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Abstract

Enzymes play a critical role in a wide array of industrial, medical, and research applications

and with the recent explosion of genomic sequencing, we now have sequences for millions

of enzymes for which there is no known structure. In order to utilize modern computational

design tools for constructing inhibitors or engineering novel catalysts, the ability to accu-

rately model enzymes is critical. A popular approach for modeling enzymes are comparative

modeling techniques which can often accurately predict the global structural features. How-

ever, achieving atomic accuracy of an active site remains a challenge and is an issue when

trying to utilize the molecular details for designing inhibitors or enhanced catalysts. Here we

explore integrating knowledge about the required geometric orientation of conserved cata-

lytic residues into the comparative modeling process in order to improve modeling accuracy.

In order to investigate the utility of adding this information, we first carefully construct a

benchmark set of reference structures to use. Consistent with previous findings, our bench-

mark demonstrates that the geometry between catalytic residues across an enzyme family

is conserved and does not tend to deviate by more than 0.5Å. We then find that by integrat-

ing these geometric constraints during modeling, we can double the number of atomic level

accuracy models (<1Å RMSD to the crystal structure ligand) within our benchmarking data-

set, even for targets with templates as low as 20-30% sequence identity. Catalytic residues

within an enzyme family are highly conserved and can often be readily identified through

comparative sequence analysis to a known structure within the enzyme family. Therefore

utilizing this readily available information has the potential to significantly improve drug

design and enzyme engineering efforts for which there is no known structure for the enzyme

of interest.
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Introduction

The atomic structure of an enzyme is crucial in the design of novel therapeutics [1], under-

standing of function [2], and our ability to re-engineer their functionality [3]. Therefore, many

excellent in silico-based methods have been developed to predict an enzyme’s structures from

the protein sequence. One of the most commonly used techniques is homology modeling,

where the central tenet is that the structure a sequence will fold into is primarily dictated by

the degree of sequence homology that the query sequence has to the solved crystal structure

(template). It is generally accepted that the closer in sequence identity of the query and the

template(s), the more accurate the modeling will be [2]. While the proliferation of homology

modeling tools has resulted in the ability to generate molecular models in which the general

fold and placement of amino acids can be accurately predicted for roughly 70% of protein

sequences [4], a 0.5Å error in the backbone can lead to 15% decrease in accuracy of the χ1

angle when modeling side chains [5]. These errors in the placement of side chain atoms can

limit the model’s usefulness when either designing therapeutics or carrying out molecular

analysis to understand and re-engineer protein function.

One of the most promising approaches in recent years for improving the atomic accuracy

in modeling is through the integration of readily attainable sparse experimental or bioinfor-

matics data. For example, when deuterated NMR NOE constraints are added to model build-

ing, models generally gained over a 1Å increase in accuracy [6]. In other work, low resolution

cryo EM maps have been added to enable solutions for eight out of thirteen X-ray datasets that

were not solvable with any other technique [7]. To build on this growing realization that inte-

grating data can be used to enhance modeling accuracy, we hypothesized that the integration

of a new type of readily available data could be used when modeling enzymes: the mechanistic

data of enzyme reactions that has been obtained through enzymology studies over the last sev-

eral decades. It is well established that the precise geometric orientation of catalytic residues

within an enzyme is critical for the enzyme to catalyze the chemical reaction [8][9][10]. There-

fore, each catalytic residue that participates in the reaction must have a precise location relative

to all of the other catalytic residues. In fact, this conservation of the spatial orientation has

been known for some time and previously studied in depth by the Thornton group [9]. Here,

we propose that adding geometric constraints that enforce the catalytic residues to maintain a

catalytically viable arrangement for the enzyme’s reaction during modeling will result in a gen-

eral increase in modeling accuracy, particularly within the active site.

In the effort to measure the expected increase in accuracy by integrating knowledge of cata-

lytic geometry, we constructed a benchmark set of target PDB structures and follow a combi-

nation of homology modeling protocols with subsequent docking of ligands as inspired by

recent landmark studies [11]. Here we find, over a subset of crystal structures in the same

enzyme family, the distances between pairs of Cα and Cβ atoms on catalytic residues deviate by

no more than 0.5Å, from the catalytically viable arrangement, a result consistent with previous

work on this topic [12]. We demonstrate that incorporating this knowledge, in the form of dis-

tance constraints, when modeling enzymes results in an increase in modeling accuracy of the

enzyme active site. We see an improvement in the placement of the catalytic residue Cα atoms

by an average of 0.3Å We also show that an improvement in the accuracy of the model leads to

improved accuracy in important downstream applications such as docking. Using catalytic

geometry (CG) constraints as an augmentation to standard homology modeling methods (Fig

1), we observe the number of ligands docked into models achieving atomic accuracy (i.e. <1Å
RMSD) is doubled relative to current state of the art modeling protocols. This improvement is

observed for modeling problems both when the query sequence is close and distal in sequence

homology to the template(s).

Geometric constraints from enzyme reaction chemistry can increase enzyme active site modeling accuracy
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Results

Verifying conservation of inter-catalytic residue geometries

We demonstrate in our benchmark that the distances between corresponding pairs of catalytic

residue atoms are conserved for enzymes within a family performing the same type of chemical

reaction (i.e. all trypsin-like serine proteases cleave a peptide carbonyl bond using a serine that is

backed up by a histidine-aspartate network [17]). Each target within our benchmark set was care-

fully selected to ensure that catalytic residues were in a conformation consistent with the reaction

mechanism. To measure the distance variability between conserved catalytic residues, we struc-

turally overlaid up to ten homologs that ranged from 20%-80% identity onto the structure of the

query sequence and calculated the Cα RMSD over both the entire protein and over just the cata-

lytic residues. As sequence homology decreases so does structural homology (Fig 2A, dark purple

Fig 1. Addition of information to augment template-based modeling and ligand docking protocols. Sequence!

Structure Beginning with a target sequence, apo protein structures can be predicted. The accuracy of these models has

been shown to increase with the addition of other sources of information, including accurate sequence-structure

mappings (alignments) [13], familial (evolutionary) constraints [14], multiple templates [15] and fragments [16]

Structure!Docked Structure Taking the apo structure and docking a ligand into results in a docked structure, with

a ligand bound. The accuracy of these models has been shown to increase with the addition of ligand conformational

degrees of freedom and chemical mechanism constraints. By adding CG constraints, we measure the increase in

accuracy over the entire pipeline.

https://doi.org/10.1371/journal.pone.0214126.g001
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points), consistent with the prior work in the field [18][19]. However, the catalytic residues main-

tain within 1Å Cα RMSD (Fig 2A, light pink points), even as the sequence homology decreases

down to the<30% levels. These results are consistent with known literature [12].

To estimate the allowed distance deviation of catalytic residues for modeling, we systemati-

cally measure the distances between each pair of atoms on the target catalytic residues (Cα—

Cα, Cα—Cβ, Cβ—Cβ), and then the equivalent pair on the template and calculate the difference.

We find that for both the Cα—Cα and the Cβ—Cβ distances, the deviation does not vary much

as the sequence homology varies (Fig 2B). The deviation from the catalytically viable arrange-

ment is near 0.5Å for both the Cα—Cα and Cβ—Cβ atom to atom distances for catalytic resi-

dues. The deviation histograms (Fig 2C and 2D) are normally distributed around 0 with a

standard deviation of roughly 0.5Å. These results agree with the approximately 0.5-0.6Å devia-

tion previously seen by the Thornton group [12].

Model improvement

Given this observation of stringent structural conservation across sequence space for enzymes

that catalyze related reactions, we explored adding these distances as constraints to the system.

For each target in the benchmark, homology models were made with and without adding CG

constraints. In order to add CG constraints into RosettaCM [20], the distances between each

Fig 2. Structural informatics of conservation of inter-catalytic residue atom distances A- The RMSD of each target to each template

structure is shown. The RMSD over just the catalytic residues (light pink), and the overall protein RMSD values are shown as a function

of the sequence homology of each template. B—Distribution of the benchmark template percent identity to target sequences and the

deviation of the Cα of each template to the target catalytic residues. C- Deviation of Cα—Cα distances to the reference distances in the

target crystal structure. Note the gaussian shape with a 0.5Å deviation. D- The Cβ—Cβ deviation to reference measurements, again with a

narrow distribution. The distance deviation distribution of Cα-Cβ are similar to that of Cβ-Cβ and are centered at 0 with an approximate

deviation of 0.5Å (S1 Fig).

https://doi.org/10.1371/journal.pone.0214126.g002
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pair of catalytic residues atoms (both Cα and Cβ atoms) are set using a harmonic restraint. For

example, to constrain the distance between the Cβ atoms of catalytic residues CYS-73 and

CYS-217, the following constraint is added to the simulation:

AtomPair CB 73 CB 217 SCALARWEIGHTEDFUNC 1000 HARMONIC 8:23 0:5

This sets that distance to be 8.23Å +/- 0.5Å and the constraint is upweighted by the factor

of 1000. This factor ensures that the CG constraints have a higher weight than any other

restraints on the system. In the modeling accuracy analysis we evaluated the minimum RMSD

value from a pool of the lowest 5 models based on energy (Fig 3A1, 3A2 and 3A3), as well as

the single lowest energy model (S2 Fig). In each case, the RMSD between the model and the

reference crystal structure can be measured between the Cα atoms in a) the catalytic residues

b) the active site residues c) the entire protein structure. With the addition of CG constraints,

the model accuracy increases by 0.3Å on average for the catalytic residues (Fig 3).

This indicates that the catalytic residues are modeled as expected from the constraints. As

more residues are included in the analysis (active site) the improvement decreases to 0.2Å,

and over the whole protein, the improvement is lost. This indicates that the CG constraints

enforce the proper placement of the catalytic residues, but in general don’t act as lynchpins

Fig 3. Adding CG constraints to apo models A-1 Catalytic Residues A-2 Active Site Residues (8Å), A-3 All Residues—The Y axis contains the Cα
RMSD to the reference crystal structure with the CG constraints added. The X axis contains the Cα RMSD of to the reference crystal structure of the

standard homology modeling. The RMSD is calculated for different sets of residues, over either just the catalytic residues, the residues predicted to be in

the active site, or over the entire protein. Points below the line indicate that including the distances helps the model accuracy. Points on the line

demonstrate that there was no improvement in accuracy. Targets are colored by the difficulty based on sequence homology of the closest template used

for modeling. Bottom—In each cell, the Cα atoms of each catalytic residues (Cys-73, Cys-217 and Glu-208) are shown in burgundy. Each of the Cβ
atoms are shown in green. B-1 Crystal structure of benchmark target 2gke (grey). Lines drawn between indicate the measurements between atoms that

are used as CG constraints. B-2—With the addition of the CG constraints to the model, the catalytic residues of the CG constrained model (green)

overlays with the crystal (grey). B-3—Standard homology model (red) with the Cα and Cβ atoms shown as spheres. All results in this figure are from the

best of the five lowest in energy models, the equivalent figure illustrating results from the single lowest energy model with addition of CG constraints is

presented in S2 Fig.

https://doi.org/10.1371/journal.pone.0214126.g003
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that improve modeling accuracy beyond the proper placement of the catalytic residues. The

data follows the general trend that the closer the template is to the target sequence, the more

accurate the active site Cα atom placement is (models built from templates closer in sequence

identity are closer to the origin—Fig 3A-1, 3A-2 and 3A-3).

In one particular case, 2gke, we observed that enforcing correct placement of the Cα and

Cβ atoms of catalytic residues through CG constraints was crucial for accurate modeling of

enzymes. This was particularly noteworthy as 2gke has high homology (79%) to the template

used and would normally be considered an “easy” homology modeling problem. However,

when modeled with without CG constraints the catalytic residues RMSD go from 1.8Å Cα
RMSD to 0.4Å Cα RMSD. In addition, the overall structure goes from 2.8Å to 0.9Å Cα RMSD.

Ligand docking improvement

Given the improvement in the accuracy of the placement of the catalytic residues, we expected

that we would see improvements in the accuracy of downstream applications like docking. We

docked the conformational ensembles of the known ligand into the five lowest energy models

from the modeling step, allowing different structures as starting points for the same target, and

enforced the ligands to dock in a manner consistent with the enzyme mechanism [21].

The models used to evaluate effectiveness of CG constraints were passed through four fil-

ters. First, the lowest 10% of structures based on overall protein system score were chosen

from each of the five starting models and combined into a pool of structures. Second, the pool

of structures were filtered to remove any models with a single enzyme constraint greater than

one, indicating the model was inconsistent with known mechanistic chemistry. Third, the low-

est 50% based on active site energy were kept, summing energies from the residues predicted

to be within 8Å of the active site. Fourth, the models were sorted based on the ligand interface

score. Finally, out of the 5 structures with the lowest interface score, we select a) the lowest

interface energy model (S3 Fig) and we select b) the lowest RMSD model from those 5 struc-

tures. In the first analysis (a) we are testing how well we perform if we trust the accuracy of the

energy function to discriminate between native and non-native poses. In the second analysis,

we analyse our best 5 models based on energy, with the understanding that the energy function

may not be able to distinguish between the most native like pose and other structures similar

in energy. This is an approach commonly used in CASP-style competitions [22], were multiple

submissions for structure predictions are allowed.

We find 16 targets in which both standard modeling and CG modeling identify structures

that are consistent with the mechanistic detail known for the system. When CG constraints

were not added, only 4/16 of those ligands were placed within a 1Å RMSD to the crystal struc-

ture, whereas with the inclusion of the CG constraints, 10/16 sub 1Å RMSD models were iden-

tified (Fig 4). This is a 2.5-fold increase in the number of sub 1Å accuracy models that can be

modeled by including the CG constraints.

In an ideal case (Fig 4—2gke) the addition of a several select distances greatly impacts the

accuracy of the ligand and the enzyme structure. Here, several catalytic residues are located

on loops. With standard homology modeling techniques, the ligand heavy atom RMSD is

1.6Å from the reference crystal structure ligand. The flexibility of loops has been long known

in the literature as problematic for structure prediction [23] and it is no surprise that the

loop is not correctly placed for the chemical reaction to take place. With the definition of cat-

alytic residues, the cysteines are correctly placed to accommodate the reaction yielding a

ligand heavy atom RMSD of 1.0Å. The impact in this case is an improvement of 0.6Å in the

placement of the ligand, which can be seen to recover nearly all the correct contacts at the

interface (S1 PDF).

Geometric constraints from enzyme reaction chemistry can increase enzyme active site modeling accuracy
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In another case (Fig 4—1oif) the addition of several distances between catalytic residue Cα
and Cβ atoms improves ligand RMSD by 0.9Å. Interestingly, in this case the addition of the

CG constraints increases the active site RMSD by 0.3Å (although it is still sub 1Å). This exam-

ple demonstrate how small details in the orientation of catalytic residues can have a large

impact on the docking results, and that RMSD-like metrics can be a misleading metric for

evaluating the actual goal of accurately predicted active site-ligand molecular interactions.

We also find that for 20% of targets (4/20) the only way to get a viable structure was by

including the CG constraints. In these cases, the models without the CG constraints applied

during modeling, were unable to find a docked model that also satisfied the enzyme mecha-

nism constraints. For example, 1xpz was unable to identify a low energy model that bound the

metal in a catalytically viable arrangement and therefore no standard models were identified as

being consistent with reaction mechanism knowledge (S1 PDF 5.17-5.20). However, the mod-

els with CG constraints were accurate enough that solutions were able to be found. There are 2

targets which find no models. In both cases (1eh5, 1tqh) the nearest template identified were

24 and 31% similar (S1 PDF 5.21-5.22). These targets are both in the difficult category in

which homology modeling is known to have failures.

Discussion

As many other recent techniques that improve homology modeling accuracy have found,

including sparse experimental data can lead to drastic improvements in model accuracy. We

proposed that the decades of research studying enzyme reaction mechanisms can be an addi-

tional source of sparse data that can improve modeling of enzymes. Specifically, catalytic resi-

dues of enzymes are known to adopt a specific geometry as they catalyze chemical reactions.

However, typically this knowledge about how the chemical reaction takes place is not used

during homology modeling of enzymes. Here we create a benchmark to demonstrate that

Fig 4. Docking with and without CG constraints. A Ligand RMSD over all heavy atoms in the ligand versus the reference crystal structure ligand. The

y-axis are RMSD of the CG constraint added models, the x-axis are RMSD of the standard models. Points below the diagonal are improved with the

addition of CG constraints. Points on the line are not affected and points above the line are worse with the addition of CG constraints. The green line

marks the 1Å RMSD cutoff for the models made with CG constraints. On the x-axis there are 4 targets that were unable to find a solution without the

addition of CG constraints (CG only). Targets are colored by the difficulty based on sequence homology of the closest template used for modeling. 2

targets are not shown as they were unable to identify solutions in either case. B-1 Docking results for target 2gke with CG constraints, crystal structure

(grey) overlaid with model (green). B-2 Docking results for target 2gke without CG constraints, crystal structure (grey) overlaid with model (red). C-1

Docking results for target 1oif with CG constraints, crystal structure (grey) overlaid with model (green). C-2 Docking results for target 1oif without CG

constraints, crystal structure (grey) overlaid with model (red).

https://doi.org/10.1371/journal.pone.0214126.g004
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sparse constraints that describe the arrangement of catalytic residues in the enzyme can be

included to increase model accuracy. The increase in accuracy is seen especially in the place-

ment of the Cα atoms of the catalytic residues, where an average improvement of 0.3Å is seen

over standard methods. This can have a drastic effect on the accuracy of ligand docking, as we

have shown this method yields 2-fold more structures with ligands docked below 1Å RMSD

accuracy.

Using our benchmark, we demonstrate that the distances between pairs of Cα and Cβ atoms

on catalytic residues are conserved and can be used in general as a constraint. This indicates

that catalytic residues in enzymes are typically prearranged to perform catalysis in both the

position and the angle in which the side chains of the catalytic residues are pointing. Therefore,

these distances could be measured from a single solved homologous structure, as long as it is

in a catalytically viable arrangement, and the distances could be applied to modeling hundreds

or thousands of related target sequences.

Another interesting result is how few catalytic residues must be defined to get an improve-

ment. In the case of 2gke, a diaminopimelate epimerase, the addition of CG constraints

between 3 catalytic residues allows for recovery of all of the atomic contacts in the docked

structure (Fig 4—2gke) with a heavy atom ligand RMSD of 1.0Å. In contrast, with the standard

modeling methods the ligand has a higher RMSD by 0.6Å and upon analysis of the active site

few if any of the molecular interactions between the protein and ligand are recovered. This

demonstrates that the inclusion of CG constraints, which can improve the accuracy of the

model, can lead to improvements in accuracy for downstream applications like ligand docking.

This holds a lot of potential for new methods which require the modeling of an enzyme active

site for either the accurate docking of new drugs or modeling enzymes in genomic mining

efforts to discover new function ([24] and [25]).

While integration of CG constraints can increase modeling accuracy, one drawback of this

technique is that it requires detailed knowledge and understanding of the reaction mechanism.

There are thousands of enzymes for which mechanistic studies have been conducted, but for

enzymes where the reaction mechanism is unclear, this method will not be of use. This technique

also requires the identification of a homologous enzyme for which there is a known structure in

a catalytically relevant conformation from which to measure the catalytic residue CG constraint

distances. Fortunately, there are structures in many different classes of enzymes that are suitable

as well as a large number of theoretical enzyme active site studies which may also provide inter-

catalytic residue distance information. Given that our benchmark is comprised of monomeric

enzymes, we have yet to explore how integration of this type of data will affect modeling accuracy

in enzymes where the active sites are composed of multiple symmetric subunits.

Overall, we have demonstrated the stringent structural conservation of catalytic residues

within enzyme active sites can be utilized for improving protein modeling accuracy. This adds

to a growing body of knowledge that integration of previously established or readily obtainable

experimental data into protein modeling is an effective approach of generating atomically

accurate molecular models. Due to the exponentially growing sequence databases the impor-

tance of being able to computationally generate atomically accurate model of a protein is

becoming of paramount importance, and methods such as these are likely to play an essential

role in the future of biomolecular studies.

Methods and materials

Construction of benchmarking set of PDB crystal structures

In order to evaluate if addition of CG constraints increases accuracy, a set of target PDB crystal

structures was selected to predict using homology modeling and ligand docking techniques.

Geometric constraints from enzyme reaction chemistry can increase enzyme active site modeling accuracy
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For a crystal structure to have residues that are in the catalytically viable arrangement, we

restricted our PDB search to only structures that had either a transition-state inhibitor, sub-

strate, reactant or product bound to the active site. In addition, the transition-state, inhibitor,

substrate or product was required to be bound in a catalytically productive and relevant orien-

tation based on the current understanding of the enzymes mechanism. All of these protein

structures are monomeric and cover a range of protein lengths, from 131 to 583 amino acids.

They cover the EC classes 3,4 and 5, a range in the number of catalytic residues, from 2 up to 6,

and a range of difficulties in homology modeling, from easy (>60%) to hard (<30%) (Table 1).

Template identification and alignments

In order to identify templates to be used for homology modeling, each target sequence was

searched using HMMER3 [26] against the PDB database. The full protein sequences were

downloaded for all significant matches, then these sequences were aligned to the target

sequence using PROMALS3D [27], and any match with over 80% similar to the target

sequence was removed. This removes the best matching structures for modeling, and ensures

that the models will be built without bias towards the answer. Up to 10 templates below the

80% threshold were kept for modeling. In addition, to increase the sampling efficiency of the

modeling, each target sequence was trimmed, by removing from the N & C termini any por-

tion of the sequence that had no coverage by any template. The templates identified and used

for each modeling target are attached (S4 Fig).

Definition of catalytic residues and enzyme mechanism chemistry

For each target, the literature was searched to identify the catalytic residues. In many cases,

these follow from well-established mechanistic studies. In addition, detailed studies of each

mechanism were encoded in the form of an enzyme constraint file [21], which specifies pre-

cisely how an enzyme interacts with the substrate according to the reaction chemistry. These

have previously been used to ensure that the ligands are docked in a way that is consistent with

mechanistic knowledge. For each of these constraint files, because the crystal structures were

restricted to those with ligands interacting in a way consistent with how the reaction mecha-

nism takes place we are able to create the enzyme design constraint files using common physi-

cal chemistry knowledge (i.e. using ideal bond distances and angles). The enzyme mechanism

docking constraints were verified by recovering the correct conformation in the crystal struc-

ture target (S1 PDF).

Spatial conservation of the Cα and Cβ atoms of the catalytic residues for

enzymes

Each target PDB structure and the templates identified create a set of proteins in the same

enzyme family. Given how the targets are selected for the benchmark, the catalytic residues are

in a catalytically viable arrangement. The templates have no such selection criteria, and are

only required to have sequence homology to the target sequence. Therefore, by overlaying the

templates onto the target PDB, and measuring the distance between 2 atoms on separate cata-

lytic residues (Cα and Cβ atoms) and repeating that measurement for many solved crystal

structures in the same enzyme family, an estimate of the allowed deviation between those 2

atoms can be calculated.

For a given target sequence S, with catalytic residues A and B, the Euclidean distance d can

be measured d = m(A,B) between specific atoms. The equivalent distance of equivalent pairs

of catalytic residues A’ and B’ on template structure T can be measured d’ = m(A’,B’). Here,

the equivalent distance can be identified using the sequence alignments which map sequence S

Geometric constraints from enzyme reaction chemistry can increase enzyme active site modeling accuracy
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to sequence T. The difference (Δ = d − d’) between the target distance and the template dis-

tance approximates the deviation from the catalytically viable arrangement found in the

templates. By enumerating all combinations of catalytic residues over Cα and Cβ and then mea-

suring the equivalent pairs of catalytic residues in the template structures, and plotting the dif-

ference, an estimate of the naturally occurring deviation from the catalytically viable geometry

can be calculated.

Calculation of CG constraints

We restrict out measurements to the distances between Cα and Cβ atoms. For the simulations

performed, the distances between the Cα—Cβ, Cβ—Cβ and Cα—Cβ atoms were measured on

the target crystal structure and implemented as harmonic distances constraints in Rosetta with

a 0.5Å tolerance (S2 PDF for example). This assumes that these distances may be measured or

calculated a priori within an error of 0.5Å.

Homology modeling

For each target sequence, custom fragments files were created using ROBETTA [49][50] in

benchmarking mode which removes any fragments within 80% of the target sequence to

remove biasing the models toward the correct solution. Using the aligned sequences of the

target and the templates identified, evolutionary constraints were calculated and used for

modeling [14]. Evolutionary constraints are previously identified residue to residue distance

Table 1. The benchmark set of enzymes with their catalytic residues in a catalytically viable arrangement. This set covers EC classes 3,4,5, a range of lengths, difficulties

and mechanisms These are all monomeric enzymes with a ligand bound in the active site. The approximate difficulty of the modeling target is shown in percent identity

(PID) column, which gives the sequence homology of the closest template used in modeling.

PDB Code Length of Protein Sequence Catalytic Residues EC Detail PID(%)

Nearest Templates

Reference

1ogx 131 16,40,103 5.3.3.1 Ketosteroid isomerase 32.8 [28]

1oh0 131 16,40,103 5.3.3.1 Ketosteroid isomerase 33.6 [29]

1w6y 131 16,40,103 5.3.3.1 Ketosteroid isomerase 33.6 [30]

1p6o 161 62,64,91,94 3.5.4.1 Cytosine deaminase 27.7 [31]

4fua 215 73,92,94,155 4.1.2.17 L-fuculose-1-phosphonate aldolase 40.9 [32]

2nlr 234 104,120 3.2.1.4 Endoglucanase 70.7 [33]

1tqh 247 25,94,193,223 3.1.1.1 Carboxylesterase 31.6 [34]

1ney 247 12,95,165 5.3.1.1 Triosephosphate isomerase 53.4 [35]

1xpz 258 94,96,119,199 4.2.1.1 Human carbonic anhydrase 79.8 [36]

1jcl 260 47,102,137,167,201 4.1.2.4 Deoxyribose-phosphate aldolase 32.3 [37]

3ia2 271 28,94,95,222,251 3.1.1.2 Esterase 53.9 [38]

2gke 274 73,208,217 5.1.1.7 Diaminopimelate epimerase 77.4 [39]

1eh5 279 41,115,233,289 3.1.2.22 Palmitoyl-protein thioesterase 1 24.7 [40]

2jaj 289 78,172,268,273 3.5.3.18 Dimethylarginine dimethylaminohydrolase 1 29.9 [41]

1h2j 303 139,202,228 3.2.1.4 Endoglucanase 68.0 [42]

6cpa 307 69,72,145,196,248,270 3.4.17.1 Carboxypeptidase A 79.5 [43]

1hqd 320 17,87,88,264,286 3.1.1.3 Lipase 77.3 [44]

3veu 386 32,219 3.4.23.46 Human beta secretase 53.3 [45]

2jie 454 167,298,356 3.2.1.21 β-glucosidase B 46.4 [46]

1oif 468 166,295,351 3.2.1.21 Family 1 β-glucosidase 68.3 [47]

1oim 468 166,295,351 3.2.1.21 Family 1 β-glucosidase 68.3 [47]

1ju3 583 44,117,118,259,287 3.1.1.84 Cocaine esterase 29.3 [48]

https://doi.org/10.1371/journal.pone.0214126.t001
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constraints which supplement the Rosetta score function by giving a bonus to satisfying each

constraint found. The exact same modeling protocol was used for homology modeling and

docking, with the single change of adding of Cα—Cβ, Cβ—Cβ and Cα—Cβ constraints (Fig 1).

For each target sequence, 100 models were generated using RosettaCM [20], and either the sin-

gle lowest energy model or the lowest five models were selected for docking (five structure sub-

missions are used for other protein structure prediction assessments [51][22]). The structures

selected were chosen by summing residue energies for residues predicted to be in the active

site based on bioinformatics and sorting on that energy.

Docking

The target ligands were prepared by taking the ligand from the crystal structure of the target.

Each ligand was converted in Spartan16 [52] to complete bond valences (or lack thereof for

substrates that were covalently bound to the enzyme structure). The degrees of freedom were

frozen for atoms and bonds connected to those atoms that participate in the chemical reaction

with the enzyme. All other torsional angles were sampled using the PM3 semi-empirical force-

field [53]. The lowest 100 energy conformations were kept for use in docking. All ligands were

parameterized for use in RosettaDock [54][55] including atomic charges from the Spartan16

‘Electrostatic’ option.

Each docking simulation started by placing the ligand at the average position between all

of the catalytic residues defined for that target. This was followed by 3 iterations of perturbing

the ligand in a 20Å grid, optimizing the catalytic constraints, and sampling/minimizing the

enzyme side chains and ligand conformations.

For each of the 5 lowest energy apo homology models, 100 simulations were ran, which

resulted in 500 model structures. The following four filters were used to select the final models

for analysis. First, for each of the lowest energy homology models, the lowest 10% based on

overall protein score (total_score) were selected and combined into a pool. Second, from the

pool, any structure which had a single enzyme constraint greater than one Rosetta Energy

Unit was removed. Third, the lowest 50% based on the predicted active site energy (summing

the residues predicted to be within 8Å of the active site) were kept. Fourth, the models were

sorted based on ligand interface score. Either the lowest interface energy model post-filtering

(S3 Fig) or lowest ligand RMSD models (Fig 4A) from the lowest five models based on inter-

face energy were selected for analysis.

Data availability

The benchmark files can be found at https://www.github.com/sjbertolani/benchmark-lite

and the files are described in S3 PDF as well as in README files throughout the linked data

repository.

The following version of Rosetta was used to perform the work:

17be250fab3b65d60d806025d7219a5373754924.

Supporting information

S1 Fig. Informatics additional data. Cα—Cβ Distribution of distances from benchmark crys-

tal structures.

(PNG)

S2 Fig. Apo lowest single energy structure. Results for apo modeling of protein sequences by

selecting the lowest single structure based on energy. See S1 PDF—5.11 for further discussion

of the point located at (2,7) on the Active Site Residues plot. This is an artifact of a terminus
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flipped in versus out in the models.

(PNG)

S3 Fig. Docked lowest single energy structure. Results for docking by selecting the lowest sin-
gle structure based on energy. One extreme point is not shown.

(PNG)

S4 Fig. Templates used for modeling.

(PNG)

S1 PDF. Benchmark docking results.

(PDF)

S2 PDF. Example of harmonic distance constraints.

(PDF)

S3 PDF. Modeling details and description of files.

(PDF)

S1 Files. Benchmark files.

(GZ)
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