
INTRODUCTION

The prevalence of cannabis use in the United States 
increases every year [1,2], and it is likely to keep grow-
ing as the availability of cannabis-based products con-
tinues to increase and risk perception by the general 
public of their adverse effects is lowered [3-5]. In par-
ticular, recent approval of the cannabidiol (CBD) medi-

cine, Epidiolex® (GW Pharmaceuticals, Cambridge, UK), 
by the U.S. Food and Drug Administration (FDA) for 
the treatment of seizures associated with severe forms 
of epilepsy further accelerated the use of this non-
psychotropic cannabinoid [5-9]. Furthermore, off-label 
uses of CBD from both physician’s recommendation 
and self-treatment are increasing [6-9].

Initial research on the plant Cannabis sativa (mari-
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The endocannabinoid system (ECS) is comprised of a set of lipid-derived messengers (the endocannabinoids, ECBs), proteins 
that control their production and degradation, and cell-surface cannabinoid (CB) receptors that transduce their actions. ECB 
molecules such as 2-arachidonoyl-sn-glycerol (2-AG) and anandamide (arachidonoyl ethanolamide) are produced on de-
mand and deactivated through enzymatic actions tightly regulated both temporally and spatially, serving homeostatic roles 
in order to respond to various challenges to the body. Key components of the ECS are present in the hypothalamus-pituitary-
gonadal (HPG) axis, which plays critical roles in the development and regulation of the reproductive system in both males 
and females. ECB signaling controls the action at each stage of the HPG axis through CB receptors expressed in the hypothal-
amus, pituitary, and reproductive organs such as the testis and ovary. It regulates the secretion of hypothalamic gonadotropin-
releasing hormone (GnRH), pituitary follicle-stimulating hormone (FSH) and luteinizing hormone (LH), estrogen, testosterone, 
and affects spermatogenesis in males. Δ9-tetrahydrocannabinol (THC) and other phytocannabinoids from Cannabis sativa 
affect a variety of physiological processes by altering, or under certain conditions hijacking, the ECB system. Therefore, phy-
tocannabinoids, in particular THC, may modify the homeostasis of the HPG axis by altering CB receptor signaling and cause 
deficits in reproductive function. While the ability of phytocannabinoids, THC and/or cannabidiol (CBD), to reduce pain and 
inflammation provides promising opportunities for therapeutic intervention for genitourinary and degenerative disorders, im-
portant questions remain regarding their unwanted long-term effects. It is nevertheless clear that the therapeutic potential of 
modulating the ECS calls for further scientific and clinical investigation.
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juana) focused on understanding its toxicity to hu-
mans because it was considered an addictive, illegal, 
and only harmful psychotropic drug without medical 
benefits; however, thanks to recent research we now 
have a much better understanding of the plant [10-13]. 
Δ9-tetrahydrocannabinol (THC), the main psychoac-
tive and intoxicating substance of cannabis, was first 
described in the 1940s [14,15], and fully characterized in 
1964 by precisely defining the structure to be (−)-trans-
Δ9-tetrahydrocannabinol [16]. Two isoforms of  can-
nabinoid (CB) receptors were discovered, cloned, and 
determined to be the direct bodily target proteins for 
THC in the 1990s [17-19]. THC activates and under cer-
tain conditions hijacks/over-stimulates CB receptors to 
exert its various pharmacological effects [10]. Interest-
ingly, research later revealed the existence of unique 
lipid neurotransmitters that are produced by the body 
that serve as agonists for CB receptors: the endocan-
nabinoids (ECBs) [12]. In addition, the biosynthetic and 
metabolizing pathways regulating local levels of ECBs 
have been characterized [10,13]. Research suggests that 
the endocannabinoid system (ECS) is a complex but 
essential signaling system found in most body organs 
where it serves regulatory roles for many biological 
functions including control of emotions, learning and 
memory, regulation of food intake and energy metabo-
lism, regulation of body temperature, pain reception, 
immune response and inflammation, and maintaining 
body homeostasis.

Research during the last two decades also proposed 
that the ECS is a key modulator for reproductive func-
tions in males and females. In this mini-review, we 
provide a brief overview of current knowledge about 
the ECS in the male reproductive system. Most, if 
not all, molecular components of the ECS are present 
in the male reproductive system, where ECB signals 
are thought to control the homeostasis of the hypo-
thalamus-pituitary-gonadal (HPG) axis and critical 
testicular physiology, including spermatogenesis and 
the functions of Leydig and Sertoli cells [20-23]. Then, 
we discuss the potential therapeutic utility of CBs in 
treating male genitourinary disorders, but also their 
possible side effects on male reproduction.

THE ENDOCANNABINOID SYSTEM

The ECS is comprised of two G protein-coupled cell-
surface receptors, CB1 and CB2, two lipid-derived ECB 

molecules — arachidonoyl ethanolamide (anandamide, 
AEA) and 2-arachidonoyl-sn-glycerol (2-AG) — and 
proteins involved in the formation, transport, and de-
activation of ECB molecules [10] (Fig. 1). The activation 
of the ECS is regulated through the expression of CB1 
and CB2 receptors and their coupling with intracellu-
lar signaling pathways, as well as temporal and local 
changes in the concentration of ECB molecules, which 
are produced on demand through cleavage of distinct 
phospholipid precursors.

1. Cannabinoid receptors
CB receptors are found in the central nervous system 

(CNS) and various peripheral organs where they serve 
important regulatory functions in synaptic plasticity, 
signal transduction, and inflammation [24]. In humans, 
the CB1 receptor is encoded by the CNR1 gene whereas 
the CNR2 gene encodes CB2 receptors. CB1 and CB2 
receptors are highly homologous, sharing 48% identity 
in amino acid sequence. Both receptors signal through 
the transducing G proteins, Gi and Go [25,26]. The CB1 
receptor is one of the most abundantly expressed recep-
tors in the brain and mainly localized to the presynap-
tic axon terminals of both excitatory glutamatergic and 
inhibitory γ-amino-butyric acid (GABA)-ergic neurons 
[26]. As expected from their subcellular localization, 
CB1 receptors regulate neural activities by controlling 
synaptic transmission mediated by well-known classi-
cal neurotransmitters, such as glutamate and GABA. 
In the neuronal presynaptic axons, activation of CB1 
receptors inhibits Ca2+ channel activity to reduce neu-
rotransmitter release, and elevates K+ channel activity 
to suppress membrane excitability [10,26,27]. In addi-
tion, neuronal activity, such as elevation of intracel-
lular calcium concentration in the postsynaptic spines, 
may trigger temporal biosynthesis of ECB molecules, 
which acts retrogradely on presynaptic CB1 receptors 
across the synaptic cleft to modulate neurotransmitter 
release. Therefore, it was proposed that ECB signaling 
serves as a prompt negative feedback mechanism for 
synaptic activities, i.e., a synaptic circuit breaker [27]. 
Other brain cells, such as astrocytes and microglia, also 
express CB1 receptors [28-30], but their precise functions 
need to be elucidated further. Outside the CNS, CB1 re-
ceptors are expressed in the peripheral nervous system, 
including liver, pancreas, small intestine, and skeletal 
muscle [24,31] and have been linked to diverse influ-
ences exerted by ECB messengers to maintain bodily 
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homeostasis [32], such as control of lipogenesis in the 
liver [33].

The CB2 receptor is mainly found in cellular con-
stituents of the immune systems–including monocyte-
derived cells and lymphocytes [34]. CB2 receptor signal-
ing mainly plays a role in regulating inflammation, 
cytokine release, cell migration, and apoptosis. It is of 
note that the psychoactive properties of cannabis, an 
unwanted side effect when used for medical purposes, 
are mediated by the CB1 receptor in the CNS, but not 
by the CB2 receptor, making it a particularly appealing 
target for drug development.

Although only limited information is available, the 
presence of CB receptors in the reproductive system 
has been reported and their functional importance has 
been proposed. In humans, protein expression of both 
isoforms of CB receptors has been detected, albeit at a 
low level, in post-meiotic germ, Leydig, and peritubular 
cells [35]. Transcripts encoding both isoforms of the CB 
receptors were also found in germ cells, and their dif-
ferential distribution has been noted [35].

2. Endocannabinoid molecules
While THC and other synthetic CB receptor agonists 

hijack the endogenous CB receptor-mediated signaling 
to exert their pharmacological effects, ECB molecules 
serve homeostatic roles through activating CB recep-
tors to respond to various challenges to the CNS and 
the periphery. To achieve this, the production and de-
activation/hydrolysis of ECB molecules is tightly con-
trolled through precise enzymatic actions [10,13].

AEA and 2-AG are the two best-characterized ECB 
molecules found in mammalian tissues [36-38]. Dur-
ing the 1990s, the first ECB molecule was discovered 
and named ‘anandamide’ after the Sanskrit word 
‘nanda’, meaning ‘happiness’ [36]. Later, it was further 
discovered that another lipid molecule, 2-AG, which is 
present in large amounts in the brain, also binds and 
activates CB receptors to play a major role in neuronal 
synapses [37,38].

As shown in Fig. 1, AEA formation starts with the 
transfer of an arachidonate group from the sn-1 posi-
tion of 1,2-diarachidonoyl-phosphatidylcholine to the 
free amino group of phosphatidylethanolamine (PE), 
which produces the AEA precursor N-arachidonoyl-
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Fig. 1. Simplified overview of the endocannabinoid (ECB) system. The ECB system is comprised of the CB1 and CB2 cannabinoid receptors (CB1R 
and CB2R), the endogenous ligands for CB receptors, anandamide (arachidonoyl ethanolamide, AEA) and 2-arachidonoyl-sn-glycerol (2-AG), 
and proteins involved in the biosynthesis and inactivation of ECBs. Receptor-operated phospholipase C (PLC) converts phosphatidylinositol-4,5-
bisphosphate (PIP2) into 1,2-diacylglycerol (DAG). DAG is hydrolyzed by diacylglycerol lipase (DGL) forming 2-AG. 2-AG is subjected to hydrolytic 
cleavage catalyzed by monoacylglycerol lipase (MGL) or, to a lesser extent, α,β-hydrolase domain-containing protein 6 (ABHD-6). The biosynthe-
sis of AEA starts from the production of N-arachidonoyl-phosphatidylethanolamine (NAPE), through the transfer of an arachidonate group from 
the sn-1 position of 1,2-diarachidonoyl-phosphatidylcholine (PC) to the free amino group of phosphatidylethanolamine (PE). NAPE is converted 
to AEA, catalyzed by a unique phospholipase D (PLD). AEA is degraded by the intracellular serine amidase, fatty acid amide hydrolase (FAAH). 
These ECB molecules bind and activate both CB1R and CB2R, which are also targeted by exogenously administered phytocannabinoids.
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PE (NAPE) [39,40]. This reaction is catalyzed by the 
calcium-dependent N-acyl transferase (NAT) activity 
of an isoform of phospholipase A2, PLA2G4E [41]. Hy-
drolytic cleavage of NAPE by an isoform of phospho-
lipase D (PLD), the NAPE-PLD, produces AEA [42,43]. 
After biosynthesis, AEA diffuses out of the cell into 
the external milieu and activates CB receptors. AEA is 
deactivated through internalization into cells followed 
by intracellular hydrolysis catalyzed by the serine ami-
dase fatty acid amide hydrolase (FAAH) [44] (Fig. 1).

Like AEA, 2-AG is also produced upon demand (Fig. 
1). The membrane phospholipid that serves as its pre-
cursor, phosphatidylinositol-4,5-bisphosphate (PIP2), is 
first hydrolyzed by phospholipase C (PLC), probably 
PLC-β and/or PLC-ε [45,46], to produce 1,2-diacylglycerol 
(DAG). DAG is then cleaved by the α or β isoform of 
diacylglycerol lipase (DGL or DAGL) to generate 2-AG 
[47-49]. In excitatory glutamatergic neurons of the 
brain, PLC and DGL-α are physically and functionally 
linked to type-5 metabotropic glutamate receptors in a 
multimolecular complex (the ‘endocannabinoid signalo-
some’) that enables efficient retrograde signaling from 
the postsynaptic dendritic spine to the axon terminal 
[49]. 2-AG is inactivated by enzymatic activities of 
the lipid hydrolases, monoacylglycerol lipase (MGL or 
MAGL) and, to a lesser extent, α/β-hydrolase domain-
containing protein 6 (ABHD-6) [50-52] (Fig. 1).

The reproductive organs of mammals contain the 
entire repertoire of proteins needed to produce and 
degrade ECB molecules [35,53]. The main biosynthesiz-
ing enzymes, DGL and NAPE-PLD, were detected in 
germ cells and somatic cells, respectively [35,54-56]. In 
addition, abundant expression of the 2-AG-hydrolyzing 
enzyme, MGL, was observed in Sertoli cells, whereas 
the AEA-hydrolyzing enzyme, FAAH, was found in 
late spermatocytes and post-meiotic germ cells [35]. The 
presence of ECB molecules was also confirmed in the 
human testis [35].

PHYSIOLOGICAL ROLES OF 
ENDOCANNABINOID IN MALE 
REPRODUCTION

The ECS has been described as a critical modulator in 
the control of male and female reproduction at multiple 
stages of the HPG axis through CB receptors distributed 
in the hypothalamus, pituitary, and reproductive organs 
such as the testis. Centrally, the ECS affects neuronal 

activities of hypothalamic gonadotropin-releasing hor-
mone (GnRH)-secreting neurons and secretion of pitu-
itary hormones, and locally, produces direct effects on 
the gonads, affecting the synthesis and secretion of sex 
hormones and spermatogenesis [22] (Fig. 2).

1.  The endocannabinoid system in the 
hypothalamic control of the male 
hypothalamus-pituitary-gonadal axis

In the brain, ECBs are produced in a neuronal activ-
ity-dependent manner in the post-synapses, and their 
primary role is to control the release of excitatory and 
inhibitory neurotransmitters by activating CB1 recep-
tors located at presynaptic axon terminals, serving as 

Fig. 2. Endocannabinoid (ECB) signaling in the hypothalamus-
pituitary-gonadal (HPG) axis. The HPG axis is a tightly regulated 
endocrine system, and the gonadotropin-releasing hormone (GnRH), 
released in a pulsatile manner from the hypothalamus, is the prime 
modulator of the system. GnRH stimulates the release of pituitary fol-
licle-stimulating hormone (FSH) and luteinizing hormone (LH) from 
the anterior pituitary, which are actively involved in gametogenesis 
regulation while also driving the synthesis and release of gonadal 
steroid hormones. The ECB system, through the activation of the can-
nabinoid CB1 receptor signaling, is involved in the regulation of the 
HPG axis at multiple stages: (1) ECBs suppress the release of GnRH in 
the hypothalamus; (2) reduction of GnRH, in turn, suppresses the re-
lease of LH and FSH in the adenohypophysis where CB1 receptor may 
play a role; and (3) direct action of ECBs on the Leydig and Sertoli 
cells reduces testosterone release and modulates spermatogenesis.
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retrograde messengers [10-13]. The ECS may operate 
using a similar synaptic negative-feedback mechanism 
in the HPG axis. The HPG axis is a tightly regulated 
endocrine system, and the decapeptide hormone, GnRH, 
is released in a pulsatile manner from the hypothala-
mus as the prime modulator of reproduction. GnRH 
stimulates the release of follicle-stimulating hormone 
(FSH) and luteinizing hormone (LH) from the anterior 
pituitary, which are actively involved in gametogenesis 
regulation while also driving the synthesis and release 
of gonadal steroid hormones [22]. LH up-regulates tes-
tosterone secretion in the testis, and high levels of tes-
tosterone down-regulates GnRH in the brain to even-
tually lower the release of LH. The negative feedback 
loop mechanism of testis on the hypothalamo-pituitary 
unit has an imperative role in the maintenance of tes-
tosterone levels [57].

Research demonstrated a role of the ECS at both the 
hypothalamus and pituitary level along the gonadal 
axis [53] (Fig. 2). First, evidence indicates that hypotha-
lamic GnRH neurons produce and secrete at least two 
different ECBs, 2-AG and AEA [58]. These lipids mes-
sengers, in turn, activate hypothalamic CB1 receptors 
and inhibit the release of GnRH to regulate diverse 
functions of GnRH, including the onset of puberty, 
ovulation, lactational infertility, and menopause [58]. In 
mice, systemic or intracerebroventricular administra-
tion of AEA produced significant reductions in circu-
lating levels of LH and testosterone [59,60]. The effect 
of AEA on LH secretion was mediated by activation of 
CB1 receptors expressed in GnRH neurons, whose acti-
vation leads to the inhibition of pulsatile GnRH release 
[53,59]. Interestingly, an alternative neuronal circuital 
mechanism by which the ECS may affect GnRH neu-
ron activity by modifying GABAergic synaptic activity 
has been proposed [61] (Fig. 2). Neuronal GABA is typi-
cally an inhibitory neurotransmitter; however, research 
found that it exerts a paradoxical excitatory effect on 
mature GnRH neurons [62], and that GABAergic af-
ferent into kisspeptin neurons and/or GnRH neurons is 
an important positive regulator for the HPG axis [62-66]. 
Accordingly, ECS-mediated activation of CB1 receptors, 
expressed on GABAergic inputs into GnRH neurons, 
resulted in decreased GnRH neuron firing rate and 
consequent reduction of GnRH release [58,64]. There-
fore, activation of CB1 receptors in the hypothalamus 
may inhibit GnRH release either through direct inhi-
bition of GnRH neuronal activity or indirect effects on 

the GABAergic activation of GnRH neurons (Fig. 2).
Next, the existence of CB1 receptors, both the mRNA 

and proteins, and ECB molecules in the anterior pitu-
itary of rodents has been observed [67-69]. The inhibito-
ry effect of the ECS on hormonal secretion in the ante-
rior pituitary has been also proposed [21]. These results 
suggest the role of the ECS as a neuromodulator at the 
pituitary level, but more research is needed to have a 
clear understanding on the underlying mechanism.

2.  Endocannabinoid signaling in 
spermatogenesis

The presence of complete enzymatic machinery to 
synthesize and metabolize ECBs has been demonstrat-
ed in male reproductive organs [21,35]. Earlier studies 
have reported the presence of NAPE-PLD and FAAH, 
the biosynthetic and degradative enzymes for AEA, 
respectively, in human testis [55]. A recent study also 
found expression of NAPE-PLD in Leydig cells, Sertoli 
cells, and round spermatid nuclei, which indicates that 
these cells synthesize AEA [35]. Therefore, these data 
suggest a role of the ECS, mainly mediated by AEA, in 
reproductive regulation of late spermatocytes and sper-
matids.

Both CB1 and CB2 receptors have been found in post-
meiotic germ, Leydig, and peritubular cells [35], and 
their functional relevance has been proposed [53]. In 
Leydig cells, activation of CB1 receptors negatively af-
fects testosterone biosynthesis by decreasing Leydig 
cell responsiveness to LH. Within Sertoli cells, the ECS, 
specifically the production and degradation of AEA, 
plays an important role in controlling spermatogenic 
output by maintaining a balance between the cell’s 
survival and death [53]. Apoptosis via transient recep-
tor potential vanilloid 1 (TRPV1) channels is induced 
through the orchestrated biosynthesis of  AEA by 
NAPE-PLD [70]. This effect is antagonized by FSH, 
which increases the expression of FAAH through the 
activation of adenylyl cyclase (AC) and cAMP/protein 
kinase A (PKA) signaling [70-73]. FSH also triggers the 
phosphatidylinositol-3-kinase (PI3K) pathway, which 
in turn induces the expression of aromatase and leads 
to increased production of estradiol from testosterone 
[70,72]. Increased levels of estradiol act to an estrogen-
responsive element in the Faah promoter, resulting in 
elevation of FAAH protein expression [73].
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THERAPEUTIC POTENTIAL 
OF CANNABINOIDS FOR MALE 
GENITOURINARY SYSTEM 
DISORDERS

The Cannabis sativa plant contains more than 100 
compounds that share the CB chemical scaffold [10,14]. 
Among them, THC is a main terpenophenolic constitu-
ent of cannabis and is responsible for the majority of 
the plant’s reinforcing (intoxicating) effects, by bind-
ing to and activating CB1 receptors [10,11,16,18,19] (Fig. 
3). THC also activates CB2 receptors that contribute to 
other less-well understood effects such as those exerted 
on the immune system [10,11]. Recent research has 
documented that a variety of human disorders are ac-
companied by dysfunction in the ECS; therefore, phar-
macological interventions that normalize dysfunctional 
ECB signaling, i.e. temporally activating CB receptors 
by THC could be potential therapeutics for diseases as-
sociated with hypo-cannabinergic pathology [10] (Fig. 3).

CBD is a major non-psychoactive compound found in 

cannabis plant and proposed to have anti-inflamma-
tory, analgesic, anxiolytic, neuroprotective, and anti-
seizure effects [74,75] (Fig. 3). In 2018, the CBD-based 
drug (Epidiolex®) was approved by the FDA for the 
treatment of seizures associated with two rare and 
severe forms of epilepsy, Lennox-Gastaut syndrome 
and Dravet syndrome, in patients two years of age 
and older. Then in 2020, the FDA approved Epidiolex® 
oral solution for the treatment of seizures associated 
with tuberous sclerosis complex in patients one year 
of age and older [76-78]. Beneficial effects of CBD in 
brain disorders include neuroprotective activity via 
anti-inflammatory and anti-oxidative properties [79-83], 
sedative effects that decrease anxiety [87,88], and as 
described, an anti-epileptic effect that reduces seizure 
frequency [86-89]. The therapeutic potential of CBD has 
also been proposed further for treating ischemic stroke 
[90], schizophrenia [91,92], and Alzheimer’s disease [93]. 
Although the exact cellular and/or molecular targets 
of CBD in the body remain unclear, current research 
postulates that CBD may serve as a negative alloste-
ric modulator of CB1 receptors or increase ECB tone 
by elevating AEA levels, among other broad-spectrum 
mechanisms [82,83,94].

According to Clinicaltrials.gov run by the National 
Institute of Health (NIH) in the United States, as of 
August 8, 2022, about 407 clinical studies have been 
initiated and/or completed to test the therapeutic ap-
plications of CBD for neuropsychiatric diseases, cancer, 
and chronic disorders accompanied with inflammation 
and pain, such as osteoarthritis pain [95]. With regard 
to human genitourinary diseases, two main areas of 
therapeutic interest are treating pain associated with 
various conditions and lower urinary tract symptoms 
(LUTS) [96] (Table 1).

A phase 2 study is currently underway to test hemp-
based CBD for chemotherapy-induced neuropathy 
(CIPN) among non-metastatic breast, colorectal, uterine, 
and ovarian cancer patients who received neoadjuvant 
or adjuvant therapy that included neurotoxic chemo-
therapeutic agents. Also, another ongoing study inves-
tigates the efficacy of ASP3652, a peripherally restrict-
ed FAAH inhibitor that elevates tissue levels of AEA, 
in the treatment of patients with chronic abacterial 
prostatitis/chronic pelvic pain syndrome (CP/CPPS). A 
recently completed Phase 2 study assessed the effect of 
CBD oil on pain after ureteroscopy for kidney stones. 
In addition, AEA and palmitoylethanolamide (PEA), 

Fig. 3. Two main phytocannabinoids, THC and CBD. THC and CBD are 
two of the most well-known cannabinoids in the Cannabis plant 
with potential therapeutic utilities. They have distinct pharmacologi-
cal properties and targets in the body. The intoxicating effects of THC, 
such as euphoria, relaxation, and sometimes paranoia, is associated 
with short-term memory deficits and increased risk for psychiatric 
disorders including psychosis, depression, anxiety, and substance use 
disorders. These problems are not caused by CBD, which displays anx-
iolytic, anti-psychotic, and anti-inflammatory and analgesic effects. 
Unanswered questions regarding potential side effects of phytocan-
nabinoids along with the therapeutic potential of endocannabinoid 
modulation requires further investigation.
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an ECB-related lipid molecule, were tested in animal 
model for interstitial cystitis/painful bladder syndrome.

In multiple sclerosis (MS) patients, use of the oral 
mucosal spray Sativex, a mixture of THC and CBD, 
displayed a significant effect on overactive bladder [97]. 
Cannabis-derivatives also demonstrated mixed degrees 
of improvement in incontinence, frequency, nocturia in 
multiple clinical trials with MS patients [96].

Additional conditions that CB medications have been 
implicated includes treating pruritus associated with 
end-stage renal dysfunction and various cancers. The 
anticancer effects of CBs against prostate cancer have 
been limited to preclinical in vitro studies so far, and 
translation to human conditions has been sluggish 
(Table 1).

PHYTOCANNABINOIDS: A DOUBLE-
EDGED SWORD FOR MALE 
GENITOURINARY SYSTEM?

Since the ECS regulates major bodily functions, un-
wanted side effects may occur when manipulating its 
activity, which should be anticipated in advance and 
carefully considered during drug development. Indeed, 
strong evidence obtained from preclinical studies in-
dicated that administration of cannabis extracts acts 
on the gonadal axis and reduces its function. Human 
studies also demonstrated that exposure to cannabis or 
its derivatives is associated with reduced sperm count 
and motility along with abnormal morphology, and 
may negatively impact male fertility [58, 98-100]. In 
addition, cannabis consumption decreased the levels of 
plasma testosterone in human users compared to non-
users [98], which was associated with reduced plasma 
LH [58].

The reproductive toxicity of cannabis was mainly 
reproduced by administration with THC in animal 
models [58,101-103]. In these studies, exposure to THC 
altered homeostasis of the HPG axis, and long-term 
administration of THC significantly decreased sper-
matogenesis. This phenomenon can be presumed to be 
the result of THC over-activating CB receptors distrib-
uted in the CNS and testis. In contrast, CBD has been 
suggested to be generally well tolerated by humans 
because the reported adverse events are mild [74-76]. 
However, CBD is not risk-free [104]. Clinical stud-
ies found that CBD causes adverse effects, including 
drug-drug interactions, hepatic abnormalities, fatigue, 

vomiting, diarrhea, somnolence, insomnia, and suicidal 
thoughts [104]. In addition, animal studies found that 
chronic high doses of CBD produce developmental tox-
icity and affect CNS function, among other peripheral 
effects including changes in organ weight, hepato-
cellular injuries, and hypotension [104]. Importantly, 
concerns have been raised about the adverse effects of 
CBD on male reproductive system [105]. Evidence indi-
cates that exposure to CBD is associated with a reduc-
tion in mammalian testis size, the number of germ and 
Sertoli cells, fertilization rates, spermatogenesis, and 
plasma concentrations of hypothalamic, pituitary and 
gonadal hormones including a decrease in testosterone 
[100,105-108]. In sexually mature rhesus monkeys, oral 
administration of 30–300 mg/kg body weight/day CBD 
for 90 days caused reductions of testicular size and 
spermatogenesis [109]. A number of studies have re-
ported that preincubation of sperm with CBD inhibited 
fertilization in sea urchins, a relevant model to study 
fertilization because of their similarity to human em-
bryos in the early developmental stages [110-111]. The 
underlying mechanisms by which CBD negatively in-
fluences male reproductive system have not been elu-
cidated, but may involve damages to Sertoli cells [112]. 
Finally, it is notable that CBs may interfere the ECB 
system required for normal development [113-116], and 
early life exposure to THC or CBD affected maturation 
of the HPG axis in rodents. In 21-day-old male Swiss 
mice, 15 or 30 mg/kg/day CBD administered orally for 
34 consecutive days followed by a 35-day recovery pe-
riod caused a decrease in the number of Sertoli cells, 
abnormalities in sperm morphology, and decreases in 
plasma testosterone levels [107,108,117,118]. Therefore, 
long-term adverse effects of chronic THC or CBD ad-
ministration during early life could be a significant 
human health issue that needs scientific attention.

CONCLUSIONS

Preclinical and clinical evidence demonstrates the 
central role that the ECS plays in regulating many of 
the body’s key processes, including homeostasis of the 
HPG axis and male reproductive functions. The ability 
of phytocannabinoids to reduce pain and inflammation 
provides promising opportunities for therapeutic inter-
vention for genitourinary and degenerative disorders. 
However, more scientific evidence should be obtained 
to fully address the general public’s interest in utiliz-
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ing cannabis products for human disorders and as 
health supplements. Important knowledge gaps remain, 
including the role of ECS during early life develop-
ment of the reproductive system and the underlying 
mechanisms by which CBD negatively influences male 
reproductive functions.

Despite these unanswered questions, it is clear that 
the therapeutic potential of  ECB modulation calls 
for further basic and clinical investigation. Contin-
ued study to better understand the complexity of the 
ECS will provide new insights into the pathogenesis 
of reproductive and genitourinary disorders, allow-
ing researchers to identify new ways to leverage this 
signaling system for therapeutic benefit. Drugs can 
be designed that selectively act on aspects of the ECS 
required for therapeutic purposes while avoiding un-
wanted side effects. Alternately, research exploring 
the uncontrolled use of cannabis (i.e., recreational and 
substance use disorder) might provide further evidence 
of its deleterious impacts on human reproductive func-
tion.
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