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Abstract

In this paper, a new off-line model predictive control strategy is presented for a kind of linear

parameter varying system with polytopic uncertainty. A nest of shrinking ellipsoids is con-

structed by solving linear matrix inequality. By splitting the objective function into two parts,

the proposed strategy moves most computations off-line. The on-line computation is only

calculating the current control to assure the system shrinking into the smaller ellipsoid. With

the proposed formulation, the stability of the closed system is proved, followed with two

numerical examples to demonstrate the proposed method’s effectiveness in the end.

1. Introduction

Model predictive control (MPC), also known as receding or moving horizon control, is an

effective control algorithm widely adopted in industry to deal with multivariable constrained

control problem. MPC solves the constrained optimization problem at each sampling time

and implements only the first element of the optimal control profile [1–6]. In recent ten years,

some important branches is extended such as distributed MPC[7, 8], economic MPC[9, 10]

and tube based MPC[11, 12] and so on.

Linear parameter varying (LPV) systems becomes a standard formalism in systems and

control. It is introduced by Shamma [13] and it is an intermediate step between linear time-

invariant (LTI) systems and non-linear plants. LPV systems can approximate many nonlinear

systems and the gains can be automatically scheduled with respect to the parameters[14]. As

the importance of LPV system, it has been widely investigated. Its common theme is to make

the controller parameter dependent so that when the time-varying parameters are measured in

real-time, the controller becomes self-scheduling and offers potential performance improve-

ments over a fixed robust controller. Some researchers are concerned with the reducing the

conservatism and improving the system’s performance. It is proposed that a state feedback

MPC scheme based on a quasi-min-max algorithm [15], the first stage cost can be computed

without any uncertainty, thus the first state cost can be determined separately from the rest of

parameter changes. A robust dynamic output feedback MPC strategy is designed for a linear

fractional representation represented systems[16]. Through the off-line designing robust state

observer and on-line robust output feedback MPC controller designing, it is proposed a robust

MPC scheme for LPV systems[17]. When the parameters have stochastic nature, via scenario
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optimization, a stochastic MPC for LPV systems is proposed[18]. In some practical applica-

tions, the varying parameters change rates are limited, and a novel algorithm is presented to

estimate the future parameter variations which are predicted as a sequence of polytopic fami-

lies [19, 20]. The designed feedback Robust MPC can improve the control performance. A

robust MPC design method is proposed by Cao and Lin[21] to solve the influence of the actua-

tor saturation, which degrades system performance and destroys the system’s stability. This

method is improved by placing heavier weighting on the system corresponding to the actual

linear feedback law[22].

On the other hand, the requirement of optimality leads to high on-line computation and

this limits its application to relatively slow dynamics or small-scale process. To overcome

this problem, some authors have proposed the off-line MPC. For example, a series of control-

lers corresponding to a sequence of nested asymptotically stable invariant ellipsoids is

constructed off-line one with another[23]. This result is improved based on the nominal per-

formance and followed with the improvement of the closed loop system’s feasibility and opti-

mality[24].

In the LPV framework, it is assumed that the parameter is measureable or non-measur-

able. In the former case, the aforementioned researches have little use of the measured

parameter vector. To solve this problem, this article aims to provide a formulation of

decreasing the computation of the robust MPC for LPV system. The proposed method

makes good use the information of the current states and parameter vector, and the future

states can be described by the polytopic uncertain. The designed formulation employs the

off-line designed shrinking ellipsoids which is first proposed in our previous work[25]. The

shrinking ellipsoids fE i; i ¼ 1; 2; � � �Ng have the followed character: at the current time the

state xðkÞ 2 E i, and at the next sampling time the state can be shrunk into the smaller ellip-

soid with a controller, i.e. if xðkÞ 2 E i, then xðkþ 1Þ 2 E iþ1. The on-line controller is calcu-

lated with low computation followed with the proof of the closed-loop system’s feasibility

and stability.

The rest of this paper is organized as follows. Section 2 gives the problem description. In

section 3, the shrinking ellipsoids are designed off-line, followed with the on-line control strat-

egy. In section 4, two examples are presented to illustrate the effectiveness of the proposed

strategy. Finally, we conclude the note in section 5.

The following notation will be used. Let Rn be the n-dimensional space of real valued vec-

tors. For a matrix Q and a vector x 2 Rn, xTQx will be denoted by jjxjj2Q. The matrix inequality

A> B(A� B) means that A and B are square symmetric matrices and A − B is (semi-) positive

definite. The measured or actual value of variable x at real time k will be denoted by x(k) (or

x(k | k)). x(k + i | k), i 2 {0, 1, 2, . . .} is the predicted value of x at a future prediction time k + i
predicted at real time k. The identity matrix with proper dimension is denoted by I. � denotes

the corresponding transpose of the lower block part of symmetric matrices.

2. Problem description

Consider a linear discrete-time LPV system whose system matrices are affine functions of a

parameter vector p(k):

xðkþ 1Þ ¼ AðpðkÞÞxðkÞ þ BðpðkÞÞuðkÞ

yðkÞ ¼ CxðkÞ
ð1Þ

where ½AðpðkÞÞ;BðpðkÞÞ� ¼
XL

j¼1

pjðkÞ½Aj;Bj�, xðkÞ 2 Rnx and uðkÞ 2 Rnu denote the state and
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input respectively. The time-varying parameter vector p(k) = [p1(k), p2(k), � � �, pL(k) 2 RL]

belongs to a convex polytope P, i.e.,
XL

j¼1

pjðkÞ ¼ 1; 0 �pjðkÞ � 1.

The aim of the research is to find a feedback control law

uðkÞ ¼ FðkÞxðkÞ ð2Þ

to achieve the followed performance cost

min
uðkÞ

max
½AðpðkÞÞ;BðpðkÞÞ�2O

J1ðkÞ

J1ðkÞ ¼
X1

i¼0

fxðkþ ijkÞTQxðkþ ijkÞ þ uðkþ ijkÞTRuðkþ ijkÞg
ð3Þ

subject to state and output constraints

jjyðkþ ijkÞjj � ymax 8k � 0; 8i � 0 ð4Þ

jjuðkþ ijkÞjj � umax 8k � 0; 8i � 0 ð5Þ

where Q, R> 0 are weighting matrices. The MPC for the LPV system is transformed into a

convex optimization problem using parameter dependent Lyapunov function[26]. It is less

conservative as compared with the result of M.V. Kothare for existing the loosen variables G.

However, the convex optimization involves L2 + 3L LMIs (L is the number of convexes poly-

tope) and it requires prohibitive on-line computation.

Lemma 1[26]. Consider the System (1) at the sampling time k with unknown parame-

ters. Given x(k | k), ymax, umax a state feedback control law

uðkþ ijkÞ ¼
XL

j¼1

½pjðkÞFjðkÞ�xðkþ ijkÞ; Fj ¼ YjGj
� 1 is obtained by solving the following

problem:

min
g;Yj;Gj;Qj

g ð6Þ

s.t.

1 �

xðkjkÞ Qj

2

4

3

5 � 0; 8j ¼ 1; 2; � � � L ð7Þ
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Gj þ GT
j � Qj � � �

AjGj þ BjYj Ql � �

Q1=2Gj 0 gI �

R1=2Yj 0 0 gI

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

> 0; 8j ¼ 1; 2; � � � L; 8l ¼ 1; 2; � � � L ð8Þ

u2
maxI �

YT Gj þ GT
j � Qj

2

4

3

5 � 0; 8j ¼ 1; 2; � � � L ð9Þ

y2
maxI �

ðAjGj þ BjYÞ
TCT Gj þ GT

j � Qj

2

4

3

5 � 0; 8j ¼ 1; 2; � � � L ð10Þ

On the other hand, the speed of the closed-loop response can be influenced by specifying

a minimum decay rate on the state x(||x(k)||� ρk ||x(0)||, 0 < ρ< 1) as follows:

xðkþ iþ 1jkÞTQ� 1xðkþ iþ 1jkÞ � r2xðkþ ijkÞTQ� 1xðkþ ijkÞ ð11Þ

for any [A(k + i), B(k + i)] 2 O.

Lemma 2 [3]: For System (1), if it has a minimum decay rate of Eq (11), the following LMI

must be satisfied:

r2Ql �

AjQl þ BjYj Ql

2

4

3

5 � 0; 8j ¼ 1; 2; � � � L; 8l ¼ 1; 2; � � � L ð12Þ

3. Shrinking ellipsoidal MPC for LPV system

In this section, it is assumed that both the parameter vector p(k) and the state x(k) are available

in real-time. At sampling time k the system parameter vector p(k) is known exactly but

unknown in the future. The designed strategy includes three stages: first, the method of seek-

ing the minimum decay rate is presented for a fixed state; then a consequence of nested ellip-

soids is constructed off-line based on the iterative method; finally the MPC algorithm is

formulated. In the proposed method, most of the computation is moved off-line and only the

low computation of calculating the input is left online.

Algorithm 3 (seeking the minimum decay rate). Consider the uncertain System (1) with

Constraints (4) and (5). Let ρ = 1.

1. Investigate the feasibility of the following problem:

Problem 1: feasp
g

subject to Eqs (7) ~ (10) and (12).

2. If problem 1 is feasible, let ρ≔ ρ − 0.01, go to step 1. Otherwise, return ρ.

Remark 4: The system is supposed to converge to the smaller invariant ellipsoid. The com-

puted minimum decay rate is designed off-line and it is used to assure the stability of the

closed-loop system.
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Lemma 5 [25]. Suppose the matrices satisfy the followed condition 0< ρ2Qi< Qi+1 < Qi(0

< ρ< 1), define E i ¼ fx 2 RnjxTQ� 1
i x � 1g and E i;r ¼ fx 2 RnjxTQ� 1

i x � r2g, then

E i;r � E iþ1 � E i.

Algorithm 6 (off-line robust MPC). Consider the uncertain System (1) with Constraints (4)

and (5). Given an initial feasible state x1, compute a sequence of minimizers as follows off-line.

Let i≔ 1.

1. Compute the minimum decay rate ρi at xi using algorithm 3.

2. Compute the optimizer γi,j, Qi,j, Xi,j, Yi,j, Zi,j at xi using lemma 1 with an additional con-

straint r2
i� 1Qi� 1;j � Qi;j < Qi� 1;j (ignored at time i = 1, j = 1, 2� � �, L), store γi,j, γi, Qi,j and

Fi;jð¼ Yi;jQ� 1
i;j Þ, where gi ¼ max

j
fgi;jg

3. if i< N, choose a state xi+1 satisfying xTiþ1Q� 1
i;j xiþ1 ¼ r2xTi Q� 1

i;j xi. Let i≔ i + 1, go to step 1.

The state of the system is controlled into the smaller ellipsoid on-line. Suppose the state sat-

isfying xðkÞ 2 E i; xðkÞ =2 E iþ1, we select the proper controller to drive the system into E iþ1, that

is xðkþ 1Þ 2 E iþ1. Consider the following objective function which is split into two parts:

J1
0
ðkÞ ¼ xðkÞTQxðkÞ þ uðkÞTRuðkÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
j0
0

þ
X1

i¼1

xðkþ ijkÞTQxðkþ ijkÞ þ uðkþ ijkÞTRuðkþ ijkÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

j1
1

ð13Þ

As the current state and parameter are unknown, so the first stage cost can be computed

without uncertainty. This is the reason that the first control input can be separately from the

rest of the future control law. Our on-line control strategy is based on the following two facts:

the current state is in the ellipsoid E i, but not in E iþ1, but in the following sampling time k + 1,

the state is in E iþ1, that is xðkþ 1jkÞ 2 E iþ1; x(k + 1 | k) and p(k + 1 | k) cannot be measured

on-line, so in the future sampling time, the system is described by polytope uncertainty, and

the future control law can be designed off-line using the Algorithm 6. So in this case J1
1
� giþ1,

then the objective function satisfied

J1ðkÞ � xðkjkÞTQxðkjkÞ þ uðkjkÞTRuðkjkÞ þ giþ1 ð14Þ

xðkþ 1jkÞ 2 E iþ1:

xðkþ 1jkÞTQ� 1
iþ1;jxðkþ 1jkÞ < 1 j ¼ 1; 2; � � � ; L ð15Þ

The parameter vector p(k) and the current state x(k | k) are known, and only the input is

free variable. The on-line work is only to compute the controller at the current sampling time

min
uðkÞ;u

u ð16Þ

satisfied Eq (15) and

xðkjkÞTQxðkjkÞ þ uðkjkÞTRuðkjkÞ þ giþ1 < u ð17Þ

Robust shrinking ellipsoid model predictive control for LPV system
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The Conditions (15) and (17) are equivalent to the followed LMIs respectively

1 �

AðpðkÞÞxðkÞ þ BðpðkÞÞuðkÞ Qiþ1;j

2

4

3

5 � 0 j ¼ 1; 2; � � � ; L ð18Þ

1 � �

Q1=2xðkjkÞ ðu � giþ1ÞI �

R1=2uðkjkÞ 0 ðu � giþ1ÞI

2

6
4

3

7
5 � 0 ð19Þ

Theorem 7. The above optimization problem with the control law given by

U1
0
¼ ½uðkjkÞ;U1

1
�; U1

1
: fuðkþ ijkÞ ¼ Fðkþ ijkÞxðkþ ijkÞ; i � 1g ð20Þ

can be solved by the following semi-definite programming

min
uðkÞ;u

u ð21Þ

subject to Eqs (18) and (19).

Proof: Minimization of x(k | k)T Qx(k | k) + u(k | k)T Ru(k | k) + γi+1 is equivalent to

min
uðkÞ;u

u

subject to x(k | k)T Qx(k | k) + u(k | k)T Ru(k | k) + γi+1� υ, using Schur complements, it is

equivalent to

1 � �

Q1=2xðkjkÞ ðu � giþ1ÞI �

R1=2uðkjkÞ 0 ðu � giþ1ÞI

2

6
4

3

7
5 � 0

which proves Eq (19);

Substituting Eq (1) into Eq (15), one can get

½AðpðkÞÞxðkÞ þ BðpðkÞÞuðkÞ�TQ� 1
iþ1;j½AðpðkÞÞxðkÞ þ BðpðkÞÞuðkÞ� < 1 j ¼ 1; 2; � � � ; L

Using Schur complements it can be expressed as

1 �

AðpðkÞÞxðkÞ þ BðpðkÞÞuðkÞ Qiþ1;j

2

4

3

5 � 0 j ¼ 1; 2; � � � ; L

Remark 5: As the current parameter vector p(k) is known, there is no need to transform

Eq=(18) into the LMIs based on the convex of polytope.

The designed controller Eq (20) is composed of two parts: u(k | k) is the controller at the

current sampling time and it can drive the state into the inner ellipsoid; U1
1

is the off-line

designed controller will be acted on the system in the following sampling time, and it can

shrink the state into the smaller ellipsoid. The following theorem proves the closed-loop sys-

tem’s stability.

Theorem 8. Given a dynamic System (1) and an initial state x(0) satisfying jjxð0Þjj2Q� 1
1

� 1,

the controller Eq (20) robustly asymptotically stabilizes the closed-loop system.

Proof: For the off-line minimization at xi, i = 2, . . .,N, the additional constraint

r2
i� 1

Qi� 1;j � Qi;j < Qi� 1;j is equivalent to Q� 1
i� 1;j < Q� 1

i;j � Q� 1
i� 1;j=r2

i� 1
. From lemma 5, it is known

Robust shrinking ellipsoid model predictive control for LPV system
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that the left part of the inequality implies that the constructed asymptotically stable invariant

ellipsoid E i;j is inside E i� 1;j, i.e. E i;j � E i� 1;j. So it is guaranteed that jjxjj2Q� 1
i;j

is monotonic

decreasing with respect to the index i. The right part of the inequality can assure the algo-

rithm’s feasibility, i.e., there exists E i;j in the feasible regions. From theorem 7, the control law

Eq (20) is guaranteed to drive the state into the next nested ellipsoid. Lastly, the smallest EN;j is

guaranteed to keep the state within EN;j and converge it to the origin.

Remark 10. As we all know, the fastest interior point algorithms show O(RS3) growth in

computation where R is the total row size of the LMI system and S is the total number of scalar

decision variables[23, 24, 27]. For LMI optimization Problem (6) the parameter S is given by

1þ 1

2
Lð1þ n2

u þ nu þ 2n2
x þ 2nxÞ and R is given by L(7nx + 2nu + 1) while for Problem (21) S

is given by 2 and R is given by 1 + nx + nu. So the proposed strategy can reduce the on-line

computation dramatically.

4. Numerical example

In this section, we present two examples to illustrate the effectiveness of the designed LPV sys-

tem’s robust shrinking ellipsoid model predictive controller. The simulation is carried on

Lenovo computer, and its processor is Intel1 core™ i5-4590cpu@3.30GHz.

Example 1. Consider the following LPV system given by[17]

xðkþ 1Þ ¼ AðaðkÞÞxðkÞ þ BuðkÞ

yðkÞ ¼ CxðkÞ
ð22Þ

Where AðaðkÞÞ ¼
0:872 � 0:0623aðkÞ

0:0935 0:997

" #

, B ¼
0:00935

0:000478

" #

, C ¼ ½ 0:333 � 1 �. The ini-

tial states of the System (22) is assumed as xð0Þ ¼ ½ 10 0 �
T

and the uncertain parameter α(k)

belong to the following regions: α(k) 2 [1, 5]. Then ½AðpðkÞÞ;BðpðkÞÞ� ¼
X2

j¼1

pjðkÞ½Aj;Bj�,

where A1 ¼
0:872 � 0:0623

0:0935 0:997

" #

, A2 ¼
0:872 � 0:3115

0:0935 0:997

" #

, B1 ¼ B2 ¼
0:0935

0:00478

" #

. We

select some points on the x -axis, and get their minimum decay rate using the Algorithm 3

shown in Table 1.

It is shown that the minimum decay rate is smaller than 0.8 from Table 1. In the simulation,

the decay rate is set to be 0.8 and the nested ellipsoids is shown in Fig 1. The states of the con-

trolled closed-loop system using the designed method (RSEMPC method) compared with the

method in paper[26](PDLF method) are shown in Fig 2. The runtime of RSEMPC method is

0.001062 second while the PDLF method is 6.410566 second.

It is shown that the computation time of the RSEMPC method is much smaller than the

PDLF method and most of the computation is left offline.

Example 2. Consider the following uncertain nonlinear model for non-isothermal control

of a continuously stirred tank reactor (CSTR) where the exothermic reaction A! B takes

place. A cooling coil is used to remove heat that is released in the exothermic reaction. The

Table 1. Selected points and corresponding minimum decay of example 1.

point (10,0) (8,0) (6.4,0) (5.12,0) (4.1,0) (3.28,0) (2.63,0) (2.11,0) (1.69,0)

minimum decay 0.06 0.05 0.04 0.03 0.02 0.02 0.01 0.01 0.01

https://doi.org/10.1371/journal.pone.0178625.t001
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reaction rate constant k0 and the heat of reaction ΔHr×n are considered to be the uncertain

parameters. The linearized model based on the component balance and the energy on the

component balance is given as follows

_CA

_T

" #

¼

�
F
V
� k0e

� E=RTs �
E

RT 2
s

k0e
� E=RTsCAs

�
DHr�nk0e� E=RTs

rCp
�

F
V
�

UA
VrCp

� DHr�n
E

rCpRT 2
s

k0e
� E=RTsCAs

2

6
6
6
4

3

7
7
7
5

CA

T

" #

þ

0

� 2:098� 105 Ts � 365

VrCp

2

4

3

5
CA;F

Fc

" #

ð23Þ

where CA denotes the concentration of A in the reactor, T denotes the reactor temperature and

TC denotes the temperature of coolant stream. The rate of reaction is first order with respect to

component A. The relevant constants for the CSTR dynamic model are illustrated in Table 2.

Let �CA ¼ CA � CA;eq,
�T ¼ T � Teq, �CA;F ¼ CA;F � CA;F;eq and �FC ¼ FC � FC;eq, where the

subscript eq is used to denote the corresponding variable at equilibrium condition. The dis-

crete-time model is obtained by discretizing using Euler first-order approximation with a sam-

pling time of 0.15 min (F = 1 m3 / min, V = 1 m3, k0 = 109 ~ 5 × 109 min−1, E / R= 8330.1K,

−ΔHr×n = 107 ~ 5 × 107 cal / kmol, ρ = 106 g / m3, UA = 5.34 × 106 cal / K, Cp = 1 cal / (gK),

Fig 1. Nested ellipsoids of example 1.

https://doi.org/10.1371/journal.pone.0178625.g001
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Ts = 394K and CAS = 0.265 kmol / m3)

xðkþ 1Þ ¼
0:85 � 0:0986aðkÞ � 0:0014aðkÞ

0:9864aðkÞbðkÞ 0:0487þ 0:01403aðkÞbðkÞ

" #

xðkÞ þ
0

� 0:912

" #

uðkÞ ð24Þ

where xðkÞ ¼ ½�CAðkÞ; �TðkÞ�, uðkÞ ¼ ½�CA;FðkÞ; �FCðkÞ�, 1� α(k) = k0 / 109� 5 and

Fig 2. States of the closed-loop system of example 1.

https://doi.org/10.1371/journal.pone.0178625.g002

Table 2. Relevant constants for the CSTR dynamic model.

CA concentration of A

F Feed flowrate

V Volume of reactor

CA,F Feedback concentration of A

k0 reaction rate constant

E Activation energy

R Universal gas constant

T Reactor temperature

Ts Reactor temperature at steady state

CAS concentration of A at steady state

ρ Mean density of water

Cp Heat capacity

ΔHr×n heat of reaction

FC Coolant flow

https://doi.org/10.1371/journal.pone.0178625.t002
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1� β(k) = −ΔHr×n / 107� 5. The polytopic O = Co{A1, A2, A3, A4},

A1 ¼
0:7514 � 0:0014

0:9864 0:06273

" #

, A2 ¼
0:357 � 0:007

4:932 0:11885

" #

, A3 ¼
0:7514 � 0:0014

4:932 0:11885

" #

,

A4 ¼
0:357 � 0:007

24:66 0:39945

" #

. It is the same as example 1, we can find the minimum decay rate

is smaller than 0.8. In the simulation, the decay rate is set to be 0.8 and the nested ellipsoids

constructed off-line by the prosed algorithm is shown in Fig 3. If the state of the system is in

one ellipsoid at the present time k, then at the next sampling time k + 1, the state must be in

the adjacent interior ellipsoid, so we call them as the shrinking ellipsoids. Table 3 shows the

overall on-line numerical burdens compared with PDLF method. It is shown that the

designed algorithm requires smaller on-line computation. Fig 4 shows the closed-loop

responses of the system.

5. Conclusions

In this paper, a novel off-line MPC synthesis approach for a LPV system is presented. A

sequence of state feedback gains corresponding to the sequences of nested ellipsoids is pre-

Fig 3. Nested ellipsoids of example 2.

https://doi.org/10.1371/journal.pone.0178625.g003

Table 3. On-line numerical burdens in example 1.

Algorithm CPU time(s) per step

RSEMPC 0.001

PDLF 0.291

https://doi.org/10.1371/journal.pone.0178625.t003
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computed. The on-line computation is only to calculate the input to control the states into the

inner ellipsoids and it only left the current controller as a free variable, so most of the computa-

tion is moved off-line. The effectiveness of the propose method is illustrated by two simulation

examples.

Supporting information

S1 Fig. States and ellipsoids of example 1.

(RAR)

S2 Fig. States and ellipsoids of example 2.

(RAR)
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