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ABSTRACT: The ability to perform classically intractable electronic structure
calculations is often cited as one of the principal applications of quantum com-
puting. A great deal of theoretical algorithmic development has been performed in
support of this goal. Most techniques require a scheme for mapping electronic
states and operations to states of and operations upon qubits. The two most
commonly used techniques for this are the Jordan−Wigner transformation and the
Bravyi−Kitaev transformation. However, comparisons of these schemes have
previously been limited to individual small molecules. In this paper, we discuss
resource implications for the use of the Bravyi−Kitaev mapping scheme, specifically
with regard to the number of quantum gates required for simulation. We consider both small systems, which may be simulatable
on near-future quantum devices, and systems sufficiently large for classical simulation to be intractable. We use 86 molecular
systems to demonstrate that the use of the Bravyi−Kitaev transformation is typically at least approximately as efficient as the
canonical Jordan−Wigner transformation and results in substantially reduced gate count estimates when performing limited
circuit optimizations.

1. INTRODUCTION

Computational chemistry is the use of well-developed theo-
retical techniques and algorithms to solve chemical problems.
These typically relate to the properties of molecules and chemi-
cal reactions. Such processes occur as a result of the rearrange-
ment of electrons among atoms. Quantum chemistry is the
branch of computational chemistry concerned with the theoretical
understanding of these processes.1

Although a vast spectrum of methods has been developed
for this purpose, the field is restricted by the computational
difficulty of the task. Many calculations of interest involve the
determination of ground state electronic wave functions and
their corresponding energies. To achieve this exactly (to within
nonrelativistic assumptions and basis set limitations) requires the
full conf iguration interaction approach. This scales factorially with
respect to the number of basis functions considered, limiting
application of the technique to small molecules.2,3

As this conceptually simple approach is computationally
intractable, the difficulty of the task is often reduced by invok-
ing various approximations, well-studied in computational
chemistry. While these methods often allow high degrees of
precision, some computational tasksfor instance, in deter-
mining reaction kinetics or dynamicswould benefit from the
decreased error of a full configuration interaction approach.
Quantum simulation algorithms are expected to be capable

of alleviating some of the difficulty associated with this through
the use of a scalable quantum computer. A quantum computer
operates on qubitsthe quantum equivalent of classical bits.

Instead of a unit which can either have a state value of 0 or 1,
qubits exist as superpositions of |0⟩ and |1⟩ states, i.e., |ψ⟩ =
α|0⟩ + β|1⟩. A system of n qubits can exist in a superposition
of 2n basis states. Similar to classical computation, operations
which manipulate the state of qubits are described as quantum
gates and are analogous to classical logic gates. A sequence of
quantum gates, intended to perform a computational task, is
referred to as a quantum circuit. Gates that perform an opera-
tion which entangle the state of two or more qubits are called
entangling gates.
Quantum algorithms to address various chemical tasks have

been developed, including the determination of energy
spectra,4 reaction rates,5−7 and reaction dynamics.8 Quantum
simulation of quantum systemsparticularly chemistryis
often cited as being one of the most significant potential uses
of quantum computation.9

The development of a scalable quantum computer is an
extremely difficult task. Demonstrations of the quantum simu-
lation of electronic structure problems have mostly thus far
been limited to the consideration of small hydrides using a
minimal basis set. These have been reported in photonic,10

NMR,11 and superconducting12 devices. The first fully scalable
demonstration of this kind was performed in 2016.12 Recently,
the use of the variational quantum eigensolver algorithm13 has
extended this to the simulation of beryllium hydride.14
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However, recent hardware developments have yielded
devices that are rapidly increasing in size.12,15 Devices of up
to 50 qubits are likely to be available in the near future.16 It is
likely that such devices will bring the field close to the ability to
perform clasically intractable chemistry calculations.7 For this,
advances in both hardware and circuit design are necessary.
The canonical quantum algorithm for the solution of the

electronic structure problem involves several steps.4 First, the
molecular orbitals forming a basis for the electronic states must
be represented using states of qubits. The electronic Hamil-
tonian must then be mapped to an operator on the qubit
Hilbert space.17−20 Following this, the Trotter−Suzuki
approximation21−23 is invoked to form an evolution operator
which is implementable on the quantum device. Finally, a
phase estimation algorithm is invoked in order to ascertain the
ground state molecular energy.24

Many algorithmic developments have been made to further
this goal. In particular, hybrid quantum-classical schemes have
been shown to yield accurate results for a fraction of the cost of
canonical quantum simulation techniques.12−14,25 However,
these techniques still require a transformation of electronic
states and operators to states of and operations upon qubits.
The two most commonly used forms of this transformation are
the Jordan−Wigner transformation and the Bravyi−Kitaev
transformation,4,17−20 although other constructions have been
examined.26,27

In the asymptotic limit and without further circuit optimi-
zation, the Bravyi−Kitaev transformation is known to have loga-
rithmically superior scaling with respect to circuit length.18,19

An examination of the performance of this process requires
generating descriptions of quantum circuits which would
perform the simulation. Initial assessments of this technique
demonstrated a saving associated with the simulation of the
hydrogen molecule in a minimal basis, a smallest-case exam-
ple.19 This saving was thus expected to also be present for
larger chemical examples. However, further investigation of
methane revealed that overall gate savings were relatively
modest, although substantial savings were yielded in terms of
entangling gates.20 To date, no large scale numerical analysis
involving many systems has been performed.
In this paper, we use 86 molecular systems to demonstrate

that the use of the Bravyi−Kitaev transformation typically
results in quantum circuit lengths equal to or shorter than
circuits using the canonical Jordan−Wigner transformation.
We also consider the impact of Trotter ordering upon both
overall gate count and the relative performance of the Bravyi−
Kitaev transformation. Varying the Trotter ordering can impact
the error incurred in the use of this approximation, potentially
resulting in increased overall gate count, even if within each
Trotter step the gate count is reduced. As such, we consider
the impact of Trotter ordering on the Trotter error, by
examining a subset of our systems.
We begin by providing a brief overview of the theory

underlying the Bravyi−Kitaev mapping and of Trotterization.
In section 3, we discuss circuits with a limited degree of
optimization. Following this, we introduce the impact of
Trotter ordering, considering its impact on single Trotter
step circuit length in section 4, and on the Trotter error in
section 5.

2. THEORY
The electronic Hamiltonian in the second quantized formalism
is given by

∑ ∑̂ = +† † †H h a a h a a a a
1
2i j

ij i j
i j k l

ijkl i j k l
, , , , (1)

where hij and hihkl are Coulombic overlap and exchange
integrals determined by the basis set chosen.1,28

Although the number of hij and hijkl integrals scales
quartically with respect to the number of basis orbitals, they
are efficiently computable using conventional, classical
computing methods. Additionally, despite this theoretical
quartic scaling, the number of nonzero integrals is often
substantially reduced through consideration of molecular
symmetries.1,28 Rather, the difficulty is due to the dimension
of the Fock space on which this Hamiltonian acts, which scales
exponentially with the number of basis orbitals considered.
Restricting the problem to a subspace with a fixed number of
electrons reduces this scaling to being factorial with respect to
the number of electrons, but for practical problems this
remains intractable. This difficulty typically prevents the use of
full configuration interaction calculations for purposes other
than benchmarking.
On a quantum computer, this scaling difficulty is not present.

The task proceeds in four stages, illustrated in Figure 1. First, a

representation of the Hamiltonian and the molecular orbital
spaces upon which it acts must be represented using states of
and operations upon qubits. Following this, a Trotter−Suzuki
approximation21−23,29 is invoked in order to find a quantum
circuit to simulate the evolution of the system under the
molecular Hamiltonian. The use of this approximation results
in an additional error in simulation. However, this error can be
arbitrarily reduced through increasing the number of Trotter
steps, resulting in only an extra multiplicative factor in the

Figure 1. A comparison of classical and quantum algorithms for
simulation of electronic structure. Left: classical. Right: quantum.
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quantum computational expense. A full consideration of
Trotterization error is included in section 5. Having developed
such a circuit, a good approximation to the simulated ground
state of the system is prepared, and the phase estimation algo-
rithm is used to ascertain the ground state energy of the system.
We initially concern ourselves with the first of these stages

the mapping technique chosen to transform electronic states
and operators to states and operators of qubits. We discuss
the difference in resource implications for two options for
this: the canonical Jordan−Wigner transformation and the
Bravyi−Kitaev transformation. In section 5, we address the
implications of these mappings when performing a Trotter−
Suzuki approximation.
Our task in establishing an appropriate mapping is to find

qubit analogues of both the electronic states and the creation
and annihilation operators in eq 1. Traditionally, the simplest
encoding scheme to determine these is the Jordan−Wigner
transformation.4,17 Here, n qubits are used to store the occu-
pation number of n electronic spin−orbitals, forming what is
known as the occupation basis. If the ith molecular orbital is
occupied, then the corresponding ith qubit is in the |1⟩ state,
whereas if the molecular orbital is unoccupied, then the qubit
is in the |0⟩ state. We then require a representation of the
electronic creation and annihilation operators that act on the
qubit space, which perform the following set of operations:

̂ | ⟩ = | ⟩ ̂ | ⟩ =

̂ | ⟩ = ̂ | ⟩ = | ⟩

+ +

− −

Q Q

Q Q

0 1 1 0

0 0 1 0 (2)

A naive assessment would suggest that the standard Pauli
σi
+ and σi

− operators would suffice for this purpose; however,
these do not obey the required anticommutation relations:

{ } = { } =† †a a a a, , 0i j i j (3)

δ{ } =†a a I,i j ij (4)

For these to hold, the parity of the occupation numbers of the
orbitals with index less than i must be calculated, and a phase
shift introduced when the parity is odd. This is accomplished
by performing a sequence of Pauli Z operations on the
preceding qubits, yielding the following:

= − ⊗

= + ⊗

†

<

<

a X iY Z

a X iY Z

1
2

( )

1
2

( )

i i i
j i

j

i i i
j i

j
(5)

Note that this mapping requires N( ) qubit operations to
simulate one electronic operation.
An alternative scheme was envisaged by Bravyi and Kitaev,

whereby parity information is stored in the qubit states (i.e.,
qubit i stores the sum (modulo 2) of the occupation of all elec-
tronic states with index less than or equal to i). This basisthe
parity basisavoids the additional cost of determining the
parity, as this information can be queried with only a single
qubit operation.18,19 However, this mapping has instead
delocalized information regarding the occupation of each elec-
tronic orbital. Clearly, any electronic creation or annihilation
operation on an orbital with index i requires the update of all
qubits with index greater than or equal to i. Consequently,
using this mapping the number of qubit operations required to
simulate one electronic operation is also N( ).

2.1. Bravyi−Kitaev Mapping. The Bravyi−Kitaev18−20
mapping is an attempt to improve upon the linear scaling of
the occupation and parity bases. In essence, it is a middle
ground between these approaches. For a molecular orbital
basis of size N, there are again N qubits used.30 However, the
information stored within each qubit now varies dependent on
the index i. Note that we begin indexing at i = 0. Where i is
even, qubit i stores the occupation number of orbital i, as in the
Jordan−Wigner mapping. Where i is odd, the qubit stores the
parity of a particular set of occupation numbers. When log2 (i+1)
is an integer, the qubit stores the parity of the occupation
numbers of all orbitals with indices less than or equal to i. For
other cases, the qubit stores the parity of the occupation num-
bers of orbitals in subdividing binary sets. This complex mapping
is best understood through consideration of the matrix which
transforms a vector of orbital occupations to qubit states.
For example, in the eight orbital/qubit case, this is given by

Here, each oi value corresponds to the occupation number of
the orbital with index i, and the qi values correspond to the
state of the qubit with index i. Where qi is 0, qubit i is in the |0⟩
state and similarly where qi is 1, qubit i is in the |1⟩ state.
All sums are performed in modulo 2. The matrix on the left is
thus the matrix which transforms orbital occupation numbers
to qubit states.
Both occupation and parity information is now stored

nonlocally. Inspection of eq 6 shows that this information is
stored in a number of qubits which grows logarithmically. Thus,
any electronic creation or annihilation operation can be simu-
lated in n(log )2 qubit operations. We omit a detailed proof
of this here for reasons of brevity. Further details can be found
in refs 18−20.
Despite the superior asymptotic scaling of the Bravyi−Kitaev

mapping, it is important to consider the increased overhead of
its use. Initial implementations noted that the Bravyi−Kitaev
mapping is more efficient than the Jordan−Wigner mapping in
the simulation of molecular hydrogen in a minimal basis, the
smallest possible nontrivial example.19 It was thus argued that
the overhead was not a significant factor, and the superior
scaling effectively dominated in all cases. However, further
investigation on methane in a minimal basis revealed that this
is not the case.20

One purpose of this paper is to find the point at which this
asymptotically superior scaling dominates. Examination of the
Bravyi−Kitaev creation and annihilation operators permits a
rough estimate of this. Note that the qubit creation and
annihilation operator equivalents using the Bravyi−Kitaev
transformation are given by

= ⊗ ⊗ − ⊗ ⊗†a X X Z iX X Z
1
2

( )i U i i P i U i i P i( ) ( ) ( ) ( ) (7)

= ⊗ ⊗ + ⊗ ⊗a X X Z iX X Z
1
2

( )i U i i P i U i i P i( ) ( ) ( ) ( ) (8)
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where U(i) is the “update set” of qubit i, and P(i) is the “parity
set” of qubit i. For brevity we do not discuss these sets here;
however, their size is of maximum order i(log )2 . These
expressions are valid only in the case of even i. However, this
does not affect our rough estimate. Examining these equations,
it is evident that at most 4log2i + 2 gates are required for the
simulation of one Fermionic operation. This quantity is smaller
than the simple i gates of the Jordan−Wigner mapping when
i ≥ 19. Thus, noting that the Bravyi−Kitaev mapping is most
efficient when N approaches a power of 2 (as it can take
increased advantage of its binary tree structure), we conser-
vatively estimate that this point should be at N ≈ 32. We thus
would expect quantum computational cost to be reduced when
using the Bravyi−Kitaev transformation for systems with more
than N ≈ 32 spin−orbitals.
2.2. Trotterization and Simulation. In order to perform

the phase estimation algorithm to determine the molecular
ground-state energy, a quantum circuit simulating the unitary
evolution operator Û = exp(−itĤ/ℏ) of the molecular Hamil-
tonian must be found. This is similarly required when utilizing
a variational quantum eigensolver algorithm using a coupled-
cluster ansatz.12−14,31 The qubit form of the electronic Hamil-
tonian determined through the Bravyi−Kitaev or Jordan−Wigner
transformation consists of a weighted sum of strings of Pauli
operations. In order to exponentiate this, a Trotter−Suzuki
approximation must be invoked.22 The first-order Trotter−
Suzuki expansion is

∏≈− ℏ ∑ ̂ − ̂ ℏ
i

k
jjjjjj

y

{
zzzzzze eH

i

itH n
n

it/ /i i i

(9)

where Hi are the Hamiltonian subterms (strings of Pauli
operations, in our case), and n is the number of Trotter steps.
The overall evolution time is now subdivided into n steps.
Increasing the number of Trotter steps decreases the error
invoked in this procedure. This yields the evolution operator
expressed as a product of exponentiated strings of Pauli opera-
tions. Standard techniques can be used to transform these into
quantum circuits, as shown in Figure 2. The gates within this

circuit can be divided into two types: gates that rotate the state
of a single qubit and typically more expensive two-qubit entan-
gling gates. These can be implemented sequentially to form a
quantum circuit which simulates the entire evolution operator.
The use of a Trotter−Suzuki approximation results in the

introduction of error.32−34 This error can be reduced by
increasing the number of Trotter steps considered. We consider
the impact of this error in section 5.

3. BASIC CIRCUITS
Our code was used to assess the serial quantum circuit length
corresponding to the simulation of 86 small molecules and
atoms. Molecular structures were gathered from the NIST

CCCBDB database35 optimized at the Hartree−Fock level.
Most systems used a STO-3G basis; however, larger Pople basis
sets were used in 18 trials. Of these, four systems (CH2

2•, HF,
LiH, H2O) using a 3-21G basis set were examined, with the
remainder studying H2 and HeH+. Clearly, this choice of basis
is insufficient for an accurate solution of the electronic struc-
ture problem. When performing a simulation on a real quantum
device, a larger basis set would be chosen as in conventional
quantum chemistry methods. Fortunately, the error introduced
by our choice of basis is fixed and independent of our choice of
quantum methodology. As our benchmarking procedure is not
directly concerned with the exact energies predicted, our
choice of basis set allows for the simulation of a variety of
systems with relatively low computational overhead. Details of
the systems studied can be found in Table 1 and in the
Appendices. Our systems range in size from 2 to 54 spin−
orbitals. While containing systems that are classically intract-
able to simulate, this number is relatively modest in contrast to
simulations that would be performed upon a real quantum
device;7 however, it allows us to maintain relatively low
computational expense (approximately 1 week of CPU time for
the largest examples).
Hartree−Fock molecular orbitals and their hij and hijkl

integrals were obtained using the PSI4 electronic structure
theory package36 and the FermiLib PSI4 Plugin.37 Our code
was then used to generate Jordan−Wigner and Bravyi−Kitaev
Hamiltonians. These are stored symbolically as strings of Pauli
operations, as in previous work.19,20 The Hamiltonian can be
stored as blocks of second quantized terms, potentially grouped
according to their character, that is, excitation operations, num-
ber operations, and so on. Note that due to molecular sym-
metries (and the symmetries of the integrals present in eq 1), the
terms in eq 1 do not necessarily have independent coefficients.
A basis of Hartree−Fock molecular orbitals was used to

describe the system when employing the Jordan−Wigner or
Bravyi−Kitaev mapping. Much work has been performed in
assessing the performance of other basis choices,25,33 with
localized basis orbitals showing promise in reducing the
number of significant terms in the Hamiltonian. However, as
this advantage is gained from reduction of the number of
significant overlap integrals, there is no obvious reason to
believe that the Jordan−Wigner and Bravyi−Kitaev mappings
would perform inequivalently in a predictable manner. Prelimi-
nary analysis using natural and orthogonalized atomic orbital
integrals provided by collaborators33 did not suggest any
consistent dependence of the performance of the Bravyi−
Kitaev mapping (versus the Jordan−Wigner mapping) on the
choice of basis considered.
As such, in order to reduce the computational cost of our

simulations, this degree of freedom was not considered here.
A rigorous demonstration of the independence of the perfor-
mance of the Bravyi−Kitaev mapping on the basis choice could
be considered in future work.
Optimisation and Trotterization could be performed on the

level of second quantized operators. Other works have taken
this approach, maintaining Fermionic terms throughout
optimization procedures.32,38 Instead, our code does not retain
the original Fermionic components of the electronic Hamil-
tonian and reduces the qubit Hamiltonian to a list of strings of
Pauli operations, before attempting circuit-level optimization.
While fewer assumptions can be made about the structure of
the new Hamiltonian (a fact of relevance in section 6), this

Figure 2. Canonical circuit for the simulation of − θ( )i Y Z Z Xexp
2 0 1 3 4 .
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approach allows for greater flexibility when ordering terms for
Trotterization.
From here, our code allows for generation of quantum

circuit objects corresponding to the implementation of one
Trotter step of the evolution operator of the qubit Hamiltonian
(discussed below).
Neglecting any benefits from optimization at the interfaces

of Trotter steps (which would save at most N( )trotter gates),
the number of gates necessary for larger numbers of Trotter
steps is a simple multiple of the number of gates necessary for
one Trotter step. Consequentially, extending our analysis to
higher Trotter numbers was not considered necessary for our
initial analysis, although this was performed when considering
Trotter error in section 5.
A full treatment of the entire phase estimation algorithm

(including error correction) was not performed. This is in
contrast to other work that has attempted to characterize the
resource implications of performing the full procedure.7,32 For
our analysis of the raw gate counts of Bravyi−Kitaev circuits,
this was not considered important for the above reasons. Note
that at present, the largest simulations conducted have been of
around 45 qubits.39−41 These required extensive specialized
computing resources. Performing simulations at this level
would have made it impossible to perform a large, multisystem
survey. In particular, assessing the point at which Bravyi−
Kitaev scaling is expected to dominate (around 32 qubits, as
discussed above) would have been problematic. Despite this, a
full consideration of the phase estimation algorithm could yield
useful results in regard to the Trotter error of simulation. For
simplicity, we have only considered here the canonical phase
estimation procedure, as the expected benefits of the Bravyi−
Kitaev mapping will apply in any system which involved the
use of such a mapping scheme.
It is important to note that many of the circuits discussed in

this paper are substantial in terms of quantum resources required.
For around 50 spin−orbitals (and thus 50 logical qubits), the
unoptimized circuits consist of around 107 gates. It is likely
that the implementation of such circuits on a quantum device
would require the use of some form of error correcting code.
In order to assess resource implications of circuits within a
fault tolerant framework, the number of Clifford and non-
Clifford gates within the circuit are counted.42 While Clifford
gates are considered relatively straightforward to implement in
a fault-tolerant manner, the resource implications of perform-
ing the non-Clifford gates are assessed by counting the number
of T (π/4 phase rotation) gates required to implement them.
While a thorough analysis of the practicality of implement-

ing these circuits on a quantum device would require consider-
ation of this point, our focus here is on assessing the use of the
Bravyi−Kitaev mapping. Observing Figure 2, it is evident that
only the central rotation gate is a non-Clifford gate. There is
one of these gates for every term in the qubit Hamiltonian.

As the number of terms in the Hamiltonian is the same for
either mapping scheme, this implies that the number (and type)
of non-Clifford gates is the same regardless of the mapping
scheme chosen. This is confirmed by numerical analysis in the
circuits discussed below. This implies that the choice of
Bravyi−Kitaev or Jordan−Wigner mapping does not impact
that T count of the circuit and thus does not impact the
difficulty of performing error correction. As such, we do not
consider this difficulty here.
However, previous studies have shown19,20 that the Bravyi−

Kitaev mapping results in a reduction in the number of CNOT
gates required, independent of those used in constructing a
fault-tolerant representation of the central rotation gate. This
comes at the expense of an increased number of single qubit
Clifford gates required. In other words, these previous exam-
ples showed that the Bravyi−Kitaev mapping traded a
reduction in two qubit Clifford gates for an increase in one
qubit Clifford gates (along with an overall decrease in the total
number of Clifford gates). While this is not of huge impact in a
fault tolerant framework (as the T count remains the same),
experimental devices in the near future are still likely to benefit
from the minimization of entangling gates so as to reduce
error. As such, we have considered the breakdown of circuits
into entangling and single qubit gates in this paper.
Initially, the Hamiltonians were ordered by the magnitude of

their coefficients. This somewhat arbitrary ordering was chosen
in order to assess the preoptimization efficacy of the Bravyi−
Kitaev mapping and is in contrast to optimized ordering schemes
used in other work.19,38 These are considered in detail in
sections 4 and 5. The systems studied involved between 2 (the
hydrogen atom) and 56 (the iodine atom) spin−orbitals. As to
be expected,32 the serial circuit length dramatically increases
for larger systems, requiring of order 107 gates for the simu-
lation of systems involving around 50 spin−orbitals. While not
as ruinous as the factorial difficulty of classical full configu-
ration interaction, this large circuit length illustrates the need
for compiler optimizations.
An initial assessment of circuits for the implementation of

Jordan−Wigner and Bravyi−Kitaev Hamiltonians suggests that
the use of the Bravyi−Kitaev mapping is associated with a sub-
stantial improvement for the larger systems. Figure 3 demon-
strates this. From roughly 30 spin−orbitals, this improvement
is consistent and constitutes approximately 25% of the overall
circuit length for the largest of the systems we have examined.
However, many systems smaller than this see no improvement,
or even demonstrate larger circuit lengths. This is in line with
our earlier rough estimate that the superior scaling of the
Bravyi−Kitaev mapping dominates the increased overhead at
around 32 spin−orbitals. Classical full configuration inter-
action calculations have been performed on systems marginally
larger than this (36 molecular orbitals).43 Consequently, for
simulations aiming to achieve results which are classically

Table 1. A breakdown of systems studied. Note that most of the systems involving a non-minimal basis set were H2 and HeH+

systems, as specified in the Appendices. Numbers in parentheses indicate the number of systems where Trotter error was
considered, as discussed in section 5

qubits 1−10 11−20 21−30 31−40 41−50 51−60 total

molecules + radicals 1(1) 3(13) 12(3) 4(0) 8(0) 3(0) 41(17)
atoms 10(4) 7(6) 1(0) 1(0) 0(0) 1(0) 20(10)
ions 2(2) 4(3) 0(0) 2(0) 1(0) 1(0) 10(5)
nonminimal basis sets 4(4) 6(5) 5(2) 0(0) 0(0) 0(0) 15(11)
total 17(11) 30(27) 18(5) 7(0) 9(0) 5(0) 86(43)
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intractable, a naive approach involving no circuit optimizations
would be substantially eased through the use of the Bravyi−
Kitaev mapping.
In addition to optimization performed through combination

of duplicate Pauli strings, our code optimizes circuits by the
cancellation of duplicate gates.38 Circuit objects can automati-
cally search their gate sequence for duplicate self-inverse gates
and remove them. Furthermore, the code tests individual gates
for commutativity with gates that follow in sequence. If such
commutativity is present, it tests to see if any accessible gates
are accessible through commutation. This is performed
according to a set of rules: gates acting on different qubits
always commute, CNOT gates commute unless one targets the
other’s control, and so on. This avoids the generation of matrix
representations of the gates. Optimisation in this form is
repeated until the circuit is self-consistent and no further
optimization could be yielded.44

Based on work by Hastings, Wecker, Bauer, and Troyer,32,38

savings from this procedure arise from two factors. First,
redundancy in parity determination is eliminated, as this infor-
mation is not decomputed after every term in the Hamiltonian.
This results in savings in the CNOT string used to determine
parities. Additionally, basis changes are not decomputed when
unnecessary. This saves on the single qubit H and Y gates
necessary to set these bases.
When duplicate gates in the circuit are removed, the

superiority of the Bravyi−Kitaev mapping is even more pro-
nounced while still using a magnitude ordering. This relative

improvement appears to increase with larger circuits, as
demonstrated by Figure 4. In circuits involving more than

about 107 gates, the reduction in gate count associated with the
use of the Bravyi−Kitaev mapping is larger than that of gate
cancellation. In these cases, the use of the Bravyi−Kitaev
mapping results in circuits that are approximately 30−40%
shorter. Additionally, the number of gates canceled using the
Bravyi−Kitaev mapping is several times greater than the
number of gates canceled using Jordan−Wigner mapping.
In some cases the advantage associated with the Bravyi−Kitaev
mapping reduces the circuit length to that observed for systems
involving fewer orbitals. For example, the Bravyi−Kitaev circuit
for the simulation of the iodine atom (54 spin−orbitals)
requires 5 204 912 gates per Trotter step, whereas the Jordan−
Wigner circuit for the simulation of acetone (52 spin−orbitals)
requires 8 954 933 gates per Trotter step.
With systems requiring more than 106 gates to simulate,

there are no examples where the optimized Jordan−Wigner
technique outperforms the optimized Bravyi−Kitaev techni-
que. Thus, using this magnitude ordering, it is clear that the
Bravyi−Kitaev mapping should be preferred to the Jordan−
Wigner mapping in the general case.
As discussed above, previous work20 on the methane mole-

cule indicated that the Bravyi−Kitaev mapping may be advan-
tageous with particular regard to the number of entangling
gates required. Our findings here confirm that this advantage
holds in general, as shown in Figure 4. In addition to the general
gate savings associated with the Bravyi−Kitaev mapping, we
observe a substantial decrease in the number of CNOT gates

Figure 3. Unoptimized gate counts. Upper: Total number of gates in
Jordan−Wigner circuits, before optimization. Lower: Gate savings
through use of Bravyi−Kitaev mapping as a fraction of Jordan−
Wigner gate count. Squares indicate instances where the Jordan−
Wigner transformation outperformed the Bravyi−Kitaev trans-
formation. In this scheme, the Bravyi−Kitaev transformation reliably
results in shorter circuits from around 30 spin−orbitals, with up to
around 25% gate savings in the examples with 50 spin−orbitals.

Figure 4. Number of gates in Bravyi−Kitaev and Jordan−Wigner
circuits, before and after gate cancellation, versus the number of gates
in Jordan−Wigner circuit before optimization, using a magnitude
ordering. Upper: Total gate count. Lower: Entangling gate count only.
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required. We consider this to be a major advantage of the
Bravyi−Kitaev mapping. This advantage is typically offset by a
small increase in the number of single qubit gates required
(as the total savings are smaller than the entangling gate savings).
While using a magnitude ordering, gate cancellation does

not result in a great deal of entangling gate savings, which are
typically far fewer than the advantage associated with the use of
the Bravyi−Kitaev transformation. Instead, the bulk of gate
savings associated with cancellation techniques arises from
maintaining the calculation basis between sequential terms, as
opposed to continually resetting to the computational basis.
It is likely that many CNOT strings are being “trapped” behind
noncommuting gates earlier in their respective CNOT strings.
This could be alleviated by further circuit optimization; how-
ever, this task is difficult to perform without further decreasing
the locality of the CNOT chain.
The results of this scheme use a magnitude ordering for both

the Jordan−Wigner mapping and the Bravyi−Kitaev mapping.
Further analysis of the performance of the Bravyi−Kitaev
mapping is impossible without consideration of the Trotteriza-
tion ordering chosen. This is considered in the following
section. Manipulation of the Trotter ordering can also cause
variation in the Trotter error, which could result in an increased
number of Trotter steps necessary for constant precision. This
increased difficulty could undermine the savings gained from
the use of a particular ordering in terms of cancellation, and is
examined in section 5.

4. IMPACT OF TROTTER ORDERING
As discussed above, the overall goal is to find a minimal length
circuit that can implement the unitary evolution operator of
the quantum Hamiltonian. As no standard circuit for the
simulation of the exponentiated total Hamiltonian exists, a
Trotter−Suzuki approximation must be invoked (eq 9).
The ordering of terms in this approximation is important.

It has been demonstrated33 that the error due to the utilization
of Trotter−Suzuki formulas strongly depends on the term
ordering chosen. Additionally, the number of duplicate gates
depends strongly on the ordering chosen. Both of these factors
influence the length of the overall quantum circuit. The previ-
ous sections utilized a magnitude ordering of Trotter terms.
This ordering is significantly physically meaningful, as terms
with higher magnitude are likely to correspond to stronger
physical interactions. However, it is also known to be suboptimal
in terms of gate cancellation procedures.38

As the number of potential orderings grows factorially, the
problem of finding an optimal ordering scheme is a difficult
one. However, ordering schemes that are superior for the pro-
cess of gate cancellation can be found, as the similarity of
sequential Pauli stringsand thus the savings from cancella-
tioncan be determined when specifying the Hamiltonian.
Our analysis compares the impact of the use of the Bravyi−
Kitaev mapping with a varying choice of ordering.
A lexicographic ordering is expected to maximize the gate

savings obtained through cancellation, as the similarity of adja-
cent terms is maximized.38 As our code optimizes on the level
of Pauli strings rather than Fermionic operators, we order on
this level also, with no ordering performed on the Fermionic
level. Our code stores Pauli strings as lists of base 4 integers.
A lexicographic ordering in this scheme is then essentially a
bitwise numerical ordering.
We present results based on this ordering explicitly in Figure 5.

Note first the dramatic gate savings associated with using this

optimization and ordering scheme. Whereas using a magnitude
ordering, the Bravyi−Kitaev mapping provided the bulk of the
gate savings once gate cancellation had been performed, now
the impact of the Bravyi−Kitaev mapping is relatively minor.
The savings associated with the use of a lexicographic ordering
far outweigh the savings associated with the of the Bravyi−
Kitaev mapping with a magnitude ordering: in the longer
circuits included in our analysis, the former are approximately
thrice that of the latter. In these circumstances, the Jordan−
Wigner and Bravyi−Kitaev mappings appear roughly equiv-
alent for the smaller circuits. The Jordan−Wigner mapping
outperforms the Bravyi−Kitaev mapping in some of the longer
circuits, considering both total and entangling gate counts.
In the longest circuits considered (propanol), the use of the
Jordan−Wigner mapping resulted in circuits that were approxi-
mately 25% shorter. This is attributed to the relative complexity
of the Bravyi−Kitaev mapping resulting in a reduction of
linearity in the CNOT chains, which hampers gate cancellation.
The error implications of Trotter ordering schemes are

difficult to predict. Bounds exist on the error yielded from
Trotterization,32 although these are often loose.33 A qualitative
estimate can be obtained through determination of the norm
of the Trotter error operator; however, the quantitative
behavior of this still often overestimates the error in real
chemical examples.33 It is useful to compare the implications of
the Bravyi−Kitaev mapping when using several ordering
schemes. To this end, we repeated our calculations using
four ordering schemes. In addition to a single randomized
ordering, a lexicographic ordering and an ordering of terms by
magnitude, we include an ordering generated by regularly

Figure 5. Number of gates in Bravyi−Kitaev and Jordan−Wigner
circuits, before and after gate cancellation, versus the number of gates
in Jordan−Wigner circuit before optimization, using a lexicographic
ordering. Upper: Total gate count. Lower: Entangling gate count only.
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interspersing terms from the lexicographic and magnitude
orderings. Note that this ordering is relatively arbitrary and is
intended for comparison purposes. An exhaustive search of the
ordering space is clearly intractable for nontrivial systems, owing
to the factorial growth of the number of possible orderings.
Nonetheless, our findings are remarkably consistent, with

the Bravyi−Kitaev mapping outperforming the Jordan−Wigner
mapping in all cases apart from the lexicographic ordering.
This advantage increases with the number of spin−orbitals
used. Beyond N = 10 in all nonlexicographic cases, the advan-
tage associated with the Bravyi−Kitaev mapping exceeds that
of just using gate cancellation. This advantage is increased
when considering CNOT count and can be dramatic−when
using a magnitude ordering, the savings associated with the
Bravyi−Kitaev mapping are approximately an order of magni-
tude greater than those obtained by using gate cancellation
alone (Figure 6)

For large systems, searching even a statistically significant
subset of the space of possible orderings is clearly intractable,
owing to the factorial growth of the number of possibilities.
For each system, our random ordering is only one of these
myriad choices. Consequentially, it does not represent a sta-
tistically meaningful representation of the bulk of the possible

orderings. Nonetheless, it is interesting that this random choice
qualitatively manifests the same trend as our other ordering
schemes to a very large extent. Quantitatively, the advantage
associated with the Bravyi−Kitaev mapping when using these
random orderings is dramatic; for our largest example, the
reduction in CNOT count using the Bravyi−Kitaev mapping
was 40 times the reduction using gate cancellation alone.
In our results, the use of a tailored ordering scheme (whether it
be ordering lexicographically, by magnitude or otherwise) results
in a reduction of advantage for the Bravyi−Kitaev mapping.
Although these figures suggest that the use of the Bravyi−

Kitaev mapping results in shorter circuits when using most
possible orderings, it should be emphasized that the lexico-
graphic ordering dramatically decreases gate count through
cancellation irrespective of mapping strategy. We restate that
using this strategy, Figure 5 shows that employing the Jordan−
Wigner mapping results in marginally shorter circuits than the
Bravyi−Kitaev mapping.
The choice of Trotter ordering may be dictated by other

factors - for instance, architecture constraints. In these circum-
stances, calculations will be dramatically shortened by the use
of the Bravyi−Kitaev mapping, as this mapping results in
reduced circuit length for all of the nonlexicographic orderings
considered.
The choice of ordering has previously been shown to hold

significant impact on the Trotter error.19,32 Potentially, mini-
mization of Trotter error may therefore require an ordering
being chosen which is suboptimal in terms of single Trotter
step gate count, where the Bravyi−Kitaev holds a significant
advantage.
As such, consideration of the Bravyi−Kitaev mapping within

the context of different ordering schemes requires an
estimation of the associated Trotter error. Previous work19,20

indicates that for the hydrogen and methane molecules, the use
of the Bravyi−Kitaev mapping can result in a reduced Trotter
erroralthough, in the latter case, insufficiently to decrease
the number of Trotter steps required for accurate simula-
tion. We consider these points in the general case in the
following section.
In general, we conclude here that the use of the Bravyi−

Kitaev mapping does not result in a predictable improvement
in gate count when using an ordering optimized for gate cancella-
tion, ignoring Trotter error implications. This is in contrast with
the substantial and predictable improvement observed with
other orderings, particularly when a random ordering is used.

5. TROTTER ERROR CONSIDERATIONS
As discussed above, the use of Trotter−Suzuki approximations
cause error which decreases with the number of Trotter steps
performed. Bounds on and estimates of this error have been
established;32 however, it has been shown33 that these esti-
mates often overestimate the actual error incurred by many
orders of magnitude. Exact determination of the Trotter error
is exponentially hard, as the exact ground state energy must be
determined in advance to serve as a reference.
Having generated Jordan−Wigner and Bravyi−Kitaev

Hamiltonians as symbolic lists of Pauli strings, our code can
proceed in several ways. For smaller systems, a sparse matrix
representation of these Hamiltonians can be generated using
SciPy’s45 sparse matrix methods. This can be diagonalized to
find an exact ground-state eigenvalue (to compare against the
estimate provided by further code) and a ground-state
eigenvector. These can be compared against traditional full

Figure 6. Gate savings associated with the Bravyi−Kitaev mapping
normalized by the gate savings acquired using the same optimization
with the Jordan−Wigner mapping versus the number of spin−orbitals
simulated, for various ordering schemes. A value of 0 indicates that
the optimized Bravyi−Kitaev and optimized Jordan−Wigner circuits
have equal number of gates. A value of 1 indicates that the optimized
Bravyi−Kitaev mapping outperforms the optimized Jordan−Wigner
mapping by a number of gates equal to that saved by performing
optimization on the raw Jordan−Wigner circuit. Upper: total gates.
Lower: entangling gates.
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configuration interaction calculations obtained through direct
diagonalization of the Hamiltonian for verification purposes.
Our code can also generate Trotterized Jordan−Wigner and

Bravyi−Kitaev Hamiltonians while maintaining the symbolic
representation. The action of these Hamiltonians on a given
state can be simulated. Performing this on the generated ground
state eigenvectors allows for the determination of Trotter error
without the storage difficulty of repeatedly generating the
Trotterized evolution operator in matrix form. Nonetheless,
the initial determination of ground state eigenvectors remains
exponentially difficult, requiring on the order of hundreds of
gigabytes of RAM for examples with more than 20 spin−orbitals.
Consequently, we restricted our error analysis to these smaller
systems, as indicated by Table 1 and the Appendices.
We conducted this analysis for 34 of our previously dis-

cussed systems. The calculations were performed for a variety
of choices of Trotter order and step number. Nonetheless, it is
remarkable that limiting our discussion to trials of one Trotter
step of first order suffices to yield chemical accuracy (i.e., to
within 1 kcal/mol of the FCI energy) for a single application of
the evolution operator. For simulation of the full-phase estima-
tion procedure, determination of the error incurred in the
application of higher powers of this operator would be neces-
sary. However, this does not qualitatively effect our ordering
comparison.
Figure 7 demonstrates the results of these simulations.

Encouragingly, in the overwhelming majority of systems con-
sidered, the Trotter error is extremely small even with only one
Trotter step: it is often less than 0.001 hartree. It is possible
that this is an artifact of the small number of spin orbitals in
the systems considered in our error analysis. It is also worth
noting that these errors will be compounded when considering
higher bits of precision in a full phase estimation procedure.
Nonetheless, it does suggest that the number of Trotter steps
required for chemically accurate simulation of larger systems
will be relatively modest, potentially less than 10 Trotter steps
for the first bit of precision.
Figure 7 additionally demonstrates the ordering dependence

of the Trotter error. We consider the Trotter error of each sys-
tematic (i.e., nonrandom) ordering normalized by the Trotter
error of the lexicographic ordering for each system.
In most cases, the magnitude ordering appears to achieve a

lower Trotter error than the lexicographic ordering. In some
cases, this difference exceeds an order of magnitude. However,
it is important to note that this represents a large variance on
an exceptionally small error. Noting that one Trotter step was
sufficient for chemical accuracy in most of the systems studied
here, we do not argue that this indicates that a magnitude
ordering achieves a useful reduction in error compared to a
lexicographic ordering. Future work is required to investigate
how significant this distinction is when propagated through the
entire phase estimation procedure, as in these circumstances
this effect could become sufficiently significant to determine
ordering choice.
An examination of the relative performance of the Bravyi−

Kitaev mapping and the Jordan−Wigner mapping in the
context of ordering strategies is included as Figure 8. Again, the
distinction between the two mappings is in most cases not as
substantial as the differences observed for single Trotter step
circuit length. In the majority of systems, the normalized
difference between the two errors is between 1 and −1−that is,
the error associated with one mapping is very rarely more than
double that of the other. Several systems display substantially

increased error associated with the Bravyi−Kitaev mapping
(including two not shown on Figure 8 for scale clarity);
however, in the general case no such pattern emerges. Using a
lexicographic ordering, a preference for the Bravyi−Kitaev
mapping is observable in most systems. In some cases, the error
is almost halved by the use of the Bravyi−Kitaev mapping.
At larger system sizes this could become a more substantial
effect; however, we do not contend that our data provides
concrete evidence as to whether this is true. For a magnitude
ordering the Jordan−Wigner and Bravyi−Kitaev mappings
yield nearly identical Trotter error in almost all cases. In a
sense, this could be attributed to the more directly physical
nature of the magnitude ordering. Important terms will intrin-
sically be simulated earlier in sequence using both mappings.

Figure 7. Trotter error using the Bravyi−Kitaev mapping as a
function of Jordan−Wigner circuit length, for different ordering
schemes. Upper: Absolute Trotter error. Middle: Trotter error relative
to error of lexicographic ordering. Note this excludes two instances
where the relative Trotter error was >20. The red line indicates a
relative performance of 1 (i.e., below the line, the ordering results
in a lower Trotter error than a lexicographic ordering). Note that
the magnitude ordering usually results in a substantially lower
error; however, in most of these cases, the Trotter error was already
around 10−4.
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As such, the error of both is likely to be similar in this case.
As to be expected, the “lexoMag” ordering performs roughly as
a combination of the magnitude and lexicographic orderings.
As above, the impact of this variation in error could prove

substantial when propagated through the entire phase
estimation algorithm. Using a lexicographic orderingoptimal
for gate cancellationthe Bravyi−Kitaev mapping outper-
forms the Jordan−Wigner mapping in most cases. If this
superior error performance scales to above 30 qubit systems,
this could result in a reduction of the necessary Trotter steps
for simulation. The consequent reduction in circuit length could
counterbalance the marginally increased individual Trotter step
cost of using the Bravyi−Kitaev mapping in a lexicographic
ordering. Further work examining the entire procedure should
assess this. Nonetheless, it should not be forgotten that an
exact determination of the Trotterization error is equivalent to
the solution of the exponentially hard eigenvalue problem
itself. Consequentially, this approach may prove to be intrac-
table. Qualitatively, an examination of the norm of the Trotter
error operator may prove to be instructive.33

6. FURTHER OPTIMIZED CIRCUITS
Our code also generates some of the optimized circuits
developed by Hastings, Wecker, Bauer, and Troyer,38 in order
to assess the impact of these optimizations with respect to the
Bravyi−Kitaev mapping. Examining Figure 2, it is evident that
many of the CNOT strings may be “blocked off” from
cancellation by the basis change gates exterior to them. In this
approach, these basis change gates are brought inside the bulk
of the CNOT string, as shown in Figure 9. Note that in the
first CNOT string, the final CNOT is replaced by a CZ gate.
An inspection of the gate sequence implemented on the final
qubit in the case of even and odd parities of each subset of

qubits demonstrates why this is the case, as discussed in the
Appendices.
Our implementation is a slight modification of this tech-

nique. As discussed above, our code reduces the Hamiltonian
to a symbolic list of exponentiated Pauli strings which does not
preserve the electronic Hamiltonian’s original Hpqrs compo-
nents. In this scheme, it is not always the case that the “final”
qubitthe qubit which is acted on by the central single qubit
rotationis always in the X basis. As such, the above method
requires modification. For example, if the central qubit is to be
rotated in the Z basis, the additional CZ gate could simply be
commuted through the central rotation and canceled, leading
to a phase error.
Fortuitously, in the case that the central qubit is to be

rotated in either the Y or Z basis, a CNOT gate can be used in
place of the CZ gate, as in Figure 9. To demonstrate this, we

Figure 8. Relative Trotter error of Jordan−Wigner and Bravyi−Kitaev
mappings as a function of gate count. The difference in error is nor-
malized by the Jordan−Wigner error, such that a value of 0 indicates
equivalent performance, with negative values implying high Bravyi−
Kitaev error. Both schemes display remarkably similar errors for the
magnitude ordering, likely due to the high degree of “physicality” of
the ordering. For a lexicographic ordering, the Bravyi−Kitaev
mapping shows lower error in most of the systems studied.

Figure 9. A circuit performing an equivalent operation to Figure 2,
using a basis change shift optimization.

Figure 10. Gate savings associated with the Bravyi−Kitaev mapping
normalized by the gate savings acquired using the same optimization
with the Jordan−Wigner mapping, using the modified basis change
shift technique. Upper: Total gate count. Lower: Entangling gate
count. Here we see that the Bravyi−Kitaev and Jordan−Wigner
mappings perform relatively equivalently when using both lexico-
graphic and magnitude orderings. Using an alternative ordering, the
Bravyi−Kitaev mapping is superior, however these result in an overall
increased gate count in both cases.
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consider the action on the final qubit in the case of the parity
of each subset of qubits, as shown in the Appendices.
Additionally, circuits described by Hastings, Wecker, Bauer,

and Troyer38 involving an ancilla qubit can be generated. Here,
all parity calculating CNOT gates are targeted on a single
ancilla qubit. This allows for CNOTS performed in the same
basis to be moved around arbitrarily, allowing for a greater
level of gate cancellation.
Circuits of these forms are known to reduce overall gate

count substantially.38 We focus here on the relevance of the
Bravyi−Kitaev mapping when using these techniques.
Using the former technique, the performance of the Bravyi−

Kitaev technique using a lexicographic or random ordering
displays roughly the same trend as previous circuits. However,
using a magnitude ordering reduces the efficacy of the Bravyi−
Kitaev mapping to the point of near-equivalence to the
Jordan−Wigner mapping. Any savings or penalties associated
with the use of the Bravyi−Kitaev mapping are then negligible
compared to gains from the basis change shift optimization
procedure. We do not yet have an explanation for the ordering
dependence of this behavior. Nonetheless, the Bravyi−Kitaev
mapping never substantially under-performs when compared
to the Jordan−Wigner mapping. In essence, the observed
trends are the same as for the previous circuits, albeit with a
greatly reduced factor of improvement associated with the use
of the Bravyi−Kitaev mapping (Figure 10).

The use of ancilla circuits displays a markedly different
trend. Here, the effect of the Bravyi−Kitaev mapping is greatly
reduced in all ordering schemesthere is a maximum of
around 30% reduction in the largest examples, when using a
“lexoMag” ordering. It is likely that any major savings or
penalties associated with the Bravyi−Kitaev mapping are
masked by the substantial savings associated with the use of
ancillarised circuits. Using a lexicographic ordering, there is no
predictable difference between the two mapping schemes
at all.
Curiously, using a magnitude ordering reverses the trend

observed for previous optimization schemes. Here, the Bravyi−
Kitaev mapping is consistently outperformed by the Jordan−
Wigner mapping. However, this distinction is relatively small,
and disappears entirely in larger system sizes. As such, we do
not conclude that a consistent preference for either mapping is
present using these circuits. Note that the use of such circuits
may be undesirable in certain architectures, due to the loss of
nearest-neighbor CNOT chains, which could undermine the
substantial savings associated with this technique (Figure 11).
Finally, we note that in all optimization systems studied, a

random choice of ordering resulted in the strongest perform-
ance of the Bravyi−Kitaev mapping. While one ordering is
clearly not a statistically meaningful sample of the possible
orderings, it is interesting that our results here are extremely
consistent.

Figure 11. Gate savings associated with the Bravyi−Kitaev mapping normalized by the gate savings acquired using the same optimization with the
Jordan−Wigner mapping, using the ancilla-based technique. Upper left: Total gate count. Upper right: Total gate count, zoomed. Lower left:
Entangling gate count. Lower right: Entangling gate count, zoomed. Here, we again see roughly equivalent performance when using either a
magnitude or lexicographic ordering. Once again, when using a alternative ordering, the Bravyi−Kitaev mapping is superior, however to a greatly
reduced extent.
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7. CONCLUSIONS

In this paper, we have made a detailed comparison of the
Jordan−Wigner and Brayvi−Kitaev mappings using a variety of
advanced circuit optimization techniques drawn from the
theory of quantum simulation. Using unoptimized circuits,
the use of the Bravyi−Kitaev mapping dramatically reduces the
quantum computational expense of simulation in all systems
involving more than 30 qubits and for systems likely to be
classically intractable to simulate. In cases with approxi-
mately 50 qubits, this improvement reduced the gate count by
roughly 25%.
The use of an optimized Trotter ordering absorbs the

advantage associated with the Bravyi−Kitaev mapping. The
Jordan−Wigner mapping in this case results in slightly shorter
circuits for an individual Trotter step. Nonetheless, in most

cases the use of the Bravyi−Kitaev mapping is at worst roughly
equivalent to the use of the traditional Jordan−Wigner
mapping. Frequently, the gate count reduction is particularly
large in the number of expensive entangling gates required.
Notably, the Bravyi−Kitaev mapping is superior in all cases
aside from the lexicographic ordering.
While our results suggest a slightly reduced error associated

with the use of a magnitude ordering, we do not conclude that
this ordering should be favored due to the substantial overall
gate count associated with a lexicographic ordering. Our
analysis of Trotter ordering error suggests that the use of the
Bravyi−Kitaev mapping typically results in a reduced Trotter
error when using any ordering studied, other than a magnitude
ordering. This difference is almost a factor of 2 in many larger
examples when using a lexicographic ordering. This encourages

Table 2. All Molecules Considered in This Studya

name charge mult. basis no. qubits level

methane 0 1 STO-3G 18 Y
ethane 0 1 STO-3G 32 N
ethene 0 1 STO-3G 28 N
propene 0 1 STO-3G 42 N
ethyne 0 1 STO-3G 24 N

methanol 0 1 STO-3G 28 N
ethanol 0 1 STO-3G 42 N

isopropanol 0 1 STO-3G 56 N
1-propanol 0 1 STO-3G 56 N
propanone 0 1 STO-3G 52 N
methanal 0 1 STO-3G 24 N
ethanal 0 1 STO-3G 38 N

ethanoate ion −1 1 STO-3G 46 N
ethanoic acid 0 1 STO-3G 48 N

hydrogen peroxide 0 1 STO-3G 24 N
ethanamide 0 1 STO-3G 50 N
methylamine 0 1 STO-3G 30 N
dimethylamine 0 1 STO-3G 44 N

ammonia 0 1 STO-3G 16 Y
ammonium 1 1 STO-3G 18 Y

nitrogen dioxide 0 2 STO-3G 30 N
lithium hydroxide 0 1 STO-3G 22 Y
sodium hydroxide 0 1 STO-3G 30 N

H2 0 1 STO-3G 4 Y
lithium hydride 0 1 STO-3G 12 Y
beryllium hydride 0 1 STO-3G 14 Y

N2 0 1 STO-3G 20 Y
O2 0 3 STO-3G 20 Y
O2 0 1 STO-3G 20 Y
F2 0 1 STO-3G 20 Y

sodium hydride 0 1 STO-3G 20 Y
magnesium hydride 0 1 STO-3G 22 Y

Cl2 0 1 STO-3G 36 N
HCl 0 1 STO-3G 20 Y
HF 0 1 STO-3G 12 Y

carbon dioxide 0 1 STO-3G 30 N
carbon monoxide 0 1 STO-3G 20 Y

water 0 1 STO-3G 14 Y
methylene 0 3 STO-3G 14 Y
hydroxide −1 1 STO-3G 12 Y
HNO3 0 1 STO-3G 42 N
nitrate −1 1 STO-3G 40 N
H 0 2 STO-3G 2 N

name charge mult. basis no. qubits level

He 0 1 STO-3G 2 N
Li 0 2 STO-3G 10 Y
Be 0 1 STO-3G 10 Y
B 0 2 STO-3G 10 Y
C 0 3 STO-3G 10 Y
N 0 4 STO-3G 10 N
O 0 3 STO-3G 10 N
F 0 2 STO-3G 10 N
Ne 0 1 STO-3G 10 N
Na 0 2 STO-3G 18 Y
Mg 0 1 STO-3G 18 Y
Si 0 3 STO-3G 18 Y
P 0 4 STO-3G 18 Y
S 0 3 STO-3G 18 Y
Cl 0 2 STO-3G 18 Y
Ar 0 1 STO-3G 18 N
K 0 2 STO-3G 26 N
I 0 2 STO-3G 54 N
Br 0 2 STO-3G 36 N
I− −1 1 STO-3G 54 N
Br− −1 1 STO-3G 36 N
Cl− −1 1 STO-3G 18 N
H2 0 1 3-21G 8 Y
H2 0 1 6-31G 8 Y
H2 0 1 6-31G** 20 Y
H2 0 1 6-311G* 12 Y
H2 0 1 6-311G** 24 N

HeH+ 1 1 STO-3G 4 Y
HeH+ 1 1 3-21G 8 Y
HeH+ 1 1 6-31G 8 Y
HeH+ 1 1 6-31G** 20 Y
HeH+ 1 1 6-311G* 12 Y
HeH+ 1 1 6-311G** 24 N

methylene 0 3 3-21G 14 N
HF 0 1 3-21G 22 Y

lithium hydride 0 1 3-21G 22 Y
H2O 0 1 3-21G 26 N
H3+ 1 1 STO-3G 6 Y
H3+ 1 1 3-21G 12 Y
CO3 0 1 STO-3G 40 N

magnesium hydroxide 0 1 STO-3G 42 N
H2S 0 1 STO-3G 22 Y

aLevel corresponds to whether or not the error incurred in Trotterization was considered: N indicates that this analysis was not performed for this
system, Y indicates that it was.
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the use of the Bravyi−Kitaev mapping, as it could outweigh the
relatively small benefit from the use of the Jordan−Wigner
mapping in optimized lexicographic circuits.
Our results demonstrate that the performance of the

Bravyi−Kitaev mapping is dependent on a variety of factors.
While it is superior to the Jordan−Wigner mapping in most
cases studied, several exceptions were observed. This empha-
sizes the importance of numerical analysis in future work. It is
apparent that such studies must be performed across a range
of molecular systems, with due consideration given to the
region where classical full configuration interaction calculations
are intractable.
Recent hardware developments have prompted the sug-

gestion that quantum devices could be used for practical tasks
in as little as five years.16 The use of quantum computers to
perform classically intractable quantum chemistry calculations
is often cited as one of the principal uses of emerging quantum
technology.9

We have demonstrated here that the use of the Bravyi−
Kitaev transformation frequently results in substantially reduced
gate count estimates. In the future, we anticipate that the applica-
tion of this mapping will assist in the performance of electro-
nic structure calculations on real quantum computers, yielding
results that have proven computationally elusive for classical
devices.

■ APPENDICES
Details of the systems studied can be found in Table 2. Table 3
indicates the operation which is performed upon a qubit
having modified the original circuit in line with section 6. Note
that the end result of each modified circuit is equivalent to that
of the original circuit.
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