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Cryosection brain images in Chinese Visible Human (CVH) dataset contain rich anatomical structure information of tissues
because of its high resolution (e.g., 0.167mm per pixel). Fast and accurate segmentation of these images into white matter, gray
matter, and cerebrospinal fluid plays a critical role in analyzing andmeasuring the anatomical structures of human brain. However,
most existing automated segmentation methods are designed for computed tomography or magnetic resonance imaging data,
and they may not be applicable for cryosection images due to the imaging difference. In this paper, we propose a supervised
learning-based CVH brain tissues segmentation method that uses stacked autoencoder (SAE) to automatically learn the deep
feature representations. Specifically, our model includes two successive parts where two three-layer SAEs take image patches as
input to learn the complex anatomical feature representation, and then these features are sent to Softmax classifier for inferring the
labels. Experimental results validated the effectiveness of our method and showed that it outperformed four other classical brain
tissue detection strategies. Furthermore, we reconstructed three-dimensional surfaces of these tissues, which show their potential
in exploring the high-resolution anatomical structures of human brain.

1. Introduction

The anatomical structures of the brain tissues are very com-
plex and associated with a number of neurological diseases.
Nevertheless, without segmentation, the computer cannot
recognize and define a tissue’s contour automatically, and
the anatomical images are difficult to be used for lateral
medical application [1]. Cryosection images in the Chinese
Visible Human (CVH) dataset show the true color of the
human body in a high spatial resolution and contain more
rich and original details of the brain anatomy than other
medical imaging, such as CT and MRI [2]. By segmenting
CVH brain tissues into cerebrospinal fluid (CSF), graymatter
(GM), white matter (WM), or other anatomical structures,
we can study human brain and apply it in various fields, such
as anatomical education, medical image interpretation, and
disease diagnosis [3].

It is known that automatic or semiautomatic segmen-
tation is helpful for alleviating the laborious and time-
consuming manual segment; however, much noise is intro-
duced during CVH image acquisition and the image contrast
is low at some positions because of the asymmetric illumi-
nation. In addition, the CVH dataset has no other similar
datasets as atlas for guiding segmentation. So there remains a
challenging problemof how to explore newmodel to segment
the whole hundreds of CVH brain images in high accuracy
and efficiency.

Currently, most existing brain segmentation algorithms
are based on CT or MRI images. According to whether the
objects are labeled, these methods can be classified into two
categories: unsupervised-based and supervised-based. The
unsupervised methods, such as region growing, threshold-
ing, clustering, and statistical models, directly use the image
intensity to search the object. For example, the fuzzy 𝑐-means
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method classifies image by grouping similar data that are
present into clusters and varying the degree of membership
function allows the voxel to belong to the multiple classes
[4, 5].This assumptionmay not work well as it only considers
intensity of image and intensity is not enough to express
the intrinsic feature of objects. In addition, some methods
estimate distribution of each class with probability density of
Gaussian mixture model [6]. These methods need accurate
estimation of probability density function and for those
images with largely overlapped tissues, it is hard to match
real distribution of data in a high accuracy. Other methods,
like region growing, extend threshold by combining it with
connectivity, but they need seeds for each region and have the
problem for determining suitable threshold for homogeneity.
Also, the gradient-based segmentation technique like Water-
shed [7] constructs many dams for segmenting image, but it
is easy to produce oversegmentation.

Supervised learning-based segmentation methods are
promising as they take expert information (labeled data
or atlas) into the procedure of segmentation. These meth-
ods have shown remarkable improvements in segmenting
CT or MRI brain images. For example, Anbeek et al. [7,
8] proposed applying spatial and intensity features in a
population-specific atlas space to label brain voxels. This
method achieves high accuracy in the cost of a large set
of manually segmented training images. The studies in [9,
10] proposed using cooccurrence texture features of wavelet
followed by a classifier (like support vector machine) for
brain segmentation, while the performance might vary from
different dataset at hand with this kind of low-level feature,
especially for the cryosection images that contain many of
anatomical structures and morphological changes.

When applying supervised methods to segment the
obscure targets, there is a common sense that the key to
success is mainly dependent on the choice of data representa-
tion used to characterize the input data [11]. Typical features,
such as histogram [12], texture [13], and wavelet [10, 14],
have been successfully applied to many different occasions.
But unfortunately, most of these low-level features are hard
to extract and organize salient information from the data
and their representation power varied fromdifferent datasets.
Considering that CVH dataset contains hundreds of brain
images with enormous anatomical information of different
tissues, due to efficiency, we may not label all the images
as training data but just a tiny fraction, so it is crucial to
extract better feature representation of the inputs so as to
infer the labels distribution of the unknown anatomical struc-
tures.

Recently, deep neural networks (DNN) have shown their
promising results for feature extraction in many computer
vision applications [15, 16]. Contrary to traditional shallow
classifiers in which feature engineering is crucial, deep
learning methods automatically learn hierarchies of rele-
vant features directly from the raw inputs [17]. There are
several DNN-based models such as convolutional neural
networks (CNNs) [16], deep belief network (DBN) [18],
stacked autoencoder (SAE) [19–21] that have been applied in
different tasks. As a typical example of deep models, CNNs
alternatingly apply trainable filters and local neighborhood

pooling operations on the raw input images, resulting in a
hierarchy of increasingly complex features [22, 23].

The first deep autoencoder network was proposed by
Hinton and Salakhutdinov in [20]. In contrast to CNNs
that apply a series of convolution/pooling/subsampling oper-
ations to learn deep feature representations, SAE employs
a full connection of units for deep feature learning. SAE
contains multiple intermediate layers and millions of train-
able parameters that enable it to capture highly nonlinear
mapping between input and output, so recently it has been
widely applied in some tasks such as image denoising and
deconvolution [24, 25], multiple organ detection [26], infant
hippocampus segmentation [19], and nuclei regions extrac-
tion [27].Their existing results indicate that the archtecture of
SAE is essential for acheiving better performance in a specfic
task, which motivates us to investigate the SAE-based feature
learning for CVH brain segmentation.

In this paper, we propose a learning-based CVH brain
tissues segmentation model that employs unsupervised SAE
to automatically learn the deep feature representations and
supervised Softmax for classification.Ourmodel is composed
of two successive parts: white matter (WM) segmentation
module and gray matter (GM)/cerebrospinal fluid (CSF)
segmentation module. Specifically, the SAE in two modules
takes image patches as input and learns their deep feature
representation. These features are then sent to a Softmax
classifier for inferring the labels of the center pixels of these
patches. To decrease the burden of labeling, only a tiny
number of labeled anatomical patches are fed to the network
in the training stage. Intuitively, a trained model may be
strange to the new patches that contain unknown anatomical
structures, but because SAE can learn intrinsic feature repre-
sentations which are well in eliminating distortion, rotation,
and blurring of the input patches, the model can infer the
classes of patches that contain unknown anatomical struc-
tures. The proposed model was used to segment all 422 CVH
brain images at hand. And the segmentation performance
of the deep-learned feature was compared with some other
representative features (e.g., intensity, PCA, HOG, and AE).
Experimental results show that the proposed model achieves
higher accuracy in segmenting all three tissues.

The rest of the paper is organized as follows. Section 2
briefly reviews the acquisition of CVH dataset and the details
of the proposed model. Section 3 reports the experimental
results and analyzes the segmentation performance of dif-
ferent SAE architecture. It also compared the performance
of different methods and visualizes the three-dimensional
reconstruction results. At last, Section 4 concludes the paper.

2. Material and Methods

2.1. Image Acquisition and Preprocessing. The data utilized
in this study are successive cross-sectional images of human
brain from the CVH dataset provided by the Third Military
Medical University in China.The cadaver is 162 cm in height,
54 kg in weight, and free of organic lesions. Both the donor
and her relatives donated their bodies to the Chinese Visible
Human program, which follows scientific ethics rules of the
Chinese Ethics Department.
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(a) (b) (c)

Figure 1: Preprocessing example of cryosection brain image. (a) Original imagewithout any preprocessing (3,072× 2,048 pixels). (b) Cropped
image (1,252 × 1,364 pixels). (c) Skull stripped image.
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Figure 2: Flowchart of our segmentation model.

The images in CVH dataset are taken of the frozen
cadaver. A total of 422 cross-sectional images of the head
(number 1074 to number 1495) are selected for this study. As
shown in Figure 1, the slice is 0.167mm per pixel, 0.25mm
thick, and photographed at a resolution of 6,291,456 (3,072
× 2,048) pixels with 24-bit color information in tiff format
[28]. In order to reduce computational cost and memory
usage, these images are transformed into PNG format and
cropped to 1,252 × 1,364 pixels. In the preprocessing stage,
skull stripping is applied to each image.

2.2. Method Overview. In this work, the CVH brain tissue
segmentation problem is formulated as a patch classification
task and the architecture of our segmentationmodel is shown
in Figure 2. The model takes patches extracted from the B-
channel and V-channel of the original images as input, then
SAE is used to extract intrinsic feature representation of the

input patches, and the following Softmax classifier generates a
labels distribution of these patches based on the deep features.
This model on segmenting three brain tissues (CSF, GM,
and WM) actually contains two submodels: MODEL 1 and
MODEL 2. In MODEL 1, GM and CSF are labeled as the
same class, and the segmentation is formulated as a three-
class classification task: WM, GM & CSF, and background.
Through MODEL 1, WM tissue can be extracted from the
region of interest. This segmentation result is helpful to fill
the areas of WM into background so as to eliminate the
influence of WM. So in MODEL 2, the patches from the
WM-eliminated image are taken as inputs, and the image is
segmented into CSF, GM, and background. This pipeline has
the advantages in that more image patches of the objects with
fewer labeled data can be taken as it is quite time-consuming
to manually label an image. In the following, we will describe
the details of the model.
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Figure 3: Proposed three-hidden-layer SAE. Note that the number of layers in our model is set via cross-validation.

2.3. Learning Hierarchical Feature Representation by SAE

2.3.1. Single-Layer AE. A single-layer AE [29] is a kind of
unsupervised neural network, whose goal is to minimize
the reconstruction error from inputs to outputs via two
components: encoder and decoder [19]. In the encoding
stage, given an input sample �⃗�

𝑛
∈ R𝑁, AE will map it to the

hidden activation ⃗ℎ
𝑛
∈ R𝑀 by the following mapping:
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In our model, during the training stage, we minimize the
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where x
𝑛
denotes the 𝑛-th sample in the training set; y

𝑛

denotes the reconstructed output with input of x
𝑛
; 𝜆 denotes

weight decay parameter which controls the relative impor-
tance of the two terms; 𝑛

𝑙
denotes the number of layers in the

network; 𝑠
𝑙
denotes the number of units in the 𝑙th layer; and

𝑚 denotes the number of training samples.

2.3.2. SAE for Hierarchical Feature Learning. SAE is a type
of neural network consisting of multiple layers of AEs in
which the output of each layer is wired to the inputs of the
successive layer. In this paper we propose a multi-hidden
layer SAE which is shown in Figure 3. It is noted that the
number of layers in our model is set via cross-validation.
For an input vector �⃗�

𝑛
, the first layer transforms it into a

vector ⃗ℎ1
𝑛
that consists of activations of hidden units, and the

second layer takes ⃗ℎ1
𝑛
as input to produce a new activated

vector ⃗ℎ2
𝑛
; then the final activated vector ⃗ℎ3

𝑛
that is produced

by ⃗ℎ2
𝑛
can be viewed as deep-learned feature representation

of the input sample. It is noticed that the model intrinsically
handles varying-dimension images through image patches
with different sizes. For a specific task, the parameters are
usually settled through experiments or experience, and the
training and application of SAE will go on those parameters.

In our task, we follow the greedy layer-wise training
strategy [18, 20, 30] to obtain better parameters of a SAE.That
is, we first train the first single AE on the raw input and then
train the second AE on the hidden activation vector acquired
by the former AE. The subsequent layers are repeated using
the output of each layer as input. Once this phase of training
is complete, we stack AEs into SAE and train the entire
network by a gradient-based optimization method to refine
the parameters.

The high-level features learned by SAE are more discrim-
inative compared to hand-crafted feature such as intensity
and learning-based feature by single-layer AE. To make an
intuitive interpretation, we conducted a dimension reduction
experiment to visually examine the distributions of feature
vectors from image patches by original intensity and a SAE
with three hidden layers, respectively.The experimental result
is shown in Figure 4, where the dimensionality of each feature
vector is reduced to two by Principal Components Analysis
(PCA) for the purpose of visualization. We can see that
the features extracted by SAE output a better cluster result
than intensity features. It is easier to generate a separation
hyperplane for separating different types of samples.

To further visualize the discriminative ability between
AE and SAE, the features learned by each layer of SAE
based on cryosection image are shown in Figure 5. As shown
in Figure 5(a), it is seen that AE can only learn primitive
oriented edge-like features, just like𝐾-means, ICA, or sparse
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Figure 4: Two-dimensional feature representation for 500 patches of each brain tissue by (a) intensity + PCA and (b) intensity + three-
hidden-layer SAE + PCA; here PCA is just for visualization of principle components.

(a) (b) (c)

Figure 5: Visualization of learned high-level features of input pixel intensities with three-layer SAE. (a), (b), and (c) Learned feature
representation in the first (with 225 units), second (with 144 units), and third (with 81 units) hidden layers, respectively, where the features in
the third layer are discriminative for image segmentation task.

coding do [31]. While SAE can learn higher-level features
corresponding to the patterns in the appearance of features
in the former layer (as shown in Figure 5(c)), these high-level
features are more discriminative for image segmentation task
in this paper. Hence, our model employs the SAE instead
of both hand-craft features and learning based features by
singer-layer AE to extract high-level feature representation
for segmenting brain tissues.

2.3.3. SAE Plus Softmax for CVH Brain Tissues Segmentation.
For every foreground pixel in the cryosection image, we
extract two patches centered at this pixel from its B-channel
(in RGB color space) and V-channel (in HSV color space)
image, respectively. So 𝜖 in Figure 2 is 2. The two patches
are concatenated together as the input features of SAE, and
the features learned by SAE then are sent to a supervised

Softmax classifier. The parameters of two SAEs in MODEL
1 and MODEL 2 are roughly consistent. The patch size
is set via cross-validation, and layer depth is set among
{1, 2, 3} considering the balance between computation cost
and discriminative power. The number of units in each layer
of SAE is experimentally set as 400, 200, and 100, respectively.
Thus, the final dimensionality of deep-learned feature is 100.
The weight decay 𝜆 of two SAEs in MODEL 1 and MODEL 2
is set to 0.003 and 0.005, respectively, which is tuned on the
validation set.

2.3.4. Ground Truth and Training Sets Generation. Theobjec-
tive of the proposed model is to automatically segment the
three brain tissues of thewhole 422CVHbrain image at hand.
It is laborious and time-consuming to manually segment
all the brain image for an anatomical expert, so the expert
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Table 1: Details of the SAE architectures with different input patch size and layer depth in this study.

Patch size Layer 1 Layer 2 Layer 3 Layer 4

5 × 5

Layer type AE Softmax — —
Input size 50 25 — —
Hidden size 25 — — —

9 × 9

Layer type AE AE Softmax —
Input size 162 81 36 —
Hidden size 81 36 — —

13 × 13

Layer type AE AE Softmax —
Input size 338 150 64 —
Hidden size 150 64 — —

17 × 17

Layer type AE AE AE Softmax
Input size 578 400 200 100
Hidden size 400 200 100 —

21 × 21

Layer type AE AE AE Softmax
Input size 882 400 200 100
Hidden size 400 200 100 —

only segmented eight CVH brain images which is saturated
with abundant anatomical structures as the ground truth for
training sets generation and quantitative evaluation.

The patches used for training and testing are extracted
from the eight labeled images. The size of each patch is
chosen 17 × 17 to achieve relatively best performance which
is validated in Section 3.1, so 𝜔 in Figure 2 is 17. For MODEL
1, our training sets contain 100,00WM patches and 90,000
non-WM patches extracted from eight training images. For
model 2, the training sets contain 106,000GM patches and
84,000CSF patches. These patches are used for SAE and
Softmax training in the two models.

3. Experimental Results and Discussion

In the experiments, we firstly focus on evaluating the seg-
mentation performance of features learnt by different SAEs
based on cryosection image in order to get the best SAE
architecture. Secondly, we compare performances of the
proposedmodel based on the deep-learned features and some
famous hand-crafted features such as intensity, PCA, and
HOGand one learning-based feature byAE.Then, we present
typical segmentation examples and make some discussion.
Finally, we build the 3D meshes of three tissues based on our
segmentation results.

3.1. Comparison ofDifferent SAEArchitectures. Thenonlinear
mapping between the input and output of SAE is influenced
by its multilayer architecture with various input patch sizes
and depths. In order to investigate the impact of different SAE
architectures on segmentation accuracy, five different SAE
architectures are designed and resort to segmentation task.
The detailed parameter configurations are shown in Table 1
and the segmentation performances of WM, GM, and CSF
are reported in Table 2.

It can be observed from the results that the predictive
accuracies are generally higher for the architectures with
input patch sizes of 17 × 17 and 21 × 21. The SAEs with

Table 2: Mean and standard deviation of Dice ratio (in %) for
measuring the performance of the three tissue types with five
different architectures trained by using different patch sizes of 5 × 5,
9 × 9, 13 × 13, 17 × 17, and 21 × 21, respectively. The experiments
were conducted in a leave-one-out manner and eight test results
were collected for each tissue.

Patch size WM GM CSF
5 × 5 92.41 ± 2.85 90.36 ± 3.24 88.41 ± 3.01

9 × 9 93.95 ± 2.48 90.45 ± 2.13 89.54 ± 2.57

13 × 13 94.25 ± 2.01 91.74 ± 2.51 90.14 ± 2.84

17 × 17 96.12 ± 1.63 92.24 ± 2.11 90.69 ± 2.14

21 × 21 96.64 ± 1.85 91.12 ± 2.36 90.45 ± 2.04

larger patch size tend to have a deeper hierarchical structure
and more trainable parameters. These learned parameters
are capable of capturing the complex relationship between
input and output. We can also observe that the architecture
with input patch size of 21 × 21 does not generate substan-
tially higher performance, suggesting that larger patch may
introducemore image noise and fused anatomical structures.
In order to obtain better segmentation performance, in the
following we focus on evaluating the performance of our SAE
architecture with input patch size of 17 × 17 and depth of 3.

3.2. Comparison of Performances Based on Different Fea-
tures. In order to provide a comprehensive evaluation of
the proposed method and illustrate the effect of high-level
features in contrast to low-level features, three representative
hand-crafted features such as intensity, PCA [32, 33], and
HOG [34] and one learning-based features by AE are used
for comparison. These features follow the same segmenting
procedures as the deep-learned features. All the segmentation
performances are reported in Table 3 using Dice ratio. It can
be observed that our model with the features extracted by
SAE outperforms other well-known features for segmenting
all three types of brain tissue. Specifically, our model yields
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Figure 6: Continued.
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(f)

(g)

Figure 6: Comparison of the segmentation results with the manually generated segmentation on a cryosection image in CVH dataset. (a)
shows the original cryosection and its B-channel (in RGB color space) and V-channel (in HSV color space) image. (b) shows the manual
results (CSF, GM, and WM). (c)–(g) show the results by the features of our SAE deep learning, Intensity, PCA, HOG, and AE, respectively.

Table 3: Mean and standard deviation of Dice ratio (in %) for the
segmentations obtained by five feature representation methods.

Method CSF GM WM
Intensity 88.76 ± 2.41 89.46 ± 2.12 95.49 ± 1.96

PCA 89.31 ± 1.89 90.87 ± 2.34 95.20 ± 2.01

HOG 86.77 ± 2.67 87.21 ± 2.86 94.92 ± 1.89

AE 88.32 ± 2.37 90.26 ± 2.36 95.60 ± 1.83

Proposed SAE 90.69 ± 2.14 91.24 ± 2.01 96.12 ± 1.23

the best average Dice ratio of 90.69 ± 2.14% (CSF), 91.24
± 2.01% (GM), and 96.12 ± 1.23% (WM) in a leave-one-out
evaluation manner. These results have illustrated the strong
discriminative power of the deep-learned features in brain
tissues segmentation task.

To further demonstrate the advantages of our proposed
model, we visually examine the segmentation results on one
cryosection image which is shown in Figure 6. (a) shows the
original RGB cryosection image and its B- and V-channel
images.The ground truth that segmented by experts is shown
in (b). (c)–(g) present segmentation results of four methods
based on deep-learned features, intensity features, PCA
features, HOG features, and AE feautres, respectively.We can
see that the segmentation results of the proposed model are
quite close to the ground truth. In contrast, other results
either generate much oversegmentation or fail to segment
tiny anatomical structures accurately. Specifically, WM is
only adjacent to the GM and can be easily distinguished

from its surroundings, so the WM segmentation DRs are
approximate to each other. And the visible results of WM
are similar in appearance except the fact that HOG-based
method mistakenly introduced a small fraction of CSF
into the results. It has some difficulty on GM and CSF
segmentation due to the complex anatomical structures and
low contrast. HOG and intensity based methods introduce
more surroundingnon-GMornon-CSF tissue into theROI of
GM or CSF, respectively; thus they produce more defects and
fuzzy boundaries for different tissues. In contrast, theGMand
CSF tissues generated by ourmethod can be clearly identified
with a certain ROI and distinct contours.

We then applied our proposed model to segment all
422 brain cryosection images. Typical images in coronal and
sagittal viewpoints and their corresponding segmentation
results (WM, GM, and CSF) are shown in Figures 7 and 8,
respectively. It is remarkably seen that the results of WM
and GM change continuously and their morphological dis-
tributions are shown clearly; most tiny anatomical structures
are well reserved. It is also noticed that the results of CSF
seem incomplete and not distributed uniformly. This fact is
determined by the characteristics of the cryosection images.
These images have such high spatial resolution (0.167mm
per pixel and 0.25mm per slice) that it can express fine
structures of tissues. But since these images were collected
from a cadaver, the CSF in the brain no longer flowed in
vivo. Due to the effect of gravity, the CSF will gather to some
places, rather than uniformly distributing around the surface
of brain as in live status.These factors cause the discontinuous
distribution of the CSF segmentation results.
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Figure 7: Coronal section images (a) and their corresponding SAE segmentation results of WM, GM, and CSF ((b), (c), and (d)).

(a)

(b)

(c)

(d)

Figure 8: Sagittal section images (a) and their corresponding SAE segmentation results of WM, GM, and CSF ((b), (c), and (d)).
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Figure 9: Three-dimensional surface-rendering reconstruction results of WM, GM, and CSF based on our segmented images.

3.3. Three-Dimensional Reconstruction Results. The CVH
cryosection slices are 0.167mm per pixel and 0.25mm thick,
and such high resolution is very helpful for displaying subtle
anatomical structures of brain tissues. For a more in-depth
understanding of these tissues, the segmented white matter,
gray matter, and cerebrospinal fluid images are reconstructed
usingmarching cubes algorithm to produce 3D surfacemesh.
The reconstruction results in different views are shown in
Figure 9. From the surface-rendering reconstruction results,
it is seen that the surface of WM is smooth and its sulci and
fissures are clearly displayed. The distribution of GM shape
is also noticed, but the surface of GM reconstruction results
does not look very smooth. The reason for this lies in the
fact that the GM and CSF are mixed together because of the
ice crystals in the frozen brain slices, so the segmentation of
GM is influenced by its surrounding CSF. In spite of it, the
sulci and cerebral cisterns are also easy to be recognized in
3D reconstructed WM and GM.

Benefitting from the increasing development of the 3D
reconstruction technology, 3D MRI and PET have now
been used in clinic and researches. But because of the
resolution limitation and complexity of brain structures of
the 2D radiological images (such as CT and MRI), the 3D
reconstruction results are usually unsatisfactory and are hard
for the guidance of clinic operation. For the work in our
paper, we focus on the segmentation and reconstruction of
three kinds of CVHbrain tissues.TheCVHbrain images have
high spatial resolution of 0.167mmper pixel and 0.25mmper
slice, after segmentation by the proposed method; the high-
quality and high-accuracy 2D brain tissues can get well 3D
reconstruction results. Some potential applications of the 3D
reconstruction result include the following:

(1) The 3D results can be viewed in any orientation
besides the common coronal, sagittal, and transverse
orientations. These 3D models (especially for WM
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and GM) can help obtain the anatomical knowledge
of 3D structures and their adjacent relationship in
space. In addition, we can identify the structures by
comparing radiological image with the anatomical
image.

(2) The 3D result in our work is applicable for teaching
sectional anatomy since there is rarely direct-viewing
model that canmake the understanding of anatomical
structures easier. The varying viewpoints of the 3D
model are helpful for observing the tiny structures
in specific positions of human brain, and medical
students only need tomove theirmouse to control the
perspective of displaying.

4. Conclusion

We have presented a supervised learning-based CVH brain
tissue segmentation method using the deep-learned features
with multilayer SAE neural network. The major difference
between our proposed feature extraction method and con-
ventional hand-crafted features such as intensity, PCA, and
Histogram of Gradient (HOG) is that it can dynamically
learn the most informative features adapted to the input
dataset at hand. The discriminative ability of our proposed
model is evaluated and compared with other types of image
features. Experimental results validate the effectiveness of
our proposed method and show that it significantly outper-
forms the methods based on typical hand-crafted features.
In addition, the high-resolution 3D tissue surface meshes
are reconstructed based on the segmentation results by
our method with the resolution of 0.167mm per pixel and
0.25mm per slice, much more tiny than the 3 T (even 7 T)
MRI brain images. Furthermore, since the procedure of
features extraction by ourmethod is independent of the CVH
dataset, our method can be easily extended to segment other
medical images such as cell images and skin cancer images.
CVH dataset contains serial transverse section images of the
whole human body, which is large in volume. Pure manual or
semiautomatic segmentation of those images is quite time-
consuming, so a large proportion of data still remain to be
exploited.Though the work in our paper only had segmented
theWM,GM, and CSF of the brain tissue, it actually provides
a reference for automatically or semiautomatically processing
such real-color and high-resolution images.

Recent studies show that neural network can yield more
promising performance on image recognition task with
deeper hidden layers [35, 36]; we will explore parallel SAE
with more hidden layers as well as more training data in the
future. In addition, the number of neural units in each hidden
layer may affect the segmentation performance in a certain
degree. We will further investigate the influence of hidden
neural units to segmentation performance. Furthermore, the
model uses a classical Softmax classifier to predict labels of the
input patches, and we will consider the influence of different
classifiers in the future research.
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