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Abstract

With advancements in gene editing technologies, our ability to make precise and efficient modifications to the
genome  is  increasing  at  a  remarkable  rate,  paving  the  way  for  scientists  and  clinicians  to  uniquely  treat  a
multitude  of  previously  irremediable  diseases.  CRISPR-Cas9,  short  for  clustered  regularly  interspaced  short
palindromic  repeats  and  CRISPR-associated  protein  9,  is  a  gene  editing  platform  with  the  ability  to  alter  the
nucleotide sequence of  the genome in living cells.  This  technology is  increasing the number and pace at  which
new gene editing treatments for genetic disorders are moving toward the clinic. The β-hemoglobinopathies are a
group  of  monogenic  diseases,  which  despite  their  high  prevalence  and  chronic  debilitating  nature,  continue  to
have few therapeutic options available. In this review, we will discuss our existing comprehension of the genetics
and current state of treatment for β-hemoglobinopathies, consider potential genome editing therapeutic strategies,
and provide an overview of the current state of clinical trials using CRISPR-Cas9 gene editing.
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Introduction

Hemoglobin  (Hb)  is  a  heterotetramer  composed  of
two  α-globin  and  two  β-like  globin  subunits  that
transports  oxygen  throughout  the  body.  β-
hemoglobinopathies  are  a  group  of  disorders
characterized  by  quantitative  or  qualitative  defects  in
β-globin  synthesis.  Quantitative  defects,  known as  β-
thalassemia,  are  caused  due  to  deletions  or  point
mutations in the HBB gene (which encodes β-globin)
or  its  regulatory  elements  that  result  in  decreased
production  of  the  β-globin  chains.  This  imbalance  in

the production of the α- and β-globin chains results in
accumulation  and  subsequently  precipitation  of  the
excess  α-globin  molecules  within  the  erythroid
precursors  and  their  premature  death.  On  the  other
hand, qualitative defects arise from mutations of HBB
resulting  in  the  production  of  an  altered  β-globin
molecule.  Sickle  Hb  (HbS)  is  one  such  structural
variant  of  adult  Hb  (HbA)  that  is  characterized  by  a
single A-to-T transversion in the sixth codon of HBB,
resulting  in  a  p.Glu6Val  substitution  in  the  β-globin
subunit  of  HbA.  Sickle  cell  disease  (SCD)  is  a
collective  term  referring  to  any  β-hemoglobinopathy
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containing  the  HbS  allele.  Homozygosity  for  this
mutation results in sickle cell anemia (SCA) which is
the most severe type of SCD[1]. Two other common β-
globin  structural  variants  are  HbC[2] and  HbE[3].  HbC
(c.19G>A)  is  caused  by  a  p.Glu6Lys  substitution  in
the  β-globin  subunit.  Individuals  homozygous for  the
HbC  mutation,  a  condition  known  as  hemoglobin  C
disease,  present  with  mild  hemolytic  anemia[2,4].  HbE
(c.79G>A)  is  a  structural  variant  resulting  in  a
p.Glu26Lys  substitution  in  the  β-globin  subunit.  The
mutation is found at the 3′ end of exon 1 of HBB and
introduces a cryptic donor sequence, which allows for
aberrant  splicing  and  causes  a  frameshift  in  the  open
reading  frame.  The  frameshift  results  in  decreased
levels  of  β-globin  and  a  mild  β-thalassemia
phenotype.  A  detailed  catalog  of  various  hemoglobin
variants  and  mutations  that  cause  thalassemia  is
maintained at the HbVar database[5].  Coinheritance of
various quantitative and qualitative defects is possible
and results in severe phenotypes in many cases.

Since  SCA  is  one  of  the  most  common  and
potentially  most  devastating β-hemoglobinopathies,  it
will  be  discussed  in  detail  in  the  next  few  sections.
However,  many  of  the  concepts  and  ideas  discussed
here  are  applicable  to  all  β-hemoglobinopathies.  In
SCA,  under  hypoxic  conditions  HbS  rapidly
polymerizes,  reducing  the  deformability  of  red  blood
cells  (RBCs)  and  turning  them into  the  characteristic
sickle  shape  (Fig.  1).  Following  multiple  cycles  of
HbS  polymerization/depolymerization,  sickled  RBCs
either  lyse  during  passage  through  capillaries,

decreasing  their  half-life,  or  occlude  small  blood
vessels  causing  a  number  of  devastating  clinical
complications[6].  Chronic  hemolysis  and  occlusion  of
the  blood  vessels  by  these  deformed  RBCs  are
responsible  for  the  vasculopathy  and  co-morbidities
that occur in virtually all body organs in a patient with
SCA,  including  anemia,  debilitating  recurrent  pain
crises, acute chest syndrome, pulmonary hypertension,
avascular  necrosis,  kidney  failure,  thromboses,  liver
disease  and  stroke[7–9].  Most  of  these  patients
experience  a  poor  quality  of  life  and  significantly
reduced lifespan[7–8,10].

Approximately  100  000  individuals  in  the  United
States  and  millions  more  worldwide  are  affected  by
SCD[7].  An  absolute  number  of  children  born  each
year with SCD is unknown due to a lack of adequate
screening  and  detection  in  resource-limited  countries
where  the  disease  is  most  prevalent;  however,
estimations  suggest  that  more  than  300  000  children
are born annually with SCD, including nearly 3000 in
the United States[11].  In high-income countries, due to
extensive  newborn  screening  programs  and
comprehensive  medical  services,  more  than  95% of
patients  with  SCD  survive  through  childhood.
However,  in  Africa  and  South  Asia,  the  majority  of
children  born  with  the  disease  often  remain
undiagnosed and die under the age of 5 years[12]. SCD
puts a huge burden on the health-care systems and has
a  considerable  impact  on  affected  individuals.  In  the
United States alone, the cost of direct medical care for
individuals with SCD exceeds $1 billion per year[13].
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Fig. 1   HbS fiber formation and red blood cell sickling. A: Adult hemoglobin (HbA) molecules are heterotetramers composed of two α-
and two β-globin subunits and normally exist as solitary molecules inside red blood cells. B: In sickle cell disease (SCD), a substitution in
the  sixth  amino  acid  of  the  β-globin  subunit  causes  a  structural  aberration  (HbS)  that  leads  to  polymerization  of  tetramers  upon
deoxygenation.  These  tetramers  then  align  to  form rod-like  fibers  that  cause  the  deformation  of  the  red  blood cells  into  the  characteristic
sickle shape. RBC: red blood cell.
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More  than  a  century  after  the  disease  was  first
described,  and  after  decades  of  scientific  research,
gene therapy for SCD is only recently in clinical trials.
In  this  review,  we  discuss  the  underlying  genetics  of
SCD,  how  it  is  currently  being  treated,  strategies  for
CRISPR-Cas9 gene  editing  therapies,  and the  current
state of gene editing clinical trials. 

Hemoglobin  switching  and  hereditary
persistence of fetal hemoglobin

Both  the  α-  and  β-like  globin  genes  are
developmentally regulated, but for the purpose of this
review, only regulation of the β-like globin genes will
be  discussed.  The  β-globin  locus  consists  of  five  β-
like  globin  genes,  which  are  expressed  in  a
spatiotemporal  manner  (Fig.  2).  ε-globin  (HBE1)  is
expressed  in  the  early  embryonic  yolk  sac  and
heterodimerizes  with  ζ-globin  (an  α-like  globin  gene,
HBZ)  to  form  embryonic  Hb  (ζ2ε2).  As  embryonic
development  progresses,  the  site  of  erythropoiesis
moves from the yolk sac to the fetal liver and spleen,
where erythroid cells then produce Gγ-globin (HBG2)
and  Aγ-globin  (HBG1),  which,  with  α-globin,  results
in  fetal  hemoglobin  (HbF,  α2γ2).  The  final  site  of
erythropoiesis  is  the  bone  marrow,  where  an  adult
pattern  of  Hb  is  established  around  birth.  The
expression  of HBG1 and HBG2 becomes  repressed
around the time of birth, and the expression of HBB is
turned on, which results in the production of β-globin.
Adult  Hb  (HbA,  α2β2),  which  is  comprised  of  two

α-globin and β-globin subunits, is thereafter expressed
throughout  adult  life.  The  γ-  to  β-globin  switch,  also
known as Hb switching, is an intriguing and complex
paradigm  of  the  developmental  regulation  of  gene
expression and is  incompletely understood.  However,
it  is  clinically  very  important  because  β-
hemoglobinopathies  can  be  treated  by  inhibiting  this
switch.  Only  about  2% of  total  Hb following  birth  is
composed  of  δ-globin  (HBD),  which  produces  the
alternate adult Hb (HbA2, α2δ2). For more information
on hemoglobin switching, see references[14–16].

Several  studies  have  described  a  correlation
between elevated HbF levels in adults and a reduction
in  SCD severity[8,17–20].  The  expression  of  HbF  varies
naturally  between  individuals,  including  those  with
SCD.  Some  individuals  have  persistently  elevated
levels  of  HbF well  into  adulthood,  which is  a  benign
condition  called  hereditary  persistence  of  fetal
hemoglobin  (HPFH)[21].  When  mutations  causing
HPFH are co-inherited with SCD, the clinical severity
of SCD is  significantly reduced[8,22–23].  These findings
have  galvanized  research  aimed  at  understanding  the
molecular  machinery  that  represses  HbF  and  how  it
could be therapeutically manipulated. 

BCL11A

To  better  understand  the  genetic  determinants  that
regulate  HbF  expression,  and  to  uncover  potential
therapeutic targets, two complementary methods have
been used to identify the trans-regulatory proteins and
cis-regulatory  DNA  elements  controlling  the
expression of  genes at  the β-globin locus:  1)  analysis
of rare individuals and pedigrees with very high HbF
levels  (individuals  with  HPFH)[24];  and  2)  genome-
wide  association  studies  (GWAS)  identifying  high-
frequency  polymorphisms  associated  with  mild  to
moderately  elevated  HbF[25–26].  GWAS  illuminated
loci  significantly  associated  with  HbF  levels  in
healthy  individuals,  SCD,  and  β-thalassemia  patients.
One  study  used  healthy  individuals  who  exhibited
extremes  of  F-cell  distribution  (cells  with
immunoreactive  HbF)  to  identify  a  quantitative  trait
locus  in  the  second  intron  of  the  oncogene  B-cell
lymphoma/leukemia  11A  (BCL11A)[27],  while  a
separate  report  demonstrated  an  association  between
genetic  variants  within  the HBS1L-MYB locus  and
increased  HbF  levels[28].  Additional  GWAS
highlighted  single  nucleotide  polymorphisms  (SNPs)
found  in BCL11A, HBS1L-MYB,  and  the  extended  β-
globin  locus  that  were  associated  with  HPFH[25–26].
Subsequent molecular studies have validated BCL11A
as a direct repressor of HbF[29–34].
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Fig. 2   Hemoglobin switching. The spatiotemporal expression of
the  globin  genes  is  shown  (top).  The  levels  of  expression  are
shown with colors corresponding to the various β-globin genes in a
diagram  of  the  β-globin  locus  (bottom),  which  includes  the
upstream locus control region (LCR).
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BCL11A  expression  is  inversely  correlated  with
HbF  levels[29].  Knockout  and  knockdown  approaches
in both human and mouse models  have demonstrated
that  BCL11A  is  a  bona  fide  γ-globin  repressor[32–34].
While  the  major  role  of  BCL11A  in  erythroid
precursors  seems  to  be  HbF  repression,  this  multiple
zinc-finger  transcription  factor  is  also  known  to
function  outside  the  erythroid  lineage.  BCL11A  has
been  implicated  in  the  development,  maturation,  or
self-renewal  of  multiple  lineages  including  B-
lymphocytes,  hematopoietic  stem  cells  (HSCs),
dendritic, breast, and pancreatic cells, as well as cells
within  the  central  nervous  system[35–39].  Additionally,
global loss of BCL11A results in perinatal lethality in
mice[37], and humans who carry rare variants resulting
in BCL11A haploinsufficiency,  present  with  autism-
like  neurological  disorders  in  addition  to  expressing
high  levels  of  HbF[40–42].  However,  erythroid-specific
deletion of BCL11A in mice de-represses γ-globin and
reverses  the  symptoms  of  SCD  without  perturbing
erythropoiesis[33].  Thus,  disrupting  the  erythroid-
specific  function  of  BCL11A  while  maintaining  its
non-erythroid roles would be an ideal therapy to cure
SCD.

A  significant  advancement  was  made  when  Bauer
and colleagues subjected primary human erythroblasts
to  a  DNase  I  sensitivity  assay  and  discovered  that
HbF-inducing  SNPs  in  the  second  intron  of BCL11A
overlap  with  areas  of  open  chromatin[43].  The  authors
further demonstrated that these SNPs are embedded in
an  erythroid-specific  enhancer  bound  by  the
transcription factors GATA1 and TAL1, which drives
BCL11A specifically in the erythroid lineage. Deletion
of  the  enhancer  region  in  mouse  erythroleukemia
(MEL) cells resulted in a severe reduction in BCL11A
expression  with  a  corresponding  induction  of  HbF.
Conversely, when the enhancer was deleted in a pre-B
lymphocyte  cell  line  (a  non-erythroid  line),  BCL11A
expression was unchanged[43].

Other  investigations  into  the  molecular  regulation
of the β-globin locus have uncovered several BCL11A
binding  sites.  Most  notable  is  the  upstream  enhancer
that consists of a cluster of erythroid-specific cis-DNA
elements termed the locus control region (LCR) (Fig. 2),
which  is  brought  into  close  proximity  to  the  globin
promoters  by  DNA  looping,  providing  robust
expression  of  the  globin  genes[32,44–45].  In  addition,  a
separate  regulatory  region  bound  by  BCL11A,
GATA1,  and  HDAC1 was  identified  upstream of  the
δ-globin  gene  by  analyzing  naturally-occurring,
HPFH-associated  deletions  in  the  β-globin  locus[46].
More  recently,  BCL11A  was  shown  to  directly  bind
and  repress  γ-globin  production  by  binding  a

TGACCA motif located in the proximal promoters of
the  duplicated  γ-globin  genes[47].  This  motif  has  been
found  to  be  mutated  in  some  individuals  with
HPFH[48–49].  Furthermore,  genetic  manipulation of  the
TGACCA  motif  disrupts  BCL11A  binding  and
derepresses  γ-globin[47].  These  data  provide  evidence
that  hemoglobin  switching  is,  in  part,  controlled  by
direct binding of BCL11A at the γ-globin promoters, a
mechanism that  can be  exploited  for  the  treatment  of
β-hemoglobinopathies.  Overall,  BCL11A  is  an
attractive therapeutic target, and different gene editing
approaches  targeting BCL11A are  covered  below.  It
should be noted that BCL11A is a proto-oncogene that
was  so  named  because  multiple  B-lymphoid
leukemias  have  translocations  involving  this  gene.
Therefore,  manipulation  of BCL11A or  its  binding
sites  as  a  strategy to  treat  SCD should  be  thoroughly
vetted for safety as with any gene editing strategy. 

Currently available treatments for sickle cell
disease
 

Disease modifying therapies
 

Pharmacotherapy

Until  recently,  hydroxyurea  (HU)  was  the  only
FDA-approved  drug  for  treatment  of  SCD.  HU  was
discovered  as  a  SCD  therapy  while  screening  the
effects  of  cytotoxic  compounds  for  their  ability  to
induce  HbF  in  non-human  primates[16,50–51].  HU  is  a
ribonucleotide  reductase  inhibitor  that  evokes  several
effects  and,  at  low  doses,  increases  HbF.  The  exact
pathway by which HU accomplishes HbF induction is
not  clearly  elucidated,  but  multiple  potential
mechanisms have been described[52]. HU has proven to
be  safe  and  well-tolerated  in  short  and  long-term use
in both children and adults and has been suggested to
be  made  available  to  all  SCD  patients[53].  Despite  its
beneficial  effects,  HU  is  underutilized  due  to  user-
related  compliance  issues,  dose-related  hematological
toxicities,  potential  for  teratogenicity,  fear  of  side
effects, etc[54–55]. Recently, three new drugs have been
approved  for  treatment  of  SCD:  L-glutamine,
voxelotor, and crizanlizumab.

L-glutamine is a conditionally essential amino acid,
which  in  a  phase  3  randomized  trial  was  shown  to
reduce  numbers  of  vaso-occlusive  crises,  acute  chest
syndrome  incidences,  and  hospitalizations  in  SCD
patients[56].  It  has  been  described  that  a  decrease  in
erythrocyte  glutamine  and  glutathione  leads  to  an
abundance  of  reactive  oxygen  species,  which
contributes  to  the  cytotoxic  milieu  of  the  sickled
RBCs  and  is  associated  with  hemolysis[57–58].
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Glutamine  acts  as  a  precursor  to  glutathione,  which
reduces oxidative stress, thus reducing hemolysis[59–60].
The exact mechanism by which it  reduces pain crises
is, however, unknown. Crizanlizumab is a humanized
monoclonal  antibody  that  binds  to  P-selectin  and
blocks  its  interaction  with  P-selectin  glycoprotein
ligand  1.  P-selectin  is  expressed  on  the  surface  of
endothelial  cells  and  mediates  adhesion  of  sickle
RBCs  to  the  surface  of  vessels  resulting  in  vascular
occlusion[61–63].  P-selectin  mediates  binding  of
platelets  to  neutrophils  in  mice  and  humans  with
SCD[64].  Thus,  blockade  of  P-selectin  by
crizanlizumab  reduces  the  risk  of  vaso-occlusion  and
inflammation.  Indeed,  in  a  randomized,  phase  2  trial,
treatment with crizanlizumab halved the annual rate of
sickle  cell-related  pain  crises  in  comparison  with
placebo[65]. Lastly, voxelotor is an HbS polymerization
inhibitor.  It  reversibly  binds  to  hemoglobin  and
stabilizes  it  in  its  oxygenated  state[66–67].  In  a  phase  3
randomized,  clinical  trial,  voxelotor  increased
hemoglobin levels  and reduced markers  of  hemolysis
in individuals with SCD[68]. While all these drugs have
been  helpful  in  modifying  the  symptoms  of  SCD,
none  of  them  are  curative.  Moreover,  many  patients
have  a  much  higher  severity  of  disease  or  do  not
respond  to  one  or  more  of  these  drugs  and  need
alternative therapies. 

Blood transfusion therapy

One  of  the  most  severe  and  debilitating
consequences  of  SCD  is  acute  stroke[69].  Red  blood
cell  exchange  transfusions  have  been  shown  to
significantly  decrease  the  risk  of  stroke  in  patients
with  SCA[70].  The  Stroke  Prevention  Trial  in  Sickle
Cell  Anemia  (STOP I)  randomly  assigned  children  2
to 16 years old, who were at a high risk of developing
a  stroke  based  on  transcranial  Doppler,  to  receive
either  chronic  blood  transfusions  every  3  to  4  weeks
or  a  standard  care  regimen.  Children  in  the  standard
care cohort developed a stroke at an incidence of 10%
per  year,  while  the  only  stroke  in  the  chronic
transfusion group occurred after  26 months.  The trial
was terminated early after 12 children had strokes, 11
of  whom  were  receiving  standard  care[70].  It  has  also
been  demonstrated  that  discontinuing  regular
transfusion treatments can result in an increased stroke
risk[71].  Although  now  considered  standard  of  care,
regular  blood  transfusions  are  incompletely  effective
in  preventing  strokes  in  those  who  have  already
developed  one.  Recurrent  strokes  and  silent  cerebral
infarcts  continue  to  occur  among  children  with  silent
cerebral  infarcts  who  are  currently  receiving  regular
blood  transfusion  therapy[72].  Thus,  chronic  blood

transfusion  therapy  can,  at  best,  only  be  considered
palliative  for  secondary  prevention  of  strokes.
Additionally,  recurrent  transfusions  are  complicated
by  the  risk  of  alloimmunization  to  RBC  antigens,
delayed  hemolytic  transfusion  reactions  and  iron
overload[73–74].  Several  patients  develop alloantibodies
to  transfused  antigens  and  then  are  no  longer  able  to
receive  transfusions  from  donors  to  whom  they  are
immunized[75]. 

Bone marrow transplantation

The  only  widely  available  curative  treatment  for
patients with SCD is an allogeneic hematopoietic stem
cell transplantation (HSCT). HSCT involves replacing
the HSCs of an individual with SCA using HSCs from
a  human  leukocyte  antigen  (HLA)-matched  donor.
However,  due  to  immunological  complications  such
as graft  rejection,  graft-versus-host  disease as well  as
other  issues  associated  with  myeloablative
chemotherapy  exposure  such  as  infertility  and
infections, including a low but non-zero risk of death,
HSCT is generally reserved for the most severe cases
and  for  those  who  are  unresponsive  to  alternative
treatments  such  as  hydroxyurea[76–77].  At  the  same
time,  less  than  20% of  patients  with  SCA  have  an
eligible  donor  available,  making  this  therapy
inaccessible to most patients who really need it. 

Gene addition therapy

Several preclinical and clinical studies are currently
attempting  a  gene  transfer  approach  wherein  a
functional  copy of  the  β-globin  gene is  transferred to
the  HSCs.  The most  successful  of  these  has  been the
clinical  trial  of  a  drug  product  called  LentiGlobin
BB305  led  by  Bluebird  Bio  (NCT01745120  and
NCT02151526)[78–83]. This therapy involves reinfusion
of autologous CD34+ HSCs after lentiviral integration
of  a  β-globin  gene  marked  by  an  anti-sickling  T87Q
substitution[80]. Driven by cis-regulatory elements, this
vector  delivers  erythroid  lineage-specific  expression
of  the  therapeutic  modified HBB encoding  an  anti-
sickling  variant  (βA87Thr:Gln)  in  patients  with  β-
thalassemia  and  SCD.  Published  reports  indicate  that
study  participants  have  increased  circulating  hemo-
globin,  reduced or  eliminated  need  for  red  blood cell
transfusions, and no signs of clonal dominance due to
insertional  mutagenesis  of  the  therapeutic  vector[83].
While  this  treatment  is  extremely  promising  and  has
received  conditional  marketing  approval  from  the
European Medicines Agency for patients older than 12
years  of  age[84],  long-term follow-up of  these  patients
is  needed.  Even  with  the  self-inactivating  lentiviral
vectors,  the  risk  of  leukemogenesis  from  a  wayward
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integration  still  remains,  a  pitfall  that  precise  gene
editing  should  be  able  to  avoid.  Additionally,  the
silencing  of  integrated  elements  and  the  fraction  of
transduced  cells  should  be  considered,  as  well  as  the
cost  and  complexity  to  scale  up  lentiviral  production
to treat large numbers of patients. 

Gene editing options with CRISPR-Cas9

Gene editing can be defined as  creating a  genomic
modification in a targeted manner. Traditional genome
editing  strategies  involve  creating  a  targeted  DNA
double-strand break (DSB) in genomic DNA near the
site  of  desired  change.  This  can  be  achieved  using
several different nuclease platforms including, but not
limited  to,  meganucleases,  zinc  finger  nucleases
(ZFNs), transcription activator-like effector nucleases,
and  CRISPR-Cas9.  For  the  purposes  of  this  review,
we  will  focus  on  the  CRISPR-Cas9  system  from
Streptococcus pyogenes. In its simplest form, CRISPR-
Cas9 is a two-component system consisting of a Cas9
nuclease and a guide RNA (gRNA). In brief, the Cas9
protein  requires  a  protospacer  adjacent  motif  (PAM)
of  5 ′-NGG-3 ′  in  order  to  efficiently  bind  DNA.
Additional sequence specificity comes from the gRNA,
which  is  a  short  RNA  molecule  containing  an
approximately  20  base  pair  (bp)  sequence  that
complexes  with  and  "guides"  Cas9  to  a  user-defined
location  in  the  genome  by  complementary  base
pairing  to  the  DNA region  of  interest  adjacent  to  the
PAM, allowing Cas9 to cut at the appropriate place in
the genome.

Because an unresolved DSB can be detrimental and
even  deadly,  mammalian  cells  are  quite  efficient  at
repairing  such  breaks.  After  the  nuclease-induced
DSB  is  created,  the  endogenous  cellular  repair
machinery will repair the DNA lesion by one of a few
pathways  including  but  not  limited  to  non-
homologous  end  joining  (NHEJ),  microhomology
mediated  end  joining  (MMEJ),  or  homology  direct
repair (HDR). NHEJ can be error-prone, and aberrant
repair  by  this  pathway  leads  to  stochastic  insertions
and/or deletions (indels) at the site of the break and is
useful for disrupting genes, binding sites, and specific
DNA motifs.  MMEJ relies on short microhomologies
at or near the cut site and often results in the deletion
of  the  intervening  sequences  between  said  micro-
homologies  and can also disrupt  genes,  binding sites,
and DNA motifs.

While  NHEJ  and  MMEJ  only  require  a  targeted
double-strand break to stimulate repair, HDR requires
the addition of a donor template with homology to the
cut  site  to  be  introduced  into  the  nucleus  of  the

targeted cell. Donor templates can be either circular or
linearized  double-stranded  DNA  (dsDNA),  single-
stranded  DNA  (ssDNA),  single-stranded  oligodeoxy-
nucleotides (ssODNs), or viral donors. HDR is said to
be  "user-defined"  because  the  donor  template  can  be
synthesized with the desired genomic modification.

As  described  above,  SCA  is  caused  by  a  single
point  mutation  in  the  HBB  gene  and  the  disease
phenotype  is  manifested  in  the  red  blood  cells  of  the
afflicted individual. Normal adult RBCs are terminally
differentiated  and  have  a  limited  lifespan  with  an
average time to senescence of approximately 120 days,
while  sickled  RBCs  last  around  20  days[85–87].  Addi-
tionally,  RBCs  have  undergone  enucleation,  so  there
is no DNA to correct in the disease-causing cell type.
Therefore,  for  a  gene  therapy  approach  to  have  the
promise  of  being  curative  for  SCA,  the  modification
must occur in the hematopoietic stem cells (HSCs).

When  considering  gene  editing  therapy  for  β-
hemoglobinopathies,  approaches  can  be  divided  into
two general strategies: 1) those developed to repair or
modify  the  underlying  genetic  mutation  (gene
correction);  and  2)  those  designed  to  elevate  HbF
levels.  While  methods  to  elevate  HbF  levels  could
ameliorate SCA as well as β-thalassemias, approaches
aiming to correct the HbS mutation would be confined
to SCA. 

Gene correction

Theoretically,  the  most  logical  method  to  cure  a
genetic  disease  is  to  directly  modify  or  correct  the
disease-causing  variant.  This  approach  would  ensure
the  preservation  of  all cis-regulatory  elements  that
might control gene function as well as ameliorate any
detrimental  effects  of  the  mutant  gene.  Traditional
gene  correction  strategies  rely  on  HDR  which  has
some technical  challenges.  First,  HDR approaches do
not preclude repair by the NHEJ pathway. In fact, the
NHEJ  pathway  is  the  preferred  pathway  of  repair  in
mammalian  cells.  Moreover,  because  the  disease-
causing mutation for SCA is in the coding region,  an
HDR strategy will also result in indels within the HBB
gene  of  some  cells  leading  to  gene  knockout  and
potentially  producing  β-thalassemia  (Fig.  3).  Second,
HDR is limited to the S or G2 phase of the cell cycle,
which may be limiting when trying to target stem cells
that are not cycling. Also, HDR requires the additional
obligate  delivery  of  an  exogenous  donor  template,
which  increases  manufacturing  costs,  can  increase
toxicity, and has more potential for an immunological
response.

Several  groups  have  shown  profound  levels  of
correction using HDR in induced pluripotent stem cell
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(iPSC)-derived  HSCs  and  CD34+ (a  marker  for
hematopoietic  stem  and  progenitor  [HSPC])  cells.
Although the level of correction has been favorable in
some iPSC-derived HSPC experiments[88–91], currently,
the  differentiation  of  iPSCs  toward  HSCs  leads  to
primitive  rather  than  definitive  hematopoietic  cells,
which  cannot  engraft  into  a  xenograft  mouse  model,
leaving  the  investigations  lacking  the  ultimate
functional  read-out.  Thus,  until  improved  iPSC
differentiation  protocols  are  developed  for  the  HSC
lineage, bone marrow (BM) or mobilized CD34+ cells,
although  more  difficult  and  expensive  to  obtain,  will
likely  be  the  preferred  cellular  source  for  proof-of-
principle studies.

In  2016,  DeWitt  and  colleagues  optimized  a
selection-free  strategy  to  edit  CD34+ HSPCs  using
ribonucleoproteins  (RNPs)  consisting  of  an
unmodified single gRNA and Cas9 protein along with
a  ssODN  donor[92].  In  these  studies,  this  group  was
able  to  achieve  11.8%±3.7% correction  in  the  input
HSPC  population  just  prior  to  injection  into  an
immunodeficient  mouse  model.  Sixteen  weeks
following engraftment, however, only 2.3% (BM) and
3.7% (spleen) of engrafted cells maintained the HDR-
mediated editing at the SCD mutation, suggesting that
the  long  term  repopulating  HSCs  which  constitute  a
minority  of  the  heterogeneous  CD34+ cell  population
may be relatively  refractory to  HDR-mediated events
or  donor  delivery  in  comparison  to  the  more-
committed  hematopoietic  progenitors[93].  Although  it

is  not  definitively  known  how  much  correction  is
required for such a treatment to be curative for SCA,
one might speculate that even a low level of long-term
edited  cells  may  be  clinically  relevant.  Previous
observations  after  allogeneic  hematopoietic  stem  cell
transplantation for SCA have shown mixed chimerism
at low levels  in the bone marrow and have translated
to  a  clinically  significant  increase  in  the  number  of
non-sickling RBCs[94–96]. This increase could be due to
a longer life span of normal RBCs vs. HbS RBCs.

To  enrich  for  HDR-edited  HSPCs,  Dever et  al
developed  a  strategy  using  RNPs  and  an  adeno-
associated viral donor containing a selectable marker,
which  after  selection,  resulted  in  a  collection  of  cells
with  more  than  85% of  clones  with  the  targeted
integration  event[97].  This  selection  method  increased
the  long-term  engraftment  retention  to  between  10%
and  75% (n=3)  of  the  engrafted  human  cells  at  16
weeks  post  xeno-transplantation.  While  the
enrichment strategy increased the overall frequency of
edited cells, it also led to an eightfold decrease in the
total  number  of  HSCs in  the  transplanted  population.
It is possible that a substantial ex vivo expansion phase
would  need  to  be  introduced  in  order  to  scale  up  the
recovery  of  larger  numbers  of  edited  HSCs  prior  to
transplantation  for  clinical  translation.  Dever  and
colleagues  also  noted  that  in  the  unenriched
population, they saw a decrease in editing frequencies
between  the  input  cells  and  the  long-term  engrafted
cells, which further supports the notion that HSCs are
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Fig.  3   Gene correction of  the HbS mutation with donor templates via homology direct  repair  (HDR). Gene correction of  the  HbS
mutation requires a Cas9:gRNA complex to create a DSB (scissors) and a donor template to specify the desired change (ssODN or rAAV6
donors shown). The resultant outcomes show the correct HDR integration with the wild type GAG (green text) substituted for the pathogenic
GTG (red  text).  Additionally,  repair via the  error-prone  and  dominant  DNA repair  pathway  in  mammalian  cells  will  result  in  indels  and
knockout (KO) of the HBB gene. DSB: double-strand break; ssODN: single-stranded oligodeoxynucleotides.
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more  refractory  to  HDR  than  the  bulk  CD34+

population[97].
Until  recently,  strategies  used  to  directly  correct  a

genetic variant were restricted to HDR-mediated gene
editing,  which  is  encumbered  by  low  efficiency  and
unwanted  indels.  However,  recent  developments  of
two  new  classes  of  genome  editors  have  created
exciting  new approaches  for  gene  modification.  Cas9
base editors[98] and prime editors[99] provide a  method
for  correcting  disease-causing  SNPs  without  the
requirement  of  creating  a  potentially  dangerous  DSB
or the need to deliver a separate donor template. Base
editors  eliminate  the  requirement  of  a  DSB  by
utilizing  a  catalytically  impaired  Cas9  fused  to  either
an  adenine  deaminase  (adenine  base  editor,  ABE)  or
cytidine  deaminase  (cytosine  base  editor,  CBE)[100].
Like traditional CRISPR-Cas systems, base editors are
targeted to specific DNA sequences with a gRNA, but
instead  of  generating  a  DSB,  they  have  the  ability  to
directly install single base pair substitutions.

CBEs were created by fusing a cytosine deaminase
and  uracil  glycosylase  inhibitor  (UGI)  to  a  Cas9
nickase.  While  the  gRNA/Cas9  complex  targets  and
binds  DNA,  the  cytosine  deaminase  converts  the
targeted  cytosine  to  a  uracil,  which  is  read  as
thymidine.  The  addition  of  the  UGI  helps  evade  the
base  excision  repair  pathway,  allowing  the  newly
installed uracil to remain. The resulting U-G mismatch
is then resolved to a T-A base pair by the DNA repair
machinery[101–102]. Thus,  CBEs  can  create  C-to-T  (or
G-to-A) point mutations.

ABEs  were  created  by  fusing  an  evolved  transfer
RNA  adenosine  deaminase  heterodimer  to  a  Cas9-
nickase. When targeted to a particular adenine, ABEs
will  catalyze  the  deamination  of  adenine  to  inosine,
which  is  read  as  guanine  by  the  polymerase.
Following  DNA  repair/replication,  the  A-T  base  pair
is  converted  to  a  G-C  base  pair[103].  A  limitation  of
base  editors  is  the  requirement  of  the  targeted
adenine/cytosine  to  fall  within  a  narrow  activity
window  in  relation  to  the  NGG  PAM.  For  example,
ABE7.10  requires  the  target  nucleotide  to  be  within
positions 4 to 7,  with the NGG PAM being positions
21  to  23[103].  However,  if  more  than  one  adenine/
cytosine are in the activity window, substituting either
or  both nucleotides  is  possible  and is  referred to  as  a
bystander  mutation.  Depending  on  the  sequence
context,  a  bystander  mutation  could  be  a  silent  or
benign  mutation,  or  a  more  deleterious,  structure-
altering  amino  acid  change.  Base  editors  are
continually being developed that combine catalytically
impaired  Cas  variants  and  orthologs  with  different
deaminases  to  produce  divergent  base  editing

capabilities,  including  off-target  reductions  and
broader  PAM  compatibility[100].  Another  limitation  is
that  base  editors  only  have  the  capacity  to  catalyze
transitions,  that  is,  of  the  12  possible  base  changes,
current base editors can catalyze C>T, G>A, A>G, and
T>C.  In  the  interest  of  this  review,  a transversion is
required  to  correct  the  SCA  mutation  (T>A),  and
therefore cannot be directly corrected by current base
editing  technology.  For  more  information  on  base
editors, please see Eid et al and Molla et al[98,104].

CBEs were created by fusing a cytosine deaminase
and  uracil  glycosylase  inhibitor  (UGI)  to  a  Cas9
nickase.  While  the  gRNA/Cas9  complex  targets  and
binds  DNA,  the  cytosine  deaminase  converts  the
targeted  cytosine  to  a  uracil,  which  is  read  as
thymidine.  The  addition  of  the  UGI  helps  evade  the
base  excision  repair  pathway,  allowing  the  newly
installed uracil to remain. The resulting U-G mismatch
is then resolved to a T-A base pair by the DNA repair
machinery[101–102]. Thus,  CBEs  can  create  C-to-T  (or
G-to-A) point mutations.

Despite requiring a transversion, the SCA mutation
(c.20A>T; p.Glu6Val) can theoretically be targeted by
ABEs on the noncoding strand. This, however, would
not  directly  correct  the  SCA  mutation.  Instead,  by
converting  the  adenine  on  the  opposite  strand  to  a
guanine, a cytosine would result in the coding strand,
converting  the  pathogenic  valine  to  an  alanine.
Alanine  at  p.6  has  been  identified  in  the  human
population  as  HbG –Makassar,  and  while  these
individuals appear to have a much less severe clinical
phenotype[105–106], symptoms arising from a compound
heterozygous  HbG/HbS  genotype  is  not  well
documented.  However,  the  most  desirable  SpCas9
variant  PAM (Cas9-NGG) is  found 18  bps  upstream,
which  would  place  the  target  adenine  in  position  2.
Since  the  activity  window  for  SpCas9-NGG  ABE
consists  of  positions  4  to  7,  base  editing  the  SCA
mutation  may  not  be  practical  until  base  editors  are
further  evolved.  It  should  also  be  noted  that  two
additional adenines fall  within the activity window in
this particular locus; however, synonymous mutations
result when these bystanders are substituted (Fig. 4).

Other  Hb  SNPs  that  can  be  resolved  with  a
transition  are  found  at  the  HbC  and  HbE  mutations.
Given  HbSC  is  the  second  most  common  form  of
SCD  with  80  000  births  per  year  worldwide[4],
establishing  a  therapeutic  intervention  is  critical  and
could be targeted via traditional HDR or base editing.
Individuals who are compound heterozygous for HbE
and  β-thalassemia  (HbE/β-thal)  comprise  50% of  the
clinically severe β-thalassemia cases[107]. Using a base
editor  to  correct  HbE  in  the  HbE/β-thal  background
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would  result  in  the  genotype  β-thal/WT,  which  is
clinically benign or mildly symptomatic.

In addition to base editing, a new DSB-free genome
editing  platform  has  recently  been  developed  called
prime editing[99]. Briefly, the prime editor consists of a
Cas9-nickase conjugated to a reverse transcriptase that
is  targeted  to  a  particular  genomic  locus via a  prime
editing  gRNA  (pegRNA).  The  pegRNA  consists  of

three  components:  a  traditional  gRNA  allowing  for
Cas9  targeting,  a  primer  binding  site  for  reverse
transcriptase  initiation,  and  a  reverse  transcriptase
template  containing  the  user-defined  genetic
modification  for  genomic  incorporation  (Fig.  5).
Anzalone  and  colleagues  were  able  to  successfully
create  small  (<100  bp)  targeted  insertions  and
deletions  as  well  as  all  possible  transitions  and
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Fig.  4   Adenine  base  editor  (ABE)  approach  to  generate  Hb-Makassar  for  HbS  therapy. The  activity  window  of  the  ABE-NGG
protospacer  is  shown  in  blue  (top  right).  Notice  the  pathogenic  T:  A  falls  outside  the  activity  window  (red  text),  while  two  neighboring
adenines  are  within  the  window  (bold  text).  This  strategy  is  likely  to  result  in  primarily  converting  the  adenine  bystanders,  which  are
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Fig. 5   HbS correction with prime editing. Schematic representing the gene editing approach by Anzalone et al[100] used to correct the HbS
mutation in HEK293 cells. This method is a direct correction of the pathogenic T:A base pair to A:T (a transversion) that does not require the
use of an exogenous donor template or DSB. nCas9: Cas9 nickase; RT: reverse transcriptase; pegRNA: prime editing gRNA.
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transversions.  As  a  proof-of-concept  study,  Anzalone
et  al created  the  SCA mutation  in  HEK293 cells  and
achieved up to 58% correction with only 1.4% indels
using prime editing[99].  The potential  of  prime editing
is  immense;  however,  its  implementation is  still  a  bit
laborious.  For  example,  employing  prime  editing
requires  several  considerations,  such  as  the  primer
binding  site  length,  reverse  transcriptase  template
length,  where  to  place  a  second  nicking  gRNA,  and
which DNA strand to edit. Additionally, genome wide
off-target studies at both the DNA and RNA level are
needed in order to better understand the specificity of
prime  editors.  Although  prime  editing  grants  flexi-
bility in editing options, it  seems that large insertions
or  deletions  (>100  bp)  may  not  be  feasible  with  a
pegRNA. 

Gene editing to elevate HbF levels

Since  the  1950s,  clinicians  and  scientists  have
recognized that levels of HbF modify disease severity
in  individuals  with  β-globin  disorders[108].  As
mentioned  above,  the  protective  effect  of  high  levels
of  HbF  has  inspired  a  tremendous  effort  to  elucidate
the  causes  of  HPFH[24] and  to  create  therapeutic
genome  editing  strategies  that  mimic  these  naturally
occurring  mutations[109].  Human  genetic  studies  have
provided  a  roadmap  of  the  many  variants  causing
HPFH[25,27–28,40,43,110],  which  can  be  used  when

designing personalized gene editing therapies.
HPFH  is  caused  by  two  different  types  of

mutations. First, there are large deletions (10s to 100s
of  kilobases)  called  deletional  HPFH  mutations  that
delete  the β-  and δ-globin genes but  retain either  one
or  both  γ-globin  genes.  Re-creating  deletional  HPFH
mutations would require using two gRNAs to generate
two  DSBs  simultaneously.  While  this  approach  has
demonstrated  increases  in  HbF[111],  it  is  less  efficient
than  using  one  gRNA  and  is  accompanied  with  the
possibility  of  creating  large  inversions  as  well  as  an
increased  off-target  potential  from  introducing  two
gRNAs.  Second,  there  are  non-deletional  HPFH
mutations  that  prevent trans-regulatory  proteins  from
repressing  γ-globin  by  1)  preventing  transcriptional
repressors  from  binding  to cis-regulatory  DNA
elements within the γ-globin promoter[112–115] (Fig. 6A
and B);  2)  creating de  novo binding  sites  for
transcriptional activators[116–117] (Fig. 7); or 3) inhibiting
BCL11A expression  specifically  in  the  erythroid
lineage[43] (Fig.  6A and C).  Using  non-deletional
HPFH mutations as a guide, disruption of recognition
sequences or creation of new transcriptional  activator
sites, either by traditional genome editing using a DSB
or the newer base editing and prime editing strategies,
can be achieved.

Disrupting  transcriptional  repressor  binding,  and
subsequent  de-repression  of  HbF,  has  been
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Fig. 6   Elevating HbF levels by distinct genome editing approaches. A: Traditional Cas9 or base editors can be used to either disrupt the
BCL11A binding motif upstream of the γ-globin promoters (top) or the erythroid-specific BCL11A enhancer (bottom). B: Disruption of the
BCL11A binding motif displaces BCL11A, allowing the activating locus control region (LCR) access to the γ-globin promoters. C: Creating
indels or base substitutions in the BCL11A enhancer decreases expression of BCL11A specifically in the erythroid lineage, which also allows
the LCR access to the γ-globin promoters.
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demonstrated by re-creating a naturally-occurring 13-
bp  deletion[49] in  the  γ-globin  promoters[114] (Fig  6A
and B). Following the creation of indels in the −102 to
−114 region of the γ-globin promoters in SCA patient-
derived  CD34+ HSPCs,  control  (mock-transduced)
and  edited  HSPCs  were  differentiated  toward  the
erythroid lineage and subjected to hypoxic conditions
to  induce  sickling.  Gene  editing  increased  the
percentage of F-cells from approximately 65% to 90%
and  reduced  sickling  from  24% to  4%[114],  providing
proof-of-principle  that  re-creating  a  naturally-
occurring  13-bp  deletion  is  sufficient  to  inhibit
sickling  in  cultured  SCA  patient-derived  HSPCs.  A
caveat to this approach is the possibility of generating
large deletions or inversions owing to the gRNA being
simultaneously targeted to the highly homologous Aγ-
globin  and  Gγ-globin  promoters.  Indeed,  an
approximately 5-kb deletion in human CD34+ HSPCs
was observed at  rates  of  30% prior  to  transplantation
into  non-obese  diabetic/severe  combined  immuno-
deficiency mice, which decreased to 11% at 17 weeks
following  transplantation;  however,  despite  the
occurrence  of  this  deletion,  the  observed  increase  in
%HbF was not significantly altered[113]. The possibility
of  an  inversion  of  the  intervening  DNA  is  also
possible,  eliminating  expression  of  both  γ-globin
genes; however, inversions were detected at very low
frequencies (approximately 1%) in bulk edited CD34+

HSPCs[113].  Additionally,  no  off-target  editing  was
identified in transplanted CD34+ HSPCs after targeted
deep  sequencing  of  the  top  potential  off-target
candidate sites predicted by a sensitive in vitro method
called circularization for in vitro reporting of cleavage
effects  by  sequencing  (CIRCLE-seq)[118].  These
reports  and  others[112,115] have  demonstrated  that  re-
creating naturally occurring HPFH variants may be an
effective  therapeutic  gene editing strategy to  increase
HbF levels.

Other  non-deletional  HPFH variants  exist  as  SNPs
around  the  −114  region  of  the  γ-globin  promoter,
including  −117G>A,  −114C>A,  −114C>T,  and
−114C>G,  which  disrupt  the  BCL11A  or  ZBTB7A
binding  motifs  (ZBTB7A  being  another  major
transcriptional  repressor  of  γ-globin)[47,112,119].
Recently,  a  −113A>G  substitution,  which  creates  a
GATA1  consensus  motif,  was  identified  in  an
individual  with  HPFH,  boosting  HbF  levels  to
6.5%[24]; normal HbF levels in healthy adults are lower
than 1%[120]. To determine if the −113A>G substitution
is  sufficient  to  cause  the  HPFH phenotype,  CRISPR-
Cas9  was  used  to  introduce  the  −113A>G  HPFH
mutation,  an  artificial  GATA  site,  or  a  control
−113A>C  substitution  in  modified  HUDEP2  cells

using HDR and a donor template. The results showed
that  both  the  −113A>G  substitution  and  the  artificial
GATA  site,  but  not  the  −113A>C  substitution,  are
sufficient  to  elevate  HbF  levels[117].  Furthermore,
rather  than  disrupting  BCL11A  binding, in  vitro
experiments suggested the −113A>G variant creates a
de novo GATA1 consensus motif that allows GATA1
to  outcompete  BCL11A  for  binding,  therefore
activating  γ-globin  expression[117] (Fig.  7).  These
findings  suggest  that  re-creation  of  HPFH  SNPs  or
insertion of de novo activating motifs upstream of the
γ-globin  gene  could  be  alternative  approaches  to
treating  β-hemoglobinopathies  by  increasing  HbF
levels.

The  ability  to  ameliorate  symptoms  by  inserting  a
de novo activating motif is possible with base editors.
In  the  example  of  the  −113A>G  HPFH  variant,  the
adenine  would  fall  into  position  8  using  an  NGG-
ABE, which is less than ideal. However, new versions
of  base  editors  are  continually  being  evolved  with
more  relaxed  PAMs  that  expand  the  breadth  of  base
editing to loci  that  were once inaccessible[121–122].  The
Cas9-NG  ABE  developed  by  Hu  and  colleagues[121]

would put the −113A in position 7 instead of 8, which
is now within the activity window.

A similar HPFH-associated variant that creates a de
novo consensus motif is −175T>C. This variant creates
an  E-Box  consensus  motif  for  the  transcriptional
activator T-cell acute lymphocytic leukemia protein 1
(TAL1) and has been shown to increase HbF levels in
humans  to  41% of  total  hemoglobin[116,123].  When
using  Cas9-NG  ABE,  the  −175A  (the  adenine  being
on  the  opposite  strand)  would  be  placed  at  the
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Fig.  7   Creating de  novo activating  motifs  to  elevate  HbF.
Adenine base editors can be used to recapitulate an HPFH variant
upstream of the γ-globin promoters. Adenine deamination at-113A
creates a de novo GATA1 binding motif, which displaces BCL11A
and allows for γ-globin upregulation.
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protospacer position 5, an ideal placement to use with
ABE[103].  An  additional  HPFH-causing  variant
(−198T>C),  known  as  the  British-type  HPFH[124–125],
can  also  be  created  using  ABEs.  The  British-type
HPFH variant has been shown to introduce a de novo
Krüppel-like  factor  1  (KLF1/erythroid  KLF)
consensus  motif,  allowing  KLF1  to  upregulate  γ-
globin expression[126].

Disrupting  the BCL11A enhancer  can  also  be
achieved with  base  editing[127–128].  Evolution  of  ABEs
led  to  the  generation  of  ABE8e,  which  was  used  in
proof-of-concept  experiments  to  target  two  adenine
residues  within  the BCL11A enhancer  that  both  fall
within  the  protospacer  activity  window  (positions  4
and  7).  Treatment  of  HEK293  cells  with  ABE8e
produced  simultaneous  editing  of  both  adenine
residues  in  54.4% of  alleles  compared  to  7.9% with
ABE7.10[128].  Additionally,  a  new  CBE  was  recently
purified  (A3A  [N57Q]-BE3)  that  reduces  bystander
mutations and was used for multiplex base editing the
BCL11A enhancer  and  a  common  Chinese  β-
thalassemia  variant  (−28A>G)  in  patient-derived
CD34+ HSPCs[127]. The synergistic effects of multiplex
editing  led  to  higher  β-globin  expression  than
targeting  the  −28A>G  variant  alone,  and  higher  γ-
globin  expression  compared  to  targeting  only  the
BCL11A enhancer[127].  These  data  highlight  base
editing  as  a  potential  therapeutic  alternative  to
nuclease  interventions.  Moreover,  re-creating  HPFH
mutations  is  an  especially  attractive  strategy  as  the
effects of these mutations are known. 

Delivery

Although  there  are  a  number  of  potential  genome
editing  strategies  and  tools  to  treat  β-
hemoglobinopathies,  each  method  requires  efficient
and safe delivery of the editing components to HSCs.
The  most  practical  treatment  platform  for  β-globin
disorders  is  autologous  hematopoietic  stem  cell
transplantation  of  genome-edited  cells.  Using  the
patient's  cells  for ex  vivo genome  editing  offsets  the
necessity to identify compatible donors and practically
abolishes  the  risk  of  graft-versus-host  disease.
Compared to other tissues, such as the heart or brain,
accessing  the  patient's  target  cells,  CD34+ HSPCs,
whether  from  bone  marrow  or  mobilized  peripheral
blood, is a routine procedure that collects the cellular
material  needed  for ex  vivo delivery  of  the  gene
editing  components.  The  structure  of  the  components
being delivered  depends  on  the  therapeutic  approach.
Therapies  utilizing  NHEJ,  base  editing,  and  prime
editing  are  operationally  simpler  in  that  they  only

require  the  delivery  of  the  RNA  or  RNP  complex,
whereas  HDR-based  approaches  require  the  co-
delivery of the donor template, for example, a ssODN,
that  could  increase  costs  and  possibly  trigger  an
immune  response.  It  has  become  increasingly  clear
that  while nuclease-encoded plasmid DNA or mRNA
will evoke a toxic, antiviral type I interferon response
in human primary cells, delivery of Cas9-gRNA as an
RNP  complex  is  well-tolerated[129–131].  Delivery  of
RNPs  also  ensures  short-lived  expression  of  the
editing  components,  which  can  mitigate  off-target
effects[132] and  deleterious  cellular  responses,  such  as
activation  of  the  p53  pathway[133].  When  the  addition
of  template  DNA  is  required  for  HDR-mediated
editing,  recombinant  adeno-associated  viral  vectors,
which have evolved to  evade cellular  detection,  is  an
efficient  vehicle  to  deliver  DNA  templates[134–137].
However,  generating  a  GMP-grade  viral  delivery
system augments workload and expenses, and there is
still  debate  about  whether  viral  systems  lead  to
insertional  mutagenesis[138].  There  have  been  few
genotoxic  events  reported  in  patients  treated  with
lentiviral-based  methods[139–140];  however,  careful
consideration  should  be  given  when  applying  these
strategies.  Long-term follow-up is  also recommended
out  of  concern  for  random lentiviral  integration[138,141]

and  production  of  aberrant  transcripts[140,142].
Additional  considerations  to  optimize  efficiency
include  using  chemically-modified  gRNAs,  which
have  demonstrated  more  stability  and  increased
specificity[143].

Electroporation  is  a  non-selective  delivery  system
that  has  been  in  use  for  many  years  as  a  vehicle  for
transferring  DNA,  RNA,  and/or  protein  into  cells  by
enlarging  pores  on  the  cell  membrane via an  electric
pulse,  through  which  the  editing  components  can  be
shuttled  into  the  cell.  Many  studies  report  high
delivery  efficiency  using  electroporation,  specifically
in  HSPCs[97,144–146].  Regardless  of  the  structure  of  the
editing  components  and/or  delivery  vehicle,  a
sufficient  amount  of  highly  active  and  specific  Cas9
must  be  used to  achieve efficient  editing at  a  clinical
scale,  which  has  been  suggested  to  be  more  than  108

CD34+ HSPCs[147]. 

Current genome editing trials

Currently,  a  few  clinical  trials  are  underway  to
study  CRISPR-based  treatments  in  β-thalassemia  and
SCD  patients.  One  such  method  of  treatment  is
currently  in  phase  1/2  clinical  trials,  showing
promising  initial  findings.  The  investigational
treatment  CTX001  being  developed  by  CRISPR
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Therapeutics  and  Vertex  Pharmaceuticals  was
developed  based  on  the  discovery  of  the BCL11A
erythroid-specific  enhancer[43].  CTX001  is  a
therapeutic  CRISPR-Cas9  RNP  complex  that  creates
indels  at  the  GATA1/TAL1  binding  sites  in  the
BCL11A erythroid  specific  enhancer,  which
significantly  diminishes BCL11A expression
exclusively  in  the  erythroid  lineage,  elevating  HbF
levels (Fig. 6A and C). It has been demonstrated that a
Cas9:gRNA  RNP  complex  targeting  the BCL11A
enhancer  in  CD34+ HSPCs  can  achieve  up  to  90%
indels,  repressing BCL11A expression  by  more  than
50%[148]. Thus far, three patients, two with transfusion-
dependent  β-thalassemia  (NCT03655678)  and  one
with SCA (NCT03745287) who were treated with this
therapy,  have  discontinued  RBC  transfusions.
Moreover,  treated patients  have been expressing high
amounts  of  fetal  hemoglobin for  more than 6 months
following treatment[149]. CTX001 treatment consists of
mobilizing  and  collecting  patients'  CD34+ HSPCs,
which  are  transiently  treated  with  CRISPR-Cas9 ex
vivo,  and  following  busulfan  myeloablative  condi-
tioning,  are  reinfused.  This  approach  is  widely
applicable in that a consensus motif is targeted rather
than  patient-specific  variants,  which  allows  for  the
production of only one gRNA as a universal treatment.

Sangamo  Biosciences  and  Sanofi  are  conducting  a
similar  clinical  trial  using  ZFNs  for  genome  editing.
Like  the  previous  study,  this  phase  1/2  trial  also
targets the disruption of the erythroid lineage-specific
BCL11A enhancer  in  autologous  CD34+ cells  to
increase expression of HbF in their erythroid progeny
(NCT03432364).  Alternative  strategies  to  treat  β-
thalassemia  and  SCD,  including via non-nuclease
gene delivery, have been reviewed elsewhere[150–154]. 

Off-target  editing  prediction  and
identification

All  gene  editing  approaches  hold  the  possibility  of
creating  unwanted  genomic  alterations  by  acting  at
unintended sites.  Off-target  alterations  to  the  genome
may result from similarity to the target sequence, with
or  without  mismatches,  bulges,  or  non-canonical
PAMs.  Off-target  sites  will  differ  for  each  gene
editing  tool.  Moreover,  each  gRNA  and  Cas9
combination has a unique off-target profile. Similarly,
gRNAs  used  with  different  Cas9  variants  or  fusions
will  have a  unique off-target  potential.  As mentioned
above,  transient  expression  of  CRISPR  reagents via
RNP  delivery  has  been  shown  to  reduce  off-target
editing[155].  Additionally,  if  a  donor  is  required  for  a
given  strategy,  off-target  integration  is  a  possibility.

One  of  the  more  concerning  outcomes  of  off-target
mutagenesis  with  a  CRISPR-Cas9  therapy  applied  to
HSPCs  is  the  possibility  of  clonal  expansion  and
leukemogenesis.

In order to identify bona-fide off-target sites within
the  vast  genome,  an  iterative  process  is  often
undertaken  (Fig.  8).  First, in  silico and/or in  vitro
methods are used to predict off-target sites, which are
then  verified  by  more  in-depth  methods,  such  as
targeted  amplification  or  a  multiplexed  targeted
amplification  approach  called  RNAse  H-dependent
(rhAmp)  PCR[156],  followed  by  next  generation
sequencing  (NGS).  There  are  a  number  of  programs
and  protocols  for  identifying  and  validating  potential
off-target  sites,  each  with  their  own  strengths  and
weaknesses, reviewed in depth elsewhere[157–159]. 

In silico off-target prediction

There  are  several in  silico programs  available  to
identify potential off-target sites in the genome, based
on  sequence  similarity  to  the  target  alone  or  also
considering  mismatches  and  extra  base  pairs
(bulges)[160–166].  Some  programs  use  machine  learning
to  predict  off-targets[167–168],  while  Doench  and
colleagues  developed  an  algorithm  for  cutting
frequency  determination  (CFD)  through  intensive
screens  of  perfect  match  and  single  base  mutated
guides[169–170].  CFD  was  developed  to  maximize  on-
target  activity  and  predict  off-target  behavior  of  a
guide,  allowing  for  the  selection  of  guides  with  low
off-target potential. 
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Fig.  8   Off-target  discovery  and  validation  process. The  first
step  in  the  off-target  identification  process  is  discovery,  either
through in silico prediction of similar sequences, in vitro activity of
the nuclease on naked or genomic-context DNA, or a combination
of both in silico and in vitro methods. These methods produce a list
of putative off-target sites that can then be further interrogated by
targeted PCR amplification of the candidate sites in the cell type of
interest,  followed by next  generation  sequencing.  Sites  containing
indels are considered verified off-targets.
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In vitro off-target detection

Independently  or  in  conjunction  with in  silico
prediction,  off-targets  can  be  identified  by in  vitro
methods.  CIRCLE-seq[118] and  Digenome-seq[171] are
ultra-sensitive  methods  to  detect  nuclease  activity  on
cell-free, i.e.,  "naked"  DNA.  This  sensitivity  likely
over-represents  the  number  of  bona-fide  off-targets
identified  by  targeted  deep  sequencing  of  the
candidates.

Alternatively,  many  protocols  rely  on  gRNA
binding or Cas9 nuclease activity on genomic DNA in
a  cellular  context,  which  may  more  closely  resemble
off-targets  in  the  experimental  environment.  GUIDE-
seq[172] captures  DSBs  with  a  short  dsDNA  fragment
via NHEJ. This process will identify any site of DNA
breakage, regardless of cause, and requires the cells be
amenable  to  the  introduction  of  the  DNA  fragments,
which can be a  limitation especially  in  primary cells.
DNA DSB labeling is  also  the  mode of  action of  the
BLESS  protocol[173],  which  uses  barcoded,
biotinylated  linkers  to  mark  breaks.  A  method  called
end-sequencing[174] is  similar  to  BLESS,  but
immobilizes  cells  in  agarose  to  minimize  DNA
damage from fixation steps. Most recently, the BLISS
technique[175] has been developed which mobilizes T7
promoter  sequences  into  breaks,  giving  the
investigator  the  ability  to  use  T7  transcription  to
sequence  sites.  UDiTaS[176] utilizes  uni-directional
targeted sequencing to detect indels,  as well  as larger
chromosomal  rearrangements  such  as  translocations
and  inversions.  DISCOVER-Seq[177] identifies  DNA
damage via detection  of  DNA  repair  factors  that  are
recruited to the sites of breaks in live cells.

The  above  assays  are  useful  in  detecting  off-target
edits after the creation of a DSB, but new methods are
still being developed to fully interrogate genome-wide
off-target  potential  of  base  editors  and  prime  editors.
A  modified  version  of  Digenome-seq  was  developed
to  evaluate  the  off-target  potential  of  base  editors  by
using  enzymes  that  create  DSBs  at  the  products  of
adenine  or  cytosine  deamination:  inosine  or  uracil,
respectively[178].  A  novel  method  employed  for  off-
target  identification  with  base  editor  technology
involved injecting the editor into one cell of a two-cell
embryo[179].  The  edited  cell  and  its  control  sister  cell
were  then  compared,  and  the  differences  observed  in
the  genomes  of  the  two  cells  were  attributed  to  the
activity of  the base editor.  While this  work identified
many  putative  off-target  sites,  its  robustness  and
reproducibility will need to be further assessed. 

Targeted deep sequencing of putative off-targets

Once  candidate  off-targets  have  been  identified,

these  sites  can  be  interrogated via targeted  deep
sequencing  in  the  experimental  context.  Sites  are
amplified  by classic  targeted PCR or  rhAmp PCR[156]

followed  by  NGS.  The  starting  material  and  read
coverage  will  determine  the  sensitivity  and  detection
level of the off-target validation. 

Conclusion

In this review, we have discussed several strategies
for  treating  β-hemoglobinopathies,  specifically  SCD,
and  the  associated  technical  considerations.  We
believe  that  these  technical  limitations  will  be
overcome, and in fact, the first U.S. human trials for a
gene  editing  approach  for  SCD  are  showing  great
promise.  As  we  deepen  our  understanding  of  gene
editing  technologies  and  the  genetic  factors  involved
in  these  diseases,  even  less  restrictive  and  more
accurate  and  efficient  genome  editing  strategies  will
be  developed.  Indeed,  we  are  optimistic  that  several
gene  editing  therapies  for  the  treatment  of  β-globin
disorders  will  prove  beneficial,  giving  patients  and
doctors  a  portfolio  of  treatment  options.  As  these
curative  therapies  continue  to  advance,  perhaps  the
greatest  burden  will  be  making  these  treatments
available  in  resource-limited  areas  in  which  there  is
the largest disease burden.

The cost of producing gene editing-based therapies
will  be  high  because  of  the  costs  associated  with  the
development,  manufacturing,  distribution,  and
approval  of  a personalized cell  product.  Additionally,
highly  specialized  equipment,  facilities,  and  trained
physicians are needed in order to successfully perform
ex vivo editing and reimplantation of the modified and
quality-controlled  cell  product.  This  will  ultimately
translate  to  limited  access  of  these  therapies  to  a
population which is more likely to live in low-income
and developing regions, such as Africa and Southeast
Asia  that  lack  the  advanced  equipment  and  facilities
required for isolating, editing, culturing and delivering
cellular material to humans. It is essential that as these
therapies  are  being  developed,  we  continually
consider  and  evaluate  strategies  that  will  make  them
available  to  resource-constrained  regions  where
hemoglobin  disorders  are  devastatingly  prevalent.
Advances  in in  vivo delivery  of  gene  therapy  or
genome  editing  treatments  would  likely  allow  a
broader uptake of these approaches across the globe.

Although  SCD  was  first  described  over  a  century
ago  and  the  genetic  basis  determined  more  than  60
years ago, development of novel treatment options has
been sluggish and limited.  With advances in multiple
fields,  we  no  longer  hang  our  hopes  on  just  another
treatment for SCD: we envision a cure.
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