned or ongoing.

Findings on clinical endpoints of RIC for acute ischemic
stroke are evenmore limited. For example, in the aforementioned
trial on 443 ischemic stroke patients by Hougaard et al. (66),
neutral results were found: clinical neurological outcomes did
not differ significantly between patients undergoing pre-hospital
manual RIC and controls. Only four ongoing studies have clinical
endpoints as primary outcomes: REMOTE-CAT, SERIC AIS,
RESIST, and RICAMIS (20).

On the other hand, a metanalysis by Zhao et al. (73) found
that remote ischemic post-conditioning may not only reduce
the risk of recurrent stroke, but also the modified Rankin score
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TABLE 1 | Summary of the key completed randomized controlled trials (published in English) on RIC with clinical outcomes in patients with acute STEMI or

ischemic stroke.

References n Conditioning intervention Clinical findings in the intervention vs. control

group

STEMI Sloth et al. (50) 333 4 × 5-min 200 mmHg, arm (per-RIC) Reduced rates of MACCE and all-cause mortality at a

median of 3.8 years

Gaspar et al. (49) 258 3 × 5-min 200 mmHg, leg (per-RIC) Reduced in-hospital HF and lower risks of cardiac

mortality and/or hospitalization for HF at a median of 2.1

years

Stiermaier et al. (48) 696 3 × 5-min 200 mmHg, arm (per-RIC) Reduced rates of MACE and HF at a median of 3.6 years

Hausenloy et al. (51) 5,401 4 × 5-min 200 mmHg, arm (per-RIC) No significant differences in cardiac mortality,

hospitalization for HF, or MACCE at 12 months

Acute ischemic stroke Hougaard et al. (66) 443 4 × 5-min 200 mmHg or 25 mmHg

above SBP, arm (per-RIC)

No significant difference in mRS at 90 days

An et al. (76) 68 5 × 5-min 180 mmHg, both arms

(post-RIC)

Favorable recovery (mRS score 0–1) at 90 days in the

post-RIC group (adjusted OR 9.85, 95% confidence

interval 1.54–63.16; p = 0.016)

Pico et al. (74) 188 4 × 5-min 110 mmHg above SBP,

thigh (per-RIC)

No significant difference in mRS at 90 days

He et al. (77) 49 4 × 5-min 200 mmHg, arm (post-RIC) No significant difference in mRS nor NIHSS at 90 days

HF, heart failure; MACCE, major adverse cardiac and cerebrovascular events; MACE, major adverse cardiac events; mRS, modified Rankin score; NIHSS, National Institute of Health

Stroke Scale; OR, odds ratio; RIC, remote ischemic conditioning; SBP, systolic blood pressure; STEMI, ST-segment elevation myocardial infarction.

(according to two studies) and the National Institutes of Health
Stroke Scale score (despite significant heterogeneity in the trials
that assessed this variable).

DISCUSSION

This review recapitulates the evidence that RIC reduces
circulating biomarkers of myocardial necrosis, infarct size,
and edema, although this effect does not appear to translate
into better outcomes (19, 51) (Table 1). However, concerning
ischemic stroke, although RIC is a safe procedure that can easily
be implemented in hospital and pre-hospital settings, its clinical
efficacy has yet to be proven (20). Furthermore, no biomarkers
equivalent to CK-MB or high-sensitivity troponin T (41, 42) exist
for ischemic stroke. Thus, only indirect evidence concerning RIC
effects in brain ischemia is obtained from existing biomarkers
and, as discussed, contradictory results have been reported in
existing studies (68, 72).

Further research is needed to better characterize RIC patient
responses. Besides those discussed above, putative biomarkers
of RIC effects include autocoids (e.g., adenosine, endogenous
opioids, or bradykinin), cytokines, and nitrites, but other
humoral factors are yet to be better defined (24). The interest
in characterizing such biomarkers is two-fold. Firstly, they may
clarify the mechanisms underlying RIC. Secondly, they could
confirm that a certain protocol is effective in triggering a RIC
response, if a defined threshold of a hypothetical biomarker were
reached. Defining the exact mechanisms mediating the effects of
pre-, per-, or post-RIC will also be crucial to develop drugs or
technological devices that may replace RIC. This is important for
many reasons. Firstly, because the lack of conclusive evidence on
RIC efficacy in terms of clinical outcomes in MI and ischemic
stroke may be due to heterogenous protocols and different

settings of application of RIC. A pharmacological treatment or
an electronic device could allow the design of more standardized
protocols, possibly allowing a benefit from RIC to emerge, even
in human studies. Secondly, should this benefit be proven in
humans, drugs or devices have the undisputable advantage that
they can be administered or applied more quickly than the RIC
protocol, which typically requires at least 40min. One interesting
perspective, since RIC cardiac protection appears to be at least
partially mediated by the activation of vagal fibers (27, 40), is that
vagal nerve stimulation may reproduce its effects in MI patients
(26). Similarly, as vagus nerve activation has anti-inflammatory
(78) and neuroprotective effects reducing cerebral infarct size (24,
79), vagal stimulation may mediate RIC effects in acute stroke
(24). However, it is likely that isolated direct transcutaneous
vagal stimulation does not trigger all protective processes that are
instead activated by RIC protocols inducing muscle ischemia.

Measuring biomarkers mediating the RIC response may also
help to stratify patients to identify those who could most benefit
from remote ischemic post-conditioning in the days after an
ischemic event.

A more stringent selection of included participants in future
RIC clinical trials may boost effect size. For example, since
RIC is believed to be most effective against cerebral reperfusion
injury based on pre-clinical studies (24, 80), stroke clinical
trials should focus on patients with a higher likelihood of
successful reperfusion (24), who are thus exposed to the risk
of reperfusion injury. Besides reperfusion, other risk factors
include hypertension, cerebral vascular dysregulation, and late
recanalization (81, 82).

Another interesting criterion of stratification of stroke
patients may be the presence of collateral brain vessels, which
can limit the extension of ischemic penumbra or border zone
(83). Importantly, recent pre-clinical studies have found that RIC
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enhanced cerebral collateral circulation (84, 85). For this reason,
the effects of RIC may be most evident in patients who can most
benefit from the presence of vascular collaterals, such as those
undergoing large vessel occlusion, who are also candidates for
mechanical thrombectomy. For such reasons, testing RIC in this
specific population may yield new, interesting results (20).

A possible cause of the discrepancy between results of
pre-clinical and clinical studies on RIC is a difference in
protocols. In fact, pre-clinical studies mostly employed RIC of
the hindlimb, while upper limb RIC is usually performed in
patients (24). It cannot be excluded that the higher proportion
of muscle tissue undergoing RIC in the hindlimb may explain
the greater efficacy of RIC in pre-clinical studies, especially if
we consider that human patients might be elderly individuals
with muscle deconditioning and comorbidities. Thus, leg RIC
might be systematically used in future studies, as has previously
been studied (41, 49, 74). Alternatively, a higher number
of ischemia/reperfusion cycles and/or longer duration of the
stimulus repetition might be more effective. Furthermore,
post-conditioning long-term RIC protocols in patients are
complicated by problems of compliance. Technological devices
can also be used to document compliance and to ensure
adherence to the protocol. Smart devices to monitor real-time
post-conditioning, long-term RIC protocols, in association with
smartphone applications, are currently being tested (86).

Finally, in both MI and acute ischemic stroke, it is crucial to
apply RIC as soon as possible, even in the pre-hospital setting, to
freeze the penumbra, or the border zone, thus possibly extending
the time window for reperfusion therapies (20, 74). To make
this possible, patients’ early triage and stratification with pre-
hospital scales is warranted (20). Importantly, it is possible to
apply RIC in pre-hospital emergency settings, not only in an
ambulance (21, 44), but also during air medical transportation
(87). However, challenges to pre-hospital RIC administration
include the need for dedicated personnel, if using a manual cuff,
and the fact that average pre-hospital transport times may not be

long enough to administer the full cycles. For instance, in one of
the studies discussed above, transportation time was too short to
administer four RIC cycles in 18% of patients (66). Once again,
an automatic device can relieve both manpower and cognitive
resources in the emergency setting, as it can be left in place
once a pre-programmed protocol has been set. Interestingly, RIC
can also be given in the emergency department, and even in the
catheterization laboratory (88).

CONCLUSIONS

RIC is “non-invasive, simple, safe, and cheap” (89), can be used
alone or in combination with existing reperfusion therapies,
and can be initiated in pre-hospital settings, but its clinical
efficacy in MI and acute ischemic stroke patients remains to
be proven (20, 47, 49–51, 66, 74). Further research is needed
regarding the optimal time window and protocol for RIC
application, its mechanisms and biomarkers, and the populations
that could most benefit from this strategy in both cardiology and
neurology settings.
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