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ABSTRACT Genomic data provide a valuable source of information for modeling covariance structures, allowing a more accurate
prediction of total genetic values (GVs). We apply the kriging concept, originally developed in the geostatistical context for predictions
in the low-dimensional space, to the high-dimensional space spanned by genomic single nucleotide polymorphism (SNP) vectors and
study its properties in different gene-action scenarios. Two different kriging methods [“universal kriging” (UK) and “simple kriging”
(SK)] are presented. As a novelty, we suggest use of the family of Matérn covariance functions to model the covariance structure of SNP
vectors. A genomic best linear unbiased prediction (GBLUP) is applied as a reference method. The three approaches are compared in
a whole-genome simulation study considering additive, additive-dominance, and epistatic gene-action models. Predictive performance
is measured in terms of correlation between true and predicted GVs and average true GVs of the individuals ranked best by prediction.
We show that UK outperforms GBLUP in the presence of dominance and epistatic effects. In a limiting case, it is shown that the
genomic covariance structure proposed by VanRaden (2008) can be considered as a covariance function with corresponding quadratic
variogram. We also prove theoretically that if a specific linear relationship exists between covariance matrices for two linear mixed
models, the GVs resulting from BLUP are linked by a scaling factor. Finally, the relation of kriging to other models is discussed and
further options for modeling the covariance structure, which might be more appropriate in the genomic context, are suggested.

PREDICTING genotypes and phenotypes plays an impor-
tant role in many areas of life sciences. Both in animal

and plant breeding, it is essential to predict the genetic
quality (the so-called total genetic value, GV) of individuals
or lines, on the basis of different sources of knowledge.
Often, phenotypic measures for various traits are available
and the additive genetic relationship between individuals
(Wright 1922) can be derived, on the basis of the known
pedigree. Best linear unbiased prediction (BLUP; Henderson
1973) of breeding values is a well-established methodology
in animal breeding (Mrode 2005) and has recently gained
relevance in plant breeding (Piepho et al. 2008). In both
areas, the main interest is in complex traits with a quantita-
tive genetic background.

In human medicine, the interest is in predicting pheno-
types, rather than genotypes, for simple or complex traits
(e.g., the probability/risk to encounter a certain disease). Ge-
netic prediction is mainly applied in the context of genetic
counseling by predicting the risk of genetic disorders with
known mono- or oligogenetic modes of inheritance and a cer-
tain history of cases in a known family structure, but accurate
predictions of genetic predispositions to human diseases
should also be useful for preventive and personalized medi-
cine (de los Campos et al. 2010). Wray et al. (2007) discuss
the potential use of prediction of the genetic liability for traits
with a complex quantitative genetic background in a human
genetics context, and the variety of possible methods, includ-
ing linear models, penalized estimation methods, and Bayes-
ian approaches was reviewed by de los Campos et al. (2010).

With the availability of high-throughput genotyping fa-
cilities (Ranade et al. 2001), genotypes for massive numbers
of single nucleotide polymorphisms (SNPs) are available
and can be used as an additional source of information for
predicting GVs. Meuwissen et al. (2001) have suggested in-
cluding SNP information in a statistical model of prediction.
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They used three statistical models: a model assigning random
effects to all available SNPs (later termed “genomic BLUP”),
assuming all SNP effects to be drawn from the same normal
distribution, and two Bayesian models, where all (“Bayes A”)
or a subset (“Bayes B”) of the random SNP effects are drawn
from distributions with different variances. Various modifica-
tions of these methods and additional models have been sub-
sequently suggested (Gianola et al. 2009).

Gianola et al. (2006) and Gianola and van Kaam (2008)
have suggested a nonparametric treatment of genomic in-
formation by using reproducing kernel Hilbert spaces
(RKHS) regression, which has already been demonstrated
with real data (González-Recio et al. 2008, 2009). As was
argued by de los Campos et al. (2009), the RKHS regression
approach to genomic modeling represents a generalized
class of estimators and provides a framework for genetic
evaluation of quantitative traits that can be used to incorpo-
rate information on pedigrees, markers, or any other ways of
characterizing the genetic background of individuals.

Opportunities to enhance genetic analyses by using non-
parametric kernel-based statistical methods are enormous
and these methods have been considered in different areas
of genetic research. Schaid (2010a,b) provides an overview
of measures of genomic similarity based on kernel methods
and describes how kernel functions can be incorporated into
different statistical methods like, e.g., nonparametric regres-
sion, support vector machines, or regularization in a mixed
model context. Only recently, kernel-based methods have also
been used in association studies (Kwee et al. 2008; Yang et al.
2008) and QTL mapping for complex traits (Zou et al. 2010),
which demonstrates their great potential and flexibility.

Prediction is also relevant in other areas of research: In
large parts of geostatistics, the spatial distribution of
variables (like temperature, humidity, ore concentration,
etc.) is considered. On the basis of a given (limited) set of
measurements, the prediction of the variable realization in
any point of the considered space is of interest. A standard
approach for prediction in this case is the so-called “kriging”
(Chilès and Delfiner 1999), which makes use of a parame-
terized covariance function of the regionalized variables.

While in geostatistics the application of kriging is naturally
limited to few dimensions, the basic approach is rather
universal (Schölkopf et al. 2004). In this article we apply krig-
ing to the genomic prediction problem. Here, one dimension
reflects genotype realizations at one SNP. In the genomic con-
text, with p SNPs, realizations are in a p-dimensional orthog-
onal hypercube. Due to the biallelic nature of SNPs, only three
genotype realizations (coded, e.g., as 0, 1, and 2) are possible
in each dimension, so that the number of possible genotype
constellations over p SNPs is 3p.

The concept of kriging is closely related to the concept of
BLUP. Cressie (1989) provides a “historical map of kriging”
up to 1963 in which he also refers to Henderson (1963) who
introduced BLUP in animal breeding. The steps of kriging
are equivalent to “empirical BLUP”-procedures known in
other frameworks, and kriging can be viewed as a “spatial

BLUP.” The conceptual equivalence of geostatistical kriging
and BLUP has already been discussed by Harville (1984).
Robinson (1991) provides a detailed review of the history of
estimation of random effects via BLUP and its various deri-
vations. He also points out the similarities between BLUP
and kriging.

The equivalence of kriging with BLUP in a space spanned
by genomic data was first noted by Piepho (2009), who also
discusses relationships with other estimation principles, like
ridge regression (Whittaker et al. 2000) and least squares
support vector machines (Suykens et al. 2002). Comparing
the performance of spatial mixed models to ridge regression
with maize data, he found that spatial models provide an
attractive alternative for prediction. He also points out that
the BLUP model used in Meuwissen et al. (2001) has an
interpretation as a spatial model with quadratic covariance
function. Spatial models for genomic prediction were also
used by Schulz-Streeck and Piepho (2010).

Moreover, kriging is known to be closely related to radial
basis function (RBF) regression methods (Myers 1992).
Long et al. (2010) showed with real and simulated data that
nonparametric RBF regression methods can outperform
Bayes A when predicting total GVs in the presence of non-
additive effects using SNP markers.

In this article we demonstrate the potential of the kriging
approaches applied to genomic data: As a novelty, we sug-
gest the family of Matérn covariance functions to reflect the
functional dependency of the observed covariances from
the distance of genotypes expressed as Euclidean norm. On
the basis of this model and the assumed covariance function,
we suggest two kriging approaches. Under both models,
parameters and hidden variables are estimated via maximum
likelihood (ML) and BLUP of the unknowns is established by
solving the corresponding linear kriging systems. All predic-
tions can also be implemented in the form of the so-called
mixed model equations (Henderson 1973). The predictive
performance of the two models is compared to a common
genomic BLUP as a reference method in a whole-genome
simulation study considering various gene-action models.

Furthermore, we show that in a limiting case the genomic
covariance structure proposed by VanRaden (2008) can be
considered as a covariance function with corresponding qua-
dratic variogram. In addition we prove theoretically that
predicted GVs are scaled only by a factor if the covariance
structures are linearly transformed. Finally, we discuss fur-
ther options for a more differentiated modeling using the
suggested methodological approach.

Methods

Kriging

The term kriging stems from the prediction of ore concen-
trations in deposits and was mainly developed by Matheron
(1962, 1963) on the basis of the master’s thesis of Krige
(1951). In geostatistics, kriging is currently the standard
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approach whenever spatial prediction of a so-called regional-
ized variable (Matheron 1989), e.g., temperature, ozone con-
centration or soil moisture, must be performed on the basis of
a few isolated measurements of the quantity. It is assumed
that the regionalized variable is a realization of a random
function with a certain covariance structure. Mostly, the latter
is given by a parameterized covariance function (Cressie
1993), and the random function is assumed to be Gaussian.

The kriging approach consists of two steps: (i) estimation
of the unknown parameters and hidden variables (in
particular by ML or REML) and (ii) prediction of the values
of the regionalized variables by performing a BLUP, under
the auxiliary assumption that the parameter values and
hidden variables estimated in the first step are the true ones.

Many variants of the general kriging principle have been
discussed (Cressie 1993). The type of kriging is implied by the
unbiasedness condition: In “simple kriging” (SK), it is assumed
that the underlying regionalized variable has zero mean,
whereas in “universal kriging” (UK), a linear model for the
mean of the underlying regionalized variable is assumed.

The model for polygenic and genomic data

In our further studies, we assume to have q individuals with
pedigree information, n of them being genotyped and hav-
ing phenotype measurements of a certain quantitative trait.
Typically, GVs have to be predicted for individuals that are
genotyped, but have no phenotype data.

We use the following model for the given data

yi 5wT
i b1 zTi u1 gðxiÞ1 ei; i5 1; . . . n;

where yi is a measurement of the phenotype for individual
i, b is an f-vector of nuisance location parameters, xi is a
p-vector of dummy SNP instance variates (genotype) observed
on individual i, and g is an unknown, random function as
described below. Let u � Nð0;s2

uAÞ be a q-vector of additive
genetic effects of q individuals, where s2

u is the additive
genetic variance due to unmarked polygenes, and A is the
numerator relationship matrix. The entries of the numerator
relationship matrix are twice the coefficients of coancestry
between individuals. The vectors wT

i and zTi are known in-
cidence vectors; zi is a unit vector with one component being
1 and all the others zero, indicating the respective position
in the pedigree. Let e ¼ (e1,. . ., en)T be the vector of envi-
ronmental residual effects with e � Nð0;s2

eIÞ; where s2
e is

the environmental variance.
We assume that {g(xi), xi 2 ℝp} is a Gaussian random field

(Lifshits 1995) with E(g(xi)) ¼ 0 and covariance structure
given by CovðgðxiÞ; gðxjÞÞ 5 EðgðxiÞgðxjÞÞ 5 Kn;h;sK ðxi; xjÞ;
where Kn;h;sK ð�; �Þ is a covariance function depending on
parameters n, h, and sK. Let Kn;h;sK 5 ðKn;h;sK ðxi; xjÞÞ1#i; j#n
be the corresponding covariance matrix.

The family of Matérn covariance functions

For the covariance structure we suggest using the so-called
family of Matérn covariance functions, which was introduced

by Matérn (1986) and Handcock and Wallis (1994) and is
defined by

Cov
�
gðxiÞ; g

�
xj
��
5Kn;h;sK

�
xi; xj

�
5s2

K � 2
12n

GðnÞ
� ffiffiffiffiffiffi

2n
p ��xi 2 xj

���h�nKn

� ffiffiffiffiffiffi
2n

p ��xi 2 xj
���h�:

Here, k � k is the Euclidean norm, n . 0 is a smoothness
parameter, h is a scale parameter, s2

K is the variance param-
eter, and Knð�Þ is a modified Bessel function of the second
kind of order n (Abramowitz and Stegun 1984). The Matérn
function is isotropic, in that Cov(g(xi), g(xj)) depends only
on the Euclidean norm of the separation vector xi – xj.

Matérn covariance functions build a very general class of
covariance functions including special cases like the exponen-
tial (n ¼ 1

2) and the Gaussian (n ¼ N) covariance function,
the ones that have also been used by Piepho (2009). If the
smoothness parameter n is of the form m 1 1

2, where m is an
integer, the Matérn function factorizes into the product of an
exponential function and a polynomial of degree m; cf. Table
1 and Figure 1. The best fitting parameter value n is deter-
mined through the model-fitting approaches described below.

In matrix notation, the statistical model is

y5Wb1Zu1 gðXÞ1 e; (1)

whereW 5 ðwT
1 ; . . . ;w

T
nÞT is an (n · f)- and Z 5 ðzT1 ; . . . ; zTnÞT

is an (n · q)-incidence matrix and g(X) ¼ (g(x1), . . . , g(xn))T.
Finally, we assume that the random vectors u, e, and g(X) are
independent.

Two kriging approaches and a reference model

We consider two models to predict the total genetic value
zT0u1gðx0Þ of a certain genotyped individual indexed by 0.
This individual belongs to the set of q individuals, but it does
not have to be phenotyped. The models differ in the size of
the sets of quantities that are estimated in the first kriging
step and subsequently used for predictions.

Universal kriging: Modeling of y

We exploit the fact that y has a multivariate normal distribution,

y � N �Wb;s2
uZAZ

T 1Kn;h;sK
1s2

eI
�
;

and estimate the parameters b, su, se, n, h and sK by max-
imizing the log likelihood of the corresponding density
function.

Then, we perform a best linear unbiased prediction of g(x0)
and zT0u; i.e., we apply the BLUP principle: To obtain bgðx0Þ
we minimize

E
�bgðx0Þ2 gðx0Þ

�2
/min!

with the linear predictor bgðx0Þ 5 aTgy under the con-
dition aTgW 5 0: This approach is called universal kriging
in other areas of research (Cressie 1993). In fact, the con-
dition assures aTgWb 5 0 and therefore Egðx0Þ 5 0 5
aTgWb 5 Ebgðx0Þ; i.e., bgðx0Þ is unbiased. Let K0 5
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ðKn;h;sK ðx1; x0Þ; . . . ;Kn;h;sK ðxn; x0ÞÞT : The approach results in
the following kriging system of equations:

	
W s2

uZAZ
T 1Kn;h;sK

1s2
eI

0 WT



�
	
l
ag



5

	
K0
0



:

Note that this linear system does not depend on b. Analo-
gously, zT0u can be predicted by the universal kriging

estimator dzT0u 5 aTuy; where au satisfies

	
W s2

uZAZ
T 1Kn;h;sK

1s2
eI

0 WT



�
	
l
au



5

	
s2
uZAz0
0



:

and one gets dzT0u1bgðx0Þ as BLUP of zT0u1 gðx0Þ:
In the animal breeding context it is well known that

a BLUP approach for the model y ¼ Wb 1 Zu 1 g(X) 1 e is
equivalent to solving the mixed model equations (MME)2664

WTW WTZ WT

ZTW ZTZ1 s2
e

s2
u
A21 ZT

W Z I1s2
eK

21
n;h;sK

3775 �

2664
b̂

û
^gðxÞ

37755

2664
WTy

ZTy

y

3775 (2)

for given variance components estimated, e.g., by ML. For
a derivation of the MME from the kriging system see, e.g.,
Dempfle (1982).

Simple Kriging: Joint modeling of y, u, and g(X)

In the second approach we model the hidden variables u
and g(X) explicitly and consider the joint density function
fy,u,g of y, u, and g(X), which equals

fy;u;gðXÞðy;u; gðXÞÞ5 fy j u;gðXÞðyÞ � fuðuÞ � fgðgðXÞÞ

5 feðy2Wb2Zu2 gðXÞÞ � fuðuÞ � fgðgðXÞÞ

5 c � exp
�
2
1
2
�
	
1
s2
e
jj y2Wb2Zu2 g

�
X
� jj 2
�

� exp
�
2
1
2
�
	
1
s2
u
uTA21u


�
�exp

�
2

1
2
�
h
gðXÞTK21

n;h;sK
gðXÞ

i�

with

c21 5 ð2pÞn1q=2s e
n � s q

u ðdet AÞ1=2�
�
det Kn;h;sK

�1=2
:

Here, we have to estimate the parameters b, su, se, n, h,
sK and the hidden variables u and g(X). Note that in this

approach we consider u and g(X) to be parameters that have
to be estimated via ML in the first kriging step. Therefore,
we maximize the log likelihood J of the density function
fy,u,g; i.e., we maximize

J5 logðcÞ2 1
2
�
	
1
s2
e
jj y2Wb2Zu2 gðXÞ jj 2 1

1
s2
u
uTA21u1 gðXÞTK21

n;h;sK
gðXÞ



;

ð3Þ

with respect to b, u, and g(X). Taking the derivatives with
respect to b, u, and g(X) leads to the linear system given in
(2), which yields estimators for b, u, and g(X). When using
these estimates in Equation 3, the value of J depends only on
su, se, n, h, and sK. Thus, J can be maximized numerically
with respect to these parameters, leading to estimates for b,
su, se, n, h, sK, u, and g(X). According to the kriging phi-
losophy, we now assume the values of the estimators (espe-
cially the value of the estimator for g(X)) to be the true
ones, and g(x0) is predicted via bgðx0Þ 5 aTggðXÞ by the BLUP
principle. That is, we minimize

E
�bgðx0Þ2 gðx0Þ

�2
/min!

with the linear estimator

bgðx0Þ5 aTggðXÞ:

Table 1 Special cases of Matérn covariance functions

n h Kn;h;sK ðxi; xjÞ
Exponential 0.5 1 s2

K � expð2 jj xi2xj jj Þ
1.5 1 s2

K � expð2 ffiffiffi
3

p jj xi2xj jj Þ � ð11
ffiffiffi
3

p jj xi2xj jj Þ
2.5 1 s2

K � expð2 ffiffiffi
5

p jj xi2xj jj Þ � ð11
ffiffiffi
5

p jj xi2xj jj15
3 jj xi2xj jj 2Þ

Gaussian N 1 expð21
2 jj xi2xj jj 2Þ

Figure 1 Matérn covariance functions for h ¼ 1, s2
K 5 1, and different

values of n. From top to bottom n ¼ N, 10, 2.5, 1.5, 0.5.
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This approach is called simple kriging (Cressie 1989,
1993; Chilès and Delfiner, 1999). Note that bgðx0Þ is always
unbiased. The solution is

bgðx0Þ5KT
0K

2 1
n;h;sK

gðXÞ: (4)

Finally, the predicted GV is given by dgðx0Þ1zT0u 5 bgðx0Þ1zT0bu;
where bu is the estimator obtained in the iterative procedure
described above.

Reference model: genomic BLUP

This approach performs a genomic BLUP on the basis of the
model

y5Wb1Zu1 ~Xg1 e;

which leads to the kriging system"
W s2

uZAZ
T 1s2

g
~XG ~XT 1s2

eI
0 WT

#
�
	
l
a



5

	
s2
uZAz0 1s2

g
~XG~x0

0




and predicting zT0
du1~x

T
0g 5 aTy:

Here, b; e � Nð0;s2
eIÞ;u � Nð0;s2

uAÞ;W; and Z are de-
fined as in the previous approaches. The vector g �
Nð0;s2

gGÞ is multivariate normal with G being a genomic
relationship matrix calculated by using the approach of
VanRaden (2008). (For the definition of the genomic rela-
tionship matrix see the formulas in the Appendix.) The ma-
trix ~X is a known incidence matrix whose rows consist of
unit vectors with one component being 1 and all the others
zero, indicating the respective position in the g-vector. Var-
iance components for this model are estimated via ML.

Simulation study

In a first step, four types of simulations were performed
differing in the hypothetical gene-action scenario: additive,
additive dominance with two different ratios of dominance
variance to additive variance, and epistasis. For each
scenario 50 independent simulations were run, resulting in
50 data sets per scenario.

The simulation process basically followed that of Meuwissen
et al. (2001), Solberg et al. (2008), and Long et al. (2010).

Population and genome

In each scenario, the population evolved during 1000
generations of random mating and random selection with
a population size of 100 (50 males and 50 females) in each
generation to reach a mutation-drift balance. After 1000
generations, the population size was increased to 500 at
generation t ¼ 1001 by mating each male with 10 females,
with one offspring per mating pair. In generations t ¼
1002, . . . , t ¼ 1011 offspring were born from random mating
of individuals of the previous generation. The 1500 individ-
uals of generations 1008, 1009, and 1010 were used as
estimation set, the 500 individuals of generation 1011

formed the validation set for which total GVs were pre-
dicted. Pedigree data were recorded for individuals of the
last 10 generations. SNP data of individuals were recorded
both for the estimation and the validation set. Phenotypes
were stored only for individuals of the estimation set.

The simulated genome consisted of one chromosome of
length 1 M, containing 100 equally spaced putative QTL.
Each QTL was flanked by 30 equally spaced SNP markers
resulting in 3030 markers (M) in total. The layout of the
chromosome was therefore given by

M12M22 . . . 2M302QTL12M31 2 . . . 2M602QTL2 2 . . . 2QTL1002M30012 . . . 2M3030:

Starting with monomorphic loci in the base generation,
mutation rates at QTL and SNP markers were 2.5 · 1023 per
locus per generation (t ¼ 1,. . ., t ¼ 1000), to obtain an
adequate number of segregating (biallelic) loci. On average,
simulation resulted in 2745 segregating markers and 98
segregating QTL in generation t ¼ 1001. Only segregating
markers and QTL were considered in the following genera-
tions. True total GVs were obtained by summing up the
QTL effects resulting from the following three gene-action
models.

Three different gene-action models
Additive scenario A: Each QTL locus had an additive effect
only, without dominance or epistasis. The additive effect (a)
was equal to the allele substitution effect, such that for gen-
otypes QQ, Qq, and qq their GVs were 2a, a, and 0, respec-
tively. The value of a at each QTL locus was sampled from
a normal distribution Nð0; 0:1Þ.
Additive-dominance scenarios AD1 and AD2: Each QTL
locus had both an additive and a dominance effect. Two
different scenarios were considered, setting the ratio of
dominance variance to additive variance at each QTL to d ¼
1 or d ¼ 2. The additive effects (a) were obtained as in the
additive scenario. Given the additive effect ai and allele fre-
quency pi at the ith locus, its dominance effect (di) was de-
termined by solving the equation

d5
s2
D;i

s2
A;i

5
ð2pið12 piÞdiÞ2

2pið12 piÞ½ai1ðð12 piÞ2 piÞdi�2
  ;

[see Falconer and Mackay (1996)]. Genetic values at that
locus were then given by 2a, a 1 d, and 0 for genotypes QQ,
Qq, and qq, respectively.

For simplicity, independence between QTL was assumed
and, as a result, the total additive (dominance) variance was
summed over all loci.

Epistasis scenario E: In this model there was no additive or
dominance effect at any of the individual QTL. Epistasis
existed only between pairs of QTL. The forms of epistasis
included additive · dominance (A · D), dominance · additive
(D · A), and dominance · dominance (D · D). Additive and
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(A · A) epistatic effects were excluded, to prevent the addi-
tive variance from dominating the total genetic variance.

All segregating QTL were involved in epistatic interac-
tions. QTL were randomly chosen to form pairs and each
pair was assigned an (A · D) interaction effect ℓAD, a (D · A)
interaction effect ℓDA, and a (D · D) interaction effect ℓDD,
which were all equal and sampled from a normal distribu-
tion Nð0; 4Þ. Given a pair of QTL (i ¼ 1, 2), its epistatic
value was given by

ℓADx1z21 ℓDAz1x2 1 ℓDDz1z2;

where xi and zi were additive and dominance codes at locus
i, respectively. For genotype QQ at locus i, xi ¼ 1, zi ¼ 20.5;
for Qq, xi ¼ 0, zi ¼ 0.5; and for qq, xi ¼ 21, zi ¼ 20.5;
compare Cordell (2002). The total GV was the sum of the
epistatic values produced by the QTL pairs.

Note that although no additive, dominance, and (A · A)
epistatic effects were explicitly simulated, the model still
generated additive ðs2

AÞ; dominance ðs2
DÞ, and epistatic

ðs2
A ·A;s

2
A ·D;s

2
D ·A;s

2
D·DÞ variances. The procedure of esti-

mating these variance components followed Cockerham
(1954), assuming independence between two loci of each
QTL pair and between QTL pairs.

On average, simulation in the epistatic scenario resulted
in a broad-sense heritability of 0.84. Furthermore, 30% of
the total genetic variance was attributed to additive effects,
27% was due to dominance effects, 14% was attributed to
(A · A) effects, 25% was due to (D · A) and (A · D) effects,
and 4% was due to (D · D) effects.

In all scenarios phenotypic records were obtained by
adding a normally distributed Nð0;s2

eÞ residual term to the
total GVs of the individuals. The environmental variance s2

e
was obtained such that the narrow sense heritability was
0.25 in all scenarios.

Additional scenarios

Four additional scenarios based on scenario AD1 were simu-
lated, to analyze the influence of the number of chromosomes,
the QTL architecture, the SNP density, and a polygenic effect
on the prediction accuracy:

• Scenario AD1.2: Three chromosomes of length 1
3 M were

simulated, each containing 33 equally spaced QTL and
1000 SNPs.

• Scenario AD1.3: Three chromosomes of length 1
3 M were

simulated, each of them containing 1000 SNPs and the
first two of them containing 50 equally spaced QTL. The
third chromosome contained no QTL.

• Scenario AD1.4: The same as scenario AD1.2 but with
each chromosome containing 33 equally spaced QTL
and 3000 SNPs.

• Scenario AD1.5: The same as scenario AD1, but addition-
ally a polygenic effect u was simulated, starting from
generation 1006. Here, the ratio of additive QTL variance
to polygenic variance was set to 3. The polygenic effect u of
an offspring was calculated as 0.5 � (umother 1 ufather) 1 m,

where m is its Mendelian sampling term drawn from a nor-
mal distribution

N
�
0; 0:25 � �22 �Fmother1 Ffather

�� � s2
poly

�
;

with Fmother and Ffather being the inbreeding coefficients of
the corresponding mother and father. Here, the true total GV
was obtained by summing up the QTL effects and the poly-
genic effect.

Statistical analyses

The three methods were compared for their accuracy of
predicting the true GVs of the individuals in generation t ¼
1011. For this we applied the three approaches to the 50
simulated data sets consisting of 5500 individuals, the last
5000 of them having pedigree information and the last 2000
of them being fully genotyped, as described in the previous
section. Total GVs of the nonphenotyped individuals in gen-
eration t ¼ 1011 (validation set) were predicted. Thereby,
parameters and hidden variables were estimated with the help
of 1500 individuals (generations 10082 1010, estimation set).

All approaches were implemented in R (R Development
Core Team 2007). The ML estimation of the parameters and
hidden variables was done using the R-package RandomFields
v. 2.0.23 (Schlather 2001–2009) and its function “fitvario.”
The function fitvario determines the ML by the function
“optim” of R with automatically created starting values.

All models were run on a 1.9-GHz PC running Linux. On
average, computing times per data set ranged from approx-
imately 20 min (genomic BLUP) over 77 min (universal
kriging) to 227 min (simple kriging), but no special efforts
were made to achieve computational efficiency at this stage.

For each method and each gene-action scenario, we
computed the correlation between the predicted and the
true GVs. This was done both for the estimation set of 1500
individuals and for the validation set of 500 individuals. In
addition, we calculated the average true GV of the 50
individuals with the highest predicted GVs in the validation
set. Finally, results were summarized by averaging over the
50 data sets and a paired t-test was applied to test for sig-
nificant differences between each pair of characteristics at
the 1% significance level.

Results and Discussion

The results of 50 replicates for the different gene-action
models and scenarios are shown in Tables 2–3.

In the additive scenario, universal kriging yields a correlation
between predicted and true simulated GVs, which is almost as
high as the correlation obtained by the reference method
genomic BLUP, both in the estimation and in the validation set
(cf. Table 2), while simple kriging yields the lowest correlations
both in the estimation and in the validation set.

The results are similar to the findings of Piepho (2009)
and Schulz-Streeck and Piepho (2010) who also report that
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for an additive true genetic model the prediction accuracies
for ridge regression (with covariance structures based on
relationship matrices) and spatial models (with covariance
structures based on covariance functions) are similar.

In the AD and E scenarios, universal kriging outperforms
genomic BLUP in both estimation and validation set by
showing the highest average correlations. The difference in
correlations of universal kriging and genomic BLUP is highest
in the E scenario and the scenario with the higher ratio of
dominance to additive variance (� 0.03 for the results of the
validation set, which is an increase of accuracy by approxi-
mately 7%).

Scatterplots of the correlations of the 50 replicates for the
different methods and scenarios are shown in Figure 2,
which also demonstrate the better performance of universal
kriging in the presence of dominance and epistasis. With the
degree of nonadditivity ((E, AD2) . AD1 . A) the accuracy
of prediction in the validation set compared to the estima-
tion set deteriorates.

Comparing the average true GV of the 50 individuals
(10%) ranked best by prediction in the validation set (cf.
Table 3), universal kriging and genomic BLUP yield results
that are not significantly different from each other both in
the A and AD scenarios, while universal kriging outperforms
genomic BLUP in the E scenario. Again, simple kriging per-
forms worst in all scenarios apart from AD1.

All three methods, being unbiased by definition, show
almost no empirical bias of total GVs (results not shown).

The results of the additional scenarios AD1.2 to AD1.5
indicate that the predictive ability of the universal kriging
approach is robust with respect to the number of chromo-
somes, the QTL distribution, the SNP density, and the
inclusion of a polygenic effect (cf. Table 4). In scenario
AD1.4 with higher SNP density the absolute values of corre-
lations between true and predicted GVs are slightly higher
compared to scenario AD1.2 with lower SNP density. In sce-
nario AD1.5 the absolute values of correlations between true
and predicted GVs are lower for all three methods.

Overall, results indicate the superiority of universal kriging
over genomic BLUP in the presence of nonadditive effects.
Simple kriging was shown to have a poorer predictive ability
compared to universal kriging and genomic BLUP in all
considered gene-action models and scenarios.

The poorer predictive ability of simple kriging is most
likely due to the high number of parameters estimated in the
first kriging step and the resulting numerical difficulties in
optimization. In simple kriging 3505 parameters ðu; gðXÞ;
s2
e ;s

2
u;s

2
K ; n; hÞ are estimated compared to only 5 para-

meters in universal kriging and 3 parameters in genomic
BLUP. The poor performance of simple kriging and the in-
fluence of the high-dimensional parameter space need fur-
ther investigations, especially as simple kriging is known to
work well in low-dimensional geostatistical frameworks.

The simulation study is primarily meant as a “proof of
concept.” Results demonstrate that the suggested kriging pro-
cedures based on the Matérn function are able to yield com-
petitive results, despite the fact that the modeling of the
genomic part of the data by use of the Matérn function fol-
lows a completely different reasoning than in the usual meth-
ods. This also demonstrates the flexibility of the basic kriging
principle.

The importance of the Matérn family is highlighted by
Stein (1999), who recommends the use of the Matérn model
in the context of prediction of spatial data. The Matérn
model has been widely used in other areas of research;
see Guttorp and Gneiting (2006) for a historical excursion.
One of the most important reasons for adopting the Matérn
model is the inclusion of the parameter n in the model,
which controls the smoothness of the underlying random
field. Whereas Stein (1999) advocates the simultaneous es-
timation of all relevant parameters via (restricted) maxi-
mum likelihood, Ruppert et al. (2003) and Nychka (2000)
remark that the likelihood-based estimation of h and n may
lead to problems as both parameters enter in a nonlinear
fashion, which may cause the ML fitting to be computation-
ally intensive. Our experience so far indicates that the simul-
taneous estimation of all relevant parameters is feasible.

As an alternative to the ML estimation of parameters, one
could also use REML (Patterson and Thompson 1971) to
adjust for the loss of degrees of freedom caused by the fixed
effects and to produce less biased estimates. In our simula-
tion study there is only one fixed effect (i.e., b is a scalar and
W ¼ (1,. . .,1)T ), such that there will be little difference
between REML and ML estimates for variance components
in the reference method GBLUP (Abney et al. 2000; Ruppert
et al. 2003; Bonate 2006; Webster et al. 2006). This is also

Table 2 Average correlations between predicted and true GVs

Scenario Set Universal kriging Simple kriging Genomic BLUP

A Estimation set 0.801aa (0.005) 0.772b (0.009) 0.815g (0.004)
Validation set 0.773a (0.005) 0.731b (0.008) 0.776g (0.005)

AD1 Estimation set 0.754a (0.004) 0.652b (0.009) 0.670b (0.004)
Validation set 0.571a (0.006) 0.530b (0.010) 0.558g (0.007)

AD2 Estimation set 0.854a (0.004) 0.624b (0.013) 0.621b (0.005)
Validation set 0.490a (0.007) 0.447b (0.009) 0.457b (0.007)

E Estimation set 0.910a (0.009) 0.631b (0.015) 0.681g (0.006)
Validation set 0.468a (0.006) 0.411b (0.008) 0.437g (0.007)

a Results were averages of 50 replicates. Standard errors of the means are in parentheses. Different lowercase Greek letters indicate significant
differences (1% level of significance) within rows.
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mostly the case in practical applications, where highly accu-
rately predicted GVs are used as phenotypes and only an
overall mean is included in the model. With respect to the
parameter estimates in the kriging approaches using the
Matérn function, it is not clear whether REML is preferable
to ML, as the parameters h and n enter in a nonlinear fashion.

Relation between the Matérn covariance function and
the covariance matrix of VanRaden (2008)

To investigate the general relationship between covariance
matrices based on the Matérn function and the genomic re-
lationship matrix of VanRaden (2008), we consider the so-
called variograms.

For a random field {g(x), x 2 ℝs}, the theoretical vario-
gram is defined by g(xi, xj) ¼ 0.5E((g(xi) 2 g(xj))2) for xi,
xj 2 ℝs. If VarðgðxiÞÞ 5 s2

g and E(g(xi)) ¼ 0 for all xi 2 ℝs,
the variogram is given by

g
�
xi; xj

�
5s2

g 2Cov
�
gðxiÞ; g

�
xj
��

for xi, xj 2 ℝs. If further Cov(g(xi), g(xj)) depends only on
the Euclidean distance kxi 2 xjk, the variogram g can be
considered as a function on [0, N).

In the Appendix we show that in a limiting case (in which
the number of SNPs tends to infinity) the covariance struc-
ture of VanRaden (2008) depends only on the Euclidean

Figure 2 Scatterplot of the correlations be-
tween true and predicted GVs both for the
estimation and the validation set and for the
different scenarios [additive A, additive domi-
nance with ratio of dominance to additive
variance of 1 or 2 (AD1 and AD2), and epistasis
E] to compare. Scatterplots are produced to
compare universal kriging (UK) with genomic
BLUP (GBLUP), UK with simple kriging (SK),
and UK with GBLUP.
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distance between the SNP vectors and that the correspond-
ing variogram is a quadratic function on [0,N).

In all kriging procedures, n was estimated to be larger
than 5, indicating an approximately Gaussian form of the
covariance function. In fact

Kn;h;sK

�
xi; xj

�
5s2

K exp

 
2

jj xi 2 xj jj 2
h2

!
for n/N:

The corresponding variogram for the Matérn function is
then given by

gMaternðxÞ5s2
K

�
12 exp

�
2

x2

h2

��
� s2

K
h2

x2

for x 2 [0, N) by Taylor expansion up to the second de-
rivative around zero. This means the corresponding vario-
gram of the Matérn function is approximately quadratic for
small distances x and for n/N. If both variograms, the one
induced by VanRaden's covariance structure and gMatern,
were exactly quadratic, the corresponding covariance matri-
ces would be linear transformations of each other. The
equivalence of a quadratic covariance function and the sec-
ond-order Taylor expansion of the Gaussian model has also
been noted by Piepho (2009).

Note that the Matérn covariance function is at least three
times differentiable for n.1.5 (Guttorp and Gneiting 2006),
such that it is still possible to derive a second-order Taylor
expansion for 1.5 , n , N, leading to a quadratic vario-
gram for small distances x as well.

Using linear transformations of covariance matrices
leads to linear transformed predicted GVs

In this context another interesting relation can be shown:
There is a linear relation between the predicted GVs, if there

is a linear relation between the phenotypic covariance
matrices B and ~B and a linear relation between the covari-
ance vectors B0 and ~B0 on the right-hand sides of the kriging
systems under the assumption that W ¼ (1, . . . , 1)T ¼ j and
that

V :5

	
W B
0 WT



is invertible: In detail, it can be shown that

~a5
~d
d
� a

for the linear (kriging) systems	
j B
0 jT



�
	
l
a



5

	
B0
0



(5)

and 	
j dB1 cJ
0 jT



�
	
l~

a~



5

	
~dB0 1~cj

0



(6)

with d 6¼0 and J¼( j,. . .,j), from which we get ~GV 5
~d=d � GV: The proof of this result can be found in the
Appendix.

The general result has important practical implications: It
is shown that predictions resulting from the two systems (5)
and (6) are identical although a constant (c and ~c) is added
to the phenotypic covariance matrix or the covariance vector
on the right-hand side of the kriging system, or to both. In
the genetic context, such a modification changes relevant
population parameters, like heritabilities as well as genetic
and phenotypic correlations. Despite this, predicted GVs re-
main completely unaffected.

Scaling the phenotypic covariance matrix and the co-
variance vectors by a factor (d and ~d) also changes the her-
itability, but is shown to lead to a mere linear transformation
of the GVs, thus providing an identical ranking of individuals
according to their predicted GVs. However, results obtained
from such a scaled system might lead to a higher or lower
level of mean squared errors.

As stated before, solving the kriging systems is equivalent
to solving the corresponding MME. Hence, we have also

Table 4 Additional scenarios: average correlations between predicted and true GVs

Universal kriging Simple kriging Genomic BLUP

Scenario Est. set a Val. set b Est. set Val. set Est. set Val. set

AD1 0.754ac (0.004) 0.571a (0.006) 0.652a (0.009) 0.530a (0.010) 0.670a (0.004) 0.558a (0.007)
AD1.2 0.751a (0.004) 0.550a (0.006) 0.627a (0.007) 0.511a (0.008) 0.666a (0.005) 0.541a (0.007)
AD1.3 0.753a (0.005) 0.554a (0.010) 0.630a (0.009) 0.518a (0.011) 0.670a (0.006) 0.543a (0.010)
AD1.4 0.758a (0.004) 0.567a (0.007) 0.642a (0.007) 0.531a (0.008) 0.677a (0.005) 0.558a (0.007)
AD1.5 0.718b (0.004) 0.528b (0.006) 0.623a (0.009) 0.496a (0.008) 0.666a (0.005) 0.518b (0.007)

a Estimation set.
b Validation set.
c Results were averages of 50 replicates. Standard errors of the means are in parentheses. Different lowercase Greek letters indicate significant differences (1% level of
significance) within columns.

Table 3 Average true GVs of the 50 highest ranked individuals
(validation set)

Scenario Universal kriging Simple kriging Genomic BLUP

A 2.420aa (0.259) 2.291b (0.261) 2.432a (0.258)
AD1 1.754a (0.182) 1.648a (0.186) 1.728a (0.177)
AD2 1.720a (0.172) 1.563b (0.178) 1.612a (0.171)
E 6.410a (0.502) 5.847b (0.476) 5.893b (0.485)

a Results were averages of 50 replicates. Standard errors of the means are in paren-
theses. Different lowercase Greek letters indicate significant differences (1% level of
significance) within rows.
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proved that the solutions bu and dgðXÞ of the MME are scaled
by the factor ~d=d; if the phenotypic covariance matrix and
the covariance matrix of Zu1 g(X) are linearly transformed.

To our knowledge, the above theoretical result (in-
cluding the scaling factors d and ~d) has not been proved
elsewhere in this explicit form, but some authors refer to
the invariance of the predictions to the addition of a multi-
ple of the matrix J: It is well known that in ordinary kriging
with constant mean, one needs only to know the covari-
ance function up to a constant (Matheron 1971; Christen-
sen 1990). Kitanidis (1993) discusses in the context of
so-called “generalized covariance functions” the variability
among the covariance functions that behave identically in
terms of prediction. The invariance to the addition of a mul-
tiple of J in a mixed model context is also mentioned in
Piepho (2009).

Reproducing kernel Hilbert space approach

In this subsection we contrast our approach to the re-
producing kernel Hilbert spaces approach of Gianola and
Van Kaam (2008). Stein (1999) strongly advocates use of
the Matérn family because of the wide range of smoothness
controlled by the smoothness parameter 0 , n , N. In our
study n was estimated to be larger than 5 in all kriging
procedures, indicating an approximately Gaussian form of
the covariance function, the one used by Gianola and van
Kaam (2008). Gianola and van Kaam (2008) use the same
model as in (1) except for the assumption that g is a Gauss-
ian random function. They consider the functional

J
�
g j s�5 1

~s2
e

Xn
i51

�
yi 2wT

i b2 zTi u2 gðxiÞ
� 2 s

2
∥g
���∥

H;

where g and yi2wT
i b2zTi u are implicitly assumed to be ele-

ments of a reproducing kernel Hilbert space H for fixed b

and u. Then, the representer theorem (Schölkopf et al.
2001) states that the minimizer of J(gjs) has the form

bgðx0Þ5 Xn
j51

ajK
�
x0; xj

�
5aTK0; (7)

where the ai’s are unknown coefficients. The function to
be minimized becomes

J
�
b;u;a j s�5 1

2s2
e
ky2Wb2Zu2Kak2 1 s

2
aTKa:

Gianola and van Kaam (2008) state further that a ran-
dom-effects treatment of u leads to the functional

J
�
b;u;a j s�5 1

2~s2
e
ky2Wb2Zu2Kak2 1 1

2~s2
u
uTA21u1

s
2
aTKa;

which then must be minimized. Taking the gradients of J(b,
u, ajs) with respect to b, u, and a and setting them to zero
leads to the following linear system of equations:

26664
WTW WTZ WTK

ZTW ZTZ1 ~s2
e

~s2
u
A21 ZTK

KTW KTZ KTK1 s~s2
eK

37775 �

2664
b̂

û

~a

37755

2664
WTy

ZTy

KTy

3775
(8)

By equating dgðXÞ 5 Kba; s2
e 5 s~s2

e , and s2
u 5 s~s2

u; Equa-
tions 2 and 8 are obviously identical, as well as Equations 4
and 7. Finally, Gianola and van Kaam (2008) proceed with
embedding the above approach into a Bayesian framework.

The approach of Gianola and van Kaam (2008) and our
approach are different in that we maximize the full likeli-
hood whereas they drop the summand log(c) in Equation 3.
Note that c depends on the unknown parameters, i.e., the
variance components and the parameters of the Matérn co-
variance function. Dropping the summand log(c) therefore
leads to different estimates of the parameters. Scheuerer
(2011) argues that the factor c might be included even in
the framework of reproducing kernel Hilbert spaces. Hence,
maximizing J in (3) is partially justified even if the normal
assumption for the ei does not hold.

Further options

The general nonparametric approach of basing the prediction
on a covariance function offers a number of possibilities for
more differentiated modeling. While in spatial statistics using
the Euclidean distance is a natural choice, other distance
metrics (Reif et al. 2005) may be more adequate in the ge-
nomic context. With dense marker maps it is found that the
genome is structured in haplotype blocks of varying length
(International Hapmap Consortium 2005; Qanbari et al.
2010) within which the loci are in high linkage disequilib-
rium; i.e., genotypes are highly correlated. Here, it might be
adequate to account for this nonindependence in the defini-
tion of the scale, since otherwise highly correlated loci will
lead to a massive double counting. A further option is to
implement a feature selection, which could, e.g., give a higher
weight to SNPs that are positioned in genomic regions that
are found to be relevant for the physiological pathways
(Wang et al. 2007) underlying the studied trait complex.

Total GVs

Prediction of the total GV of an individual, including non-
additive components, is of different relevance in different
fields. In animal breeding, the value of a breeding animal is
mostly determined by its so-called breeding value, which is
purely additive. While it is possible to predict nonadditive
genetic components even in pedigree-based estimation pro-
cedures (see, e.g., Hoeschele 1991; de Boer and Hoeschele
1993), these components are in general not transmitted to
the offspring and therefore aremostly considered as nuisance
parameters in animal breeding.

In plant breeding, prediction of the total GV as part of
the phenotype is more relevant, especially since the bi-
ological nature of some crop species and/or reproductive
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biotechnologies allow an identical reproduction (cloning) of
given genotypes. Complex gene models including domi-
nance and epistasis might be especially useful in predicting
crossbred performance, but the relevance is rather diverse
across the agriculturally used plants (Holland 2001).

It was recently suggested that under polygenic inheritance
the additive part is the dominating genetic component (Hill
et al. 2008) and that under directional selection the rate of
change is largely determined by the additive genetic variance,
so that attempts to include nonadditive terms in prediction
might be, at best, useless or even harmful (Crow 2010).
These arguments pertain both to animal and plant breeding
and need careful consideration based on empirical evidence.

Predicting the genetic disposition in humans in the con-
text of preventive and personalized medicine using whole
genome markers is a relatively new and controversial topic
(see de los Campos et al. 2010 for a review). The main moti-
vation to consider such approaches comes from the phenom-
enon that even in extremely large-scale studies the genetic
background of complex diseases cannot be sufficiently deter-
mined with classical mapping approaches (the so-called “case
of the missing heritability”; Maher (2008)). Disposition for
complex diseases is assumed to be affected to a considerable
extent by nonadditive allelic interactions, and hence models
allowing for such interactions are expected to yield improved
predictions compared to purely additive models.

One data set and the corresponding R-code for the
prediction of GVs are available on http://www.stochastik.
math.uni-goettingen.de/�schlather/genoKriging/.
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APPENDIX
Relation Between the Matérn Covariance Function and the Covariance Matrix of VanRaden (2008)

We show that the covariance structure of VanRaden (2008) leads to a quadratic variogram g in a limiting case. The
covariance matrix of VanRaden (2008) is defined as

G5
ðM2PÞðM2PÞT

2
Ps

j51 pj
�
12 pj

�;
whereM is the (n · s)-matrix of SNP vectors for the n animals with s SNPs coded by21, 0, 1 and the jth column of P is (2(pj 2
0.5), . . . , 2(pj 2 0.5))T, where pj is the frequency of the second allele at locus j.

Let ~P 5 ð2ðp120:5Þ; . . . ; 2ðps20:5ÞÞ and let D 5 2
Ps

j51 pjð12pjÞ. In the GBLUP model we assumed g � Nð0;s2
gGÞ: It

follows easily that
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(9)

where mi• denotes the ith row of M and ∥ � ∥ is the Euclidean norm. Consider Mij as a random variable with values 21, 0, 1
and corresponding probabilities ð12pjÞ2; 2pjð12pjÞ; p2j . Then E(Mij)¼ 2(pj 2 0.5) and Var(Mij)¼ 2pj(12 pj) for all i¼ 1, . . . , n.
With Yj ¼ (Mij 2 2(pj 2 0.5))2 we have E(Yj) ¼ Var(Mij) ¼ 2pj(1 2 pj) and

1
D
kmi• 2 ~Pk25

 Xs
j51

Yj

! Xs
j51

EðYjÞ
!21

: (10)

Now consider the limiting case s/N and assume the series p1, p2, . . . and (12 p1), (12 p2),. . . to be uniformly bounded
away from zero, which implies

c#

Ps
j51E

�
Yj
�

s
# 0:5 (11)

for some c . 0 and for all s. Assume further that Y1, Y2,. . ., are uncorrelated. Because of Var(Yi) , N we can apply
Rajchman’s (1932) version of the strong law of large numbers (cited by Krengel 2005, p. 154), which yieldsPs

j51
�
Yj2E

�
Yj
��

s
/0

with probability 1 for s / N. Because of (11) we also havePs
j51YjPs

j51E
�
Yj
� 215
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with probability 1 for s /N, from which we get that the left-hand side of (10) converges to 1 with probability 1 for s /N.
Together with (9) it follows that
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for s large. Hence, Cov(gi, gj) depends only on the Euclidean distance kmi •2mj •k of the SNP vectors for s large. If we
consider gi as the value of a random field on ℝs at position mi• , then the corresponding variogram is

gg
�
mi • ;mj •Þ 5s2

g 2Cov
�
gi; gj

�
5

s2
g

2D
kmi •2mj •k2

for s large, i.e.,

ggðxÞ5
s2
g

2D
x2

for x 2 [0, N).

Proof: Using Linear Transformations of Covariance Matrices Leads to Linear Transformed Predicted GVs

The proof starts with calculating
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Here we used the unbiasedness condition jT~a 5
P

i ~ai 5 0. Hence we obtain"
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which finishes the proof.
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