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Abstract

Background: Diarrhea is a public health menace, especially in developing countries. Knowledge of the biological
and anthropogenic characteristics is abundant. However, little is known about its spatial patterns especially in
developing countries like Ghana. This study aims to map and explore the spatial variation and hot-spots of district
level diarrhea incidences in Ghana.

Methods: Data on district level incidences of diarrhea from 2010 to 2014 were compiled together with
population data. We mapped the relative risks using empirical Bayesian smoothing. The spatial scan statistics
was used to detect and map spatial and space-time clusters. Logistic regression was used to explore the
relationship between space-time clustering and urbanization strata, i.e. rural, peri-urban, and urban districts.

Results: We observed substantial variation in the spatial distribution of the relative risk. There was evidence

of significant spatial clusters with most of the excess incidences being long-term with only a few being
emerging clusters. Space-time clustering was found to be more likely to occur in peri-urban districts than

in rural and urban districts.

Conclusion: This study has revealed that the excess incidences of diarrhea is spatially clustered with peri-urban
districts showing the greatest risk of space-time clustering. More attention should therefore be paid to diarrhea in
peri-urban districts. These findings also prompt public health officials to integrate disease mapping and cluster analyses
in developing location specific interventions for reducing diarrhea.

Introduction
Diarrhea is an ongoing public health threat, especially in
developing countries. More than 1.7 billion episodes of
diarrhea are recorded globally every year with the majority
of these occurring in low and middle income countries
[1-6]. Infection is mainly through contaminated water
and food as a result of poor hygiene [7]. The persistence
of diarrhea has been attributed to socio-economic
inequalities such as low income levels, illiteracy, and
inadequate safe water and sanitation [8—12].

In Ghana, diarrhea is the second most common
health problem treated in out-patient departments.
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The nationwide reported diarrhea incidences in-
creased from 725,976 cases in 2010 to 1,576,542 cases
in 2014. Improvement in water and sanitation condi-
tions still remains the long-term solution to reducing
diarrhea. Under scarce budgetary resources, know-
ledge of the geographic hot-spots is a consequential
alternative that could provide immediate solution with
respect to decision making towards appropriate
allocation of resources. Previous diarrhea studies in
Ghana have predominantly focused either on single
geographic units or the characteristics of the affected
individuals [13-17]. These studies are unable to
characterize the geographic areas of priority; hence a
knowledge gap with respect to the geographical pat-
terns still remains. Diarrhea morbidities vary across
geographical areas; some areas are likely to sustain
exceptionally high morbidities over time due to
unplanned urbanization. The premise of this study
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also derives from previous population based studies
[14, 15] that have suggested variation in diarrhea
incidences at wider geographical units. Yet it is still
unknown which areas have a higher than expected
risk. It is thus imperative to identify areas of hot-
spots as it is crucial to assist decision makers to as-
sess programmatic needs, prioritize interventions and
monitor progress. Children are the most vulnerable to
diarrhea; knowledge of diarrhea hot-spots will also be
an important step towards achieving the Sustainable
Development Goal 3 (SDG 3) of ensuring healthy
lives and promote well-being for all at all ages.

Our objective is to study the geographical patterns
and hot-spots of diarrhea in Ghana. The demographic
and socio-demographic indices amongst districts in
Ghana are widely diverse as are diarrhea incidences.
Since diarrhea morbidities are conditioned by socio-
demographic factors, and since these factors are
geographically correlated in space, we expect diarrhea
morbidities to exhibit space-time clustering. For in-
stance, unplanned rapid urbanization fueled by rural-
urban migration can have substantial influence on
diarrhea morbidities due to stress on existing
amenities which do not meet the demands of the
rising population. No previous study has explored the
country-wide spatial patterns and hot-spots of
diarrhea in Ghana. Our study is therefore focused on
the spatial and space-time clustering of diarrhea. An
additional purpose of the study is to examine the
impact of urbanization on space-time clustering of
diarrhea. Geographical hot-spots of diarrhea have
been explored in Thailand [18] using the Local
Indicator for Spatial Association (LISA) statistic.
Kulldorff’s spatial scan statistic is well suited for de-
tecting space-time clusters, hypotheses testing and
making etiological inferences [19]. It has been used to
study clustering of diarrhea in Ethiopia without for-
mally recounting the possible causes of the clusters
[20]. We recognize the challenge in the arbitrary se-
lection of the maximum cluster size for spatial scan
statistics [21]. We use the average behavior of spatial
dependency structure, i.e. the practical range of the
semi-variogram, to infer an empirical cluster window
size. We consider a semi-variogram estimator that
accounts for heterogeneous denominators of the rate
parameter [22].

The remainder of the manuscripts is organized as
follows. First, we develop empirical Bayesian smoothed
maps of diarrhea. Second, we detect and map geogra-
phical areas of higher than expected incidences using
the spatial scan statistics. Third, we describe the impact
of urbanization on the occurrence of space-time cluste-
ring using logistic regression. We end with discussions
and conclusions.

Page 2 of 10

Methods and analysis

Study area and data

Ghana is centrally located on the west coast of Africa
(Fig. 1) with a total land area of 238,589 km?”. It is a
tropical region with varying temperatures and rainfall in-
tensities. Ghana consists of ten administrative regions
which are subdivided into 170 districts. Projections by
the Ghana Statistical Service (GSS) puts the current
population at 27,043,093. The spatial scale of our
analysis is the district level of which data had been re-
corded. The population data were obtained from the
Ghana Statistical Service (GSS). Diarrhea morbidities on
outpatient records from 2010 to 2014 were obtained
from the Centre for Health Information and Manage-
ment (CHIM) of the Ghana Health Services (GHS).

Mapping the spatial distribution of diarrhea risk

Area specific disease indices such as the relative risk,
also called standard morbidity ratio (SMR), are
important measures of neighborhood health status.
The SMR is useful for guiding health interventions
and allocations of health resources. In this study, we
mapped the spatial distribution of the SMR rather
than considering the disease rates in isolation. Let O,
i=1, ..,m, represent random variable of diarrhea
cases 01, ... ,0, in m districts. We assume that the
O,are independently Poisson distributed O; ~ Pois(e;r;)-
with mean proportional to the unknown relative risk

r;, such that p(o;) = {(eiri)oi exp(—eiri)}/oi!, where e;is

the expected number of cases in district i. Using the
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d
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Fig. 1 District map of Ghana showing the its neighboring countries;
Cote d'lvaire (left), Burkina Faso (top) and Togo (right)
.
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log-likelihood function logL = "7 {o;log(e;r;)-eir:},
the maximum likelihood estimator for the unknown
relative risk is obtained as 7; = 0;/e;. The corresponding
conditional mean and variance are E[7;|r;] = r; and V[7y|7]
=r;/e;, respectively. The expected number of casese; is
defined in the absence of covariates as the number of
cases in an epidemiologic “null model” of incidences e;
= ntn;. Here, niis the number of persons at risk in district i,
and 7is the individual level constant baseline risk
estimated from the aggregated population by means of =
=>"0i/> " n;. A major drawback of this estimate is
that it leads to unstable estimates with areas of small
populations showing the highest variability [23-25]. To
account for this, we use the empirical Bayesian smoothing
to borrow information across neighboring districts. This
smoothing consists of obtaining a weighted average
between the raw estimates for each district and the neigh-
boring average, with weights proportional to the under-
lying population at risk [26]. In effect, districts with
relatively small populations will tend to have their esti-
mates adjusted considerably, whereas for districts with
relatively large populations, the estimates will barely
change. Following Clayton and Kaldor [26] and Gatrell
and Bailly [27], the smoothed estimates of the relative risk
is expressed asr™® = @;r; + (1-w;)7 ;, where the respect-
ive weights wfor districts equal @; = 07/[0? + (r';/e;)].
Here 7; and ¢7are the empirical local estimates of spatially
varying prior mean and variance, respectively. We used
the method of moments [25] to estimate 7; = X;w;0;/%;
w,»}-ei and &lZ = [Z/w,-/ei(ri—ﬂ-)z] /Z,w,;e,»—?,-/(Z,»wije,-/n) .
We estimated the local mean 7 ; and the variance &iz based
on the spatial neighborhood structure of the dataw;;, such
that w;; = 1if districts i and j are neighbors, and zero
otherwise.

Spatial scan statistics

We used the spatial scan statistics developed by
Kulldorff’s [21] to detect the presence of spatial and
space-time clusters or hot-spots of diarrhea. We de-
fined hot-spots as clusters with high than expected or
elevated risk. The spatial scan statistic is a widely
cluster detection tool to detect and evaluate
geographical areas of excess risk against the null hy-
pothesis of random distribution. It is based upon the
principle that the number of cases in a geographic
area follow a Poisson distribution according to a
known underlying population at risk. This cluster
detection method offers several advantages over other
scan statistics methods (e.g. [28-30]): (1) it corrects
for multiple comparisons, (2) it adjusts for the heteroge-
neous population densities amongst the different areas in
the study, (3) it detects and identifies the location of the
clusters without prior specification of their suspected

Page 3 of 10

location or size thereby overcoming pre-selection biases,
and (4) it allows adjustment for covariates. The signifi-
cance of Kulldorff’s scan statistic is widely acknowledged
in spatial epidemiology [15, 19, 21, 31-41].

Cluster window size

Critical to the spatial scan statistics is the selection of
the maximum window size. Since there is no clear
guideline for a choice, it is often chosen somewhat
arbitrarily; e.g. as a percentage of the at risk population,
or either based on experience or knowledge of the extent
of clustering. Hjalmars et al. [34] suggest 10% of the
population at risk whereas Kulldorff et al. [42] suggest
50% of the population at risk. Too large a window size
may define too large areas as clusters which might be
expensive and difficult for further epidemiological inves-
tigation. Larger sizes would also indicate areas of excep-
tionally low rates outside the window rather than areas
of exceptionally high rates within the window. Too small
a window may obscure important clusters. Since the
maximum window size is related to the extent of spatial
continuity, we estimated this using the semi-variogram.
We assumed the relative risk as second order stationary
random field; its theoretical semi-variogram y(/)between
any two districts i and j is y(h) :O.SE[ri—rj]z, whereh
=|i—jlis the Euclidian distance between the centroids
and E denotes the mathematical expectation. The corre-
sponding method of moments (empirical) estimator [43],

after forming multiple distance pairs, equalsy*(#) = 0.5

{N(h)}flzglh) (ri—r/)z, where N(h)is the number of
observation pairs separated by /4. The traditional semi-
variogram estimator, however, is not suited for the
analysis of proportion since it does not account for het-
erogeneous denominators. Following Monestiez et al.
(22, 44], the different pairs (r; - rj)were weighted by their

. . €;-€j . .
corresponding denominators - to homogenize their

ej+e;

variance terms by dividing by weights proportional to
their standard deviations. The adjusted experimental
semi-variogram is then

= 05Ny S L (e

ei+ej

where N(h) = Z:;TZ/ is a normalizing constant and r
= Xe;-r;/Ze;is an estimate of the weighted mean of r.
Monestiez et al. [22, 44] developed the above semi-
variogram to account for the spatially heterogeneous
observation efforts of sparse animal sightings for
mapping the relative abundance of species (Balenop-
tera physalus). Simulation studies indicated that this
approach performs better than simple population-
weighted approaches and Bayesian smoothers [45].
Permissible semi-variogram models by means of least
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squares were fitted to the experimental semi-
variograms. From the fitted models, the largest range
amongst the range parameters of the various models
was noted as the maximum window size for the
spatial scan statistics.

Hot-spots detection

For the detection of purely spatial hot-spots, a circu-
lar window was defined which moves over the study
region, centered on the centroid of each district. This
varies from 0 to the maximum window size. This
window size was defined based on the largest range
of the semi-variogram models described in the pre-
vious section. Possible hot-spots are tested within the
window whenever it centers on the centroid of each
district. The null and alternative hypothesis are Hy : r
(Q) =r(Q) and H; : r(Q) > r(Q), respectively, where
r(Q)and r(Q) are the relative risk within and outside
the widows Q and Q. We can then express o(Q) ~
Pois(e(Q) - r(QY)) and o(Q)~ Pois(e(Q) -r(Q)) . Whenever
the window finds a new case, the likelihood function
for elevated risk within the window in comparison
with those outside the window is calculated. The like-
lihood function for window Q is proportional to.

su Q o(Q o(fz) o(Q o(Q
Loy = 3 ()™ (42) T <o(22>43)

where I()is the indicator function. The window Q to
be scanned by the spatial scan statistic is included in
the set:Q ={Qu|l<i<m,1<k<Kj}, where Qy, k=1,
... , Kj, is the window composed of the (k — 1) nearest
neighbors to district i. The window Q that attains
the maximum likelihood is defined as the most likely
hot-spot (MLH). We carried out the test of signifi-
cance level by means of the Monte Carlo hypothesis
testing [46]. We rejected the null hypothesis of no
clustering when the simulated p-value is less than or
equal to 0.05 for most likely hot-spots and 0.1 for
secondary hot-spots [47].

For the detection of space-time hot-spots, a cylin-
drical window with a circular geographic base and
height corresponding to time was used. The base of
the cylinder is centered around one of several pos-
sible districts and its radius is varying continuously in
size. The height of the cylinder reflects any possible
time interval of less than or equal to half the total
study period. The window then moves in space and
time, visiting each time interval and geographic
location [19, 21]. The likelihood ratio test statistic is
constructed in the same way of the purely spatial
hot-spots. However, the computational algorithm is in
three rather than two dimensions [48]. Most likely
hot-spots for different time lengths (i.e. 1, 2, 3, or 4-
year length) were scanned.
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Odds of space-time hot-spots and population density

We applied binary logistic regression to unfold the odds
of a particular district being a space-time hot-spot con-
ditioned on the socio-demographic status. Here, we used
urbanizationpas the independent variable. Such variable
is an invaluable proxy for many socio-demographic indi-
cators known to influence diarrhea. For the observed
value y, dichotomized as y =1 if a district is a space-time
cluster and y = Ootherwise, the conditional probability is

exp (.Bo +/31/7)

p(y=1|p) = e (o for)’ This is linearized by means of

the logit transform logit(p) = By + S1p, where logit(p)

= log (%), Pois the intercept term, and f3;is the fixed

effect of the independent variablep. For meaningful in-
terpretation and inferences, we classified urbanization
into three strata, i.e. rural, peri-urban, and urban.
Districts with predominantly rural communities were
classified as rural (< 30% urban population), those with
mixed urban and rural communities were classified as
peri-urban (30%-70% of urban population), and those
with predominantly urban communities were classified
as urban (> 70% of urban population). We estimated
three different fixed effect parameters for the odds ratios
(OR),exp(Br) k=1,2,3, corresponding to each stratum.

Results and analysis

Spatial distribution of relative risk

The overall risk of diarrhea varied with increasing trend
ranging from 0.3% in 2010 to 0.58% in 2014. Seasonal
variations were not analyzed due to the coarse temporal
resolution of the data. Figure 2 shows the empirical
Bayesian smoothed maps with remarkable spatial varia-
tions. We found temporal similarities of spatial patterns
as some districts of either high or low rates remained
same throughout the study period. Typically, the relative
risk of districts within the mid-west parts remained pro-
nounced and consistent throughout the study period.

Spatial scan statistic

Cluster window

Setting the maximum window size was guided by the
extent of spatial correlation of the relative risk.
Experimental semi-variograms were computed using
both traditional and adjusted estimators. The semi-
variograms were estimated using 20 lags of 10 km.
we fitted spherical, Gaussian, and exponential models
using least squares. The exponential model expressed
the largest range of spatial correlation, followed by
the spherical and Gaussian models (See Table 1, Fig.
3a and b). When population heterogeneities were
accounted for, the adjusted semi-variogram models
had larger ranges and lower variances compared with
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Table 1 Comparison between the adjusted and traditional (p < 0.001). This hot-spot had 595,655 observed cases

semi-variogram models compared with 370,194.21 expected cases covering
Adjusted Traditional almost 6.03% of the population. A total of 73 statistically

Model Practical Sill (%) Practical Sill %)  significant secondary hot-spots were also observed.
range (km) Range (km) Table 2 presents the characteristics of the first 5 spatial

Exponential 7000 5.1 4529 1101 hot-spots of diarrhea, while Fig. 4a shows the spatial

Spherical 43.40 5.05 31.11 10.89 distribution of the spatial hOt-SpOtS.

Gaussian 3370 501 2517 1089 Statistically significant space-time hot-spots (p < 0.001)

were also observed. This consisted of a primary hot-spot
and 21 secondary hot-spots (Table 3). The primary
the traditional estimators (Fig. 3c). Based on these, hot-spot was observed in 2013-2014 encompassing 15
we chose a cluster window size of 70 km obtained  districts with a likelihood ratio of 71,867.76 and rela-
from the practical range of exponential model of the tive risk of 2.16 (Table 3, Fig. 4b). The first secondary

adjusted semi-variogram estimator. hot-spot had similar characteristics as the primary
hot-spot. This hot-spot occurred in 2013-2014 and
Hot-spots detection encompassed 11 districts with a likelihood ratio of

Statistically significant primary and secondary hot-spots  54,964.05 and relative risk of 2.07. The existence of
were observed using the maximum window size of most of the space-time hot-spots spanned for more
70 km. The primary hot-spot encompassed 15 districts  than one year and were considered as long-term hot-
with higher than expected relative risk of 1.67 spots. Space-time hot-spots which existed for only
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Fig. 3 Empirical and theoretical semi-variogram models for both adjusted and traditional estimator. a: Adjusted semi-variogram estimator and

theoretical models (exponential, spherical, and Gaussian). b: Traditional semi-variogram estimator and theoretical models (exponential, spherical,
and Gaussian). ¢: Variations between exponential semi-variogram models estimated from the traditional and adjusted estimators
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Table 2 Characteristics of the first 5 spatial hot-spots of diarrhea, 2010-2014

Cluster Radius No. districts LLR P-value Obs. Exp. RR

1 68,794.68 15 62,31848 < 0.001 595,655 370,194.21 1.67
2 23,886.29 3 61,014.05 < 0.002 161,510 58,994.64 2.78
3 62,385.33 9 59,104.74 < 0.003 469,037 275,71861 1.76
4 50,437.92 Inl 37,669.56 < 0.004 474,066 313,587.34 1.55
5 54,837.64 14 32,166.58 < 0.005 533,531 374,162.87 147

one year period were considered as emerging hot-
spots.

Odds of space-time hot-spots and population density
From the results of the logistic regression model, the over-
all odds of space-time clustering was 1.62 (Table 4). The
mostly likely stratum of space-time clustering is peri-
urban districts. Space-time clustering is 11% higher in
peri-urban districts (OR = 1.11; CI = [0.59-2.19]) than
rural districts, and 43% lower in urban districts (OR = 0.57;
CI = [0.23-1.39]) as compared with rural districts.

Discussion

This study aimed to explore and map the spatial vari-
ation and hot-spots of district level diarrhea incidences
in Ghana. The findings showed temporal variation in the
overall risk of diarrhea, with increasing burden since
2010 to 2014. This is probably due to unmatched popu-
lation increase with the provision of safe sanitation and
drinking water. From 2010 to 2014, Ghana’s population
has grown from =24.6 to =27.2 million, a growth rate of

~10.6%. This high population growth rate has caused
major changes in socio-economic and demographic ac-
tivities especially in rural and peri-urban districts where
health and sanitation is already limited.

The empirical Bayesian smoothed maps show substan-
tial variation in the spatial distribution of diarrhea with
districts of higher/lower than expected risk clustered.
This is a symptom of wider socio-economic inequalities
amongst districts. We found diarrhea risk was more
pronounced and consistent within the mid-west parts
probably because these parts are dominated with semi-
deciduous and rain forests. High precipitation, which is
mostly associated with the semi-deciduous and rain
forests has been found to exacerbate the risk of diarrhea
infection [49-51]. Temporal similarities in the spatial
patterns is also an indication of sustained transmission
of diarrhea, suggesting that the spatial variation of the
risk factors haven’t changed over the period. For in-
stance, higher than expected risks were observed at the
mid-west part of Ghana throughout 2010 to 2014 while
the southern part continued to exhibit lower than
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Fig. 4 Spatial distribution of purely spatial (a) and space-time hot-spots (b) for diarrhea, 2010-2014
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Table 3 Characteristics of the space-time hot-spots of diarrhea, 2010-2014

Cluster Year Type No. Districts LLR P-value Obs. Exp. RR
1 2013-2014 Long-term 15 71,867.76 < 0.001 319,714 152,454.13 2.16
2 2013-2014 Long-term 1 54,964.05 < 0.002 269,815 133,626.15 207
3 2012-2013 Long-term 1 41,221.36 < 0.003 240,573 126,969.68 1.93
4 2012-2013 Long-term 4 36,988.53 < 0.004 88,590 30,323.91 2.95
5 2013-2014 Long-term 1 29,235.56 < 0.005 36,094 7230.90 5.02
[§ 2012-2013 Long-term 14 27,76941 < 0.006 250,430 151,480.90 1.68
7 2013-2014 Long-term 6 26,221.17 < 0.007 141,128 7202633 1.98
8 2013-2014 Long-term 3 25,288.21 < 0.008 56,661 18,544.33 3.07
9 2013-2014 Long-term 4 18,289.41 < 0.009 78,656 36,577.97 2.17
10 2013-2014 Long-term 6 13,295.16 <0010 120,375 72,578.63 167
" 2013-2014 Long-term 1 12,791.98 <0.0Mm 26,722 8326.13 322
12 2013-2014 Long-term 7 9924.87 <0012 107,572 67,950.10 1.59
13 2012 Emerging 1 6635.25 <0013 17,682 6435.55 2.75
14 2012-2013 Long-term 1 4412.37 <0014 31,200 17,428.19 1.79
15 2014 Emerging 4 3882.17 <0015 47,333 30,700.17 1.55
16 2013-2014 Long-term 1 1765.16 <0016 23,143 15,250.34 1.52
17 2010-2011 Long-term 2 1637.77 <0017 32,294 23,088.04 1.40
18 2014 Emerging 3 1315.55 <0018 24,646 17,455.64 141
19 2013-2014 Long-term 2 42044 <0019 23127 18,999.24 1.22
20 2014 Emerging 1 137.44 < 0.020 8609 7161.73 1.20
21 2014 Emerging 2 78.77 < 0.021 14,400 12,947.39 111
22 2011 Emerging 1 13.88 < 0.022 6031 5631.28 1.07

expected risks. Complementarily, statistical inference of
patterns using the spatial scan statistics detected both
primary and secondary hot-spots, with the primary hot-
spot (Cluster 1) detected within the mid-west part. This
was the largest hot-spot with a radius of 68.79 km and
encompassed 15 districts. We observed mutual occur-
rences between the empirical Bayesian smoothed maps
and the hot-spots detected by the spatial scan statistics.
The districts within the primary hot-spot also had higher
than expected relative risks from the empirical Bayesian
smoothed maps. Only few of the districts with higher
than expected relative risk were not identified as hot-
spots, thus indicating the significance of formal testing
and inference in cluster analysis. While testing whether
these spatial hot-spots were emerging or long-term, the
space-time scan statistics recounted most of the spatial

Table 4 Odds ratios and 95% confidence intervals of the
logistic regression model

Variable OR 2.5% 97.5%
Intercept 1.62 1.03 2.60
Rural (reference) 1

Peri-Urban 1.11 0.56 2.19
Urban 0.57 0.23 1.39

hot-spots as long-term (Fig. 4a and b). Specifically, the
first five purely spatial hot-spots detected at the mid-
west part of Ghana were also statistically significant
long-term hot-spots. These clustering patterns imply less
progress in prevention and control as well as unim-
proved hygiene and sanitation practices amongst in
these districts. The epidemiological implication of the
hot-spots can be deduced from the varying nature of the
possible risk factors of diarrhea. Many known correlates
of diarrhea are environmental and socio-demographic
factors which are diversely distributed amongst the dis-
tricts in Ghana. Since changes in population dynamics
are highly variable in space [52], their effects on socio-
demographic factors are also variable in space. Since
such variation is spatially dependent and continuous, the
expectation is that their ripple effects on health out-
comes will also be spatially dependent and clustered.
This implies that countermeasures should be
opportunely undertaken, and focused on the areas of
long-term hot-spots.

The impact of urbanization on space-time clustering
was diverse amongst the various urbanization strata.
Comparatively, space-time clustering was lowest in
urban districts than rural and peri-urban districts. The
underlying reason might be that the richer and better
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educated who are knowledgeable to prevent, and can
secure safe water and sanitation for their households are
mostly found in urban communities. Also urban popula-
tions have greater opportunities for health education
and preventative health care. We found that space-time
clustering was comparatively higher in peri-urban
districts than in rural, which was inconsistent with our
expectation. The reason might be that peri-urban dis-
tricts are mostly transitional zones often neglected by
urban planners; they are constantly under pressure by
increasing populations from urban and rural population
influx. For instance, the high cost of housing in urban
districts restrains most rural-urban migrants and the
urban poor to settle in peri-urban communities, thus
heightening the creation of slums and informal settle-
ments. Ghana has been able to achieve remarkable levels
of access to improved drinking water in urban areas, yet
meeting the needs of unserved and underserved
communities as well as growing peri-urban areas is still
a considerable challenge. As a consequence, such peri-
urban settlements are often plagued with poor water and
sanitation problems which are the well-known driving
forces of diarrhea. We found no study linking rural-
urban morphology to space-time clustering of diarrhea.
This prompts that further studies are required to explore
detailed comparative dynamics of diarrhea morbidities
between the different urbanization strata.

The implications of our findings are stated with some
caution. First, homogeneity in both population and dis-
ease counts are assumed. Thus, within-district variation
is assumed to be absent to restrain our study to fall
within the ecological analysis framework. While such
studies are necessary for neighborhood health planning
and large area intervention, they do not access and infer
individual level risk characteristics, the so called
ecological fallacy. Secondly, confounding and interaction
effects have not been accounted for in this study. It is
possible that rural-urban morphology would not matter
if individual level variables mediating diarrhea risk were
taken into account. Thirdly, this study used rural-urban
morphology as the only proxy to capture socio-
demographic risk of diarrhea. Studies have associated
diarrhea with a mix of attributable socioeconomic in-
equalities such as low income level, illiteracy, inadequate
water and sanitation [8—12]. Our future studies seek to
explore the spatially varying effects of several of these
factors on diarrhea morbidities. That notwithstanding,
the overriding advantage of our findings is two- fold.
First, this study shows the importance of spatial
locations as a covariate in identifying and mapping areas
of elevated and sustained transmission of diarrhea in
Ghana. These maps provide valuable information to as-
sist in appropriate allocation of health care resources for
better control and prevention. Second, it divulges the
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dependency of high space-time clustering on peri-urban
districts. This may provide a valuable factor for conside-
ration in neighborhood health planning.

Conclusions

This study has investigated the spatial variation of dis-
trict level diarrhea incidences in Ghana by mapping and
detecting hot-spots. Our study demonstrates the use of
the extent of spatial continuity, the range parameter of
the semi-variogram, to infer cluster window size for
spatial scan statistics. We conclude that that the spatial
distribution of diarrhea in Ghana is clustered, with evi-
dence of emerging and long-term space-time hot-spots.
The findings also infer that space-time clustering is
higher in peri-urban districts compared with rural
districts, and lowest in urban districts. These findings
prompt health planners and policy makers to consider
these patterns as critical when developing both short-
term and long-term strategies to reduce diarrhea. We
intend to further investigate risk factor characteristics of
diarrhea within the emerging and long-term space-time
hot-spots in the future.
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