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Abstract
Time is of the essence in biology as in so much else. For example, monitoring disease progression or the timing of
developmental defects is important for the processes of drug discovery and therapy trials. Furthermore, an under-
standing of the basic dynamics of biological phenomena that are often strictly time regulated (e.g. circadian rhythms)
is needed to make accurate inferences about the evolution of biological processes. Recent advances in technologies
have enabled us to measure timing effects more accurately and in more detail. This has driven related advances in
visualization and analysis tools that try to effectively exploit this data. Beyond timeline plots, notable attempts at
more involved temporal interpretation have been made in recent years, but awareness of the available resources is
still limited within the scientific community. Here, we review some advances in biological visualization of time-
driven processes and consider how they aid data analysis and interpretation.
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INTRODUCTION
Time, like many other aspects of biology, is fractal in

nature [1], when considered at a range of scales span-

ning, for example, species-level interactions to the

cellular and molecular level (Figure 1). All cellular

functions and fate decisions are governed by spatio-

temporal design principles: circadian rhythms, cell

division, development, metabolism, etc. These pro-

cesses are orchestrated by an intricate network of

dynamic interactions, within which individual part-

ners also change considerably in time depending on

the environment. Temporal complexity also scales

with structural complexity: more complex organisms

need increased regulation of various biological pro-

cesses, hence the emergence of different levels of

time-coupled responses.

Inevitably, the complexity and variation produced

by temporal changes introduces a challenge on the

system in maintaining robustness [3]. This is recon-

ciled through modularity [4] and synchronization

[5]. Modularity is clearly seen in periodic processes

like circadian rhythms or the cell cycle. These and

other processes are temporally regulated through a

precise orchestration of transcriptional events and

post-translational modifications. Thus, tracing gene

expression changes, mRNA and protein half-lives

[6–8] allows the development of useful models for

the understanding of biorhythms. This brings us to

the latter point: synchronization. We should empha-

size here the common tendency to regard protein

interactions as static, when in fact time is a limiting

factor for them, as they occur at higher or lower

degrees of stochasticity. Some interactions, even

though theoretically viable, may never occur

in vivo because the proteins are not in proximity to

each other or because they are asynchronized with

respect to some process. This is seen for many tran-

sient interactions [9]. The interactions themselves are

subject to temporal variation, with weaker inter-

actions having shorter lifetimes [10]. This variation

enables fast response to intrinsic or extrinsic perturb-

ation [11]. Different feedback rewiring or variations

in kinetic parameters of signalling pathways lead to

different modes of spatiotemporal organization, from
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sustained response, to oscillations, or switch-like re-

sponses with two stable steady states [12].

Higher levels of organization, like populations and

species, also exhibit temporal variation. Robustness

emerges as an evolvable property [13], as systems

adapt to stress in changing environmental conditions

through mutations and genetic drift [14, 15]. These

changes span much longer time scales. The adaptation

to perturbation imposes a selection pressure and does

not come as a fast response but rather as an evolved

phenotypic outcome in a sloppy space [16–18].

Studying the dynamic patterns of biological pro-

cesses helps identify control points, modules and

sources of robustness [5]. Since patterns are visual

outcomes, they are best captured through visualiza-

tion techniques. Hence, building software tools to

depict temporal information is critical for improving

our knowledge of intrinsic dynamics of cellular

components.

Visualization in the biological sciences has played

an important role since early times, starting in the

17th century with Robert Hooke’s ‘Micrographia’,

which contained detailed drawings of microscopic

organisms. This book was one of the first to draw

attention to the fascinating world of microbiology,

and it was mainly the visualization of previously

unseen life forms that managed to attract public

interest. Since then, visualization in biology has

taken more complex forms and moved from a fully

manual (hand-drawn) to a more automated process

of representing different biological aspects, with the

help of emerging computer technology. Physics

principles brought forward the visualization of

protein structures [19], biological cycles, fluxes and

attractors [20]. With the sequencing of the first com-

plete genomes, awareness rose at the necessity to syn-

thesize huge amounts of data into comprehensible

forms, thus leading to a new revolution in data

Figure 1: Different biological time scales. Timing of processes scales with size: from the long-term evolutionary
processes at the population level, to dynamics within a single population, timing during organism and organ develop-
ment, down to cellular and subcellular processes: cell division as the final point of the cell cycle, which is orche-
strated by a large network of proteins interacting to achieve several states (shown: mitotic spindle checkpoint).
Within the network of proteins, timing does not only play a role at the level of transient interactions or complex
formation (shown: a kinesin complexed to microtubule, PDB code 2P4N), but also at the level of single molecules
(shown: dynamics simulations of kinesin motor protein, as obtained from the DSMM database [2]).
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representation [21]. Visualization is nowadays

essential to explore the vast informational space

uncovered by high-throughput technologies.

Concerning time-related visualization, methods

have long been established in other fields, such as

geography or geopolitics, where geospatial data are

integrated with temporal analysis [22]. In the biolo-

gical sciences, one of the first and most persistent

visual concepts of time, with roots in ancient

mythology, was proposed by Charles Darwin in his

seminal book ‘On the origin of species’: the tree of

life described the relationships between different

categories of living forms from an evolutionary

perspective. This visual representation is now

widely used in phylogenetic studies [23]. Besides

this, many representations of time have stemmed

from the field of mathematics, like in the case of

modelling biochemical reactions, where linear plots

are used to study dynamic properties of a system [24].

More powerful graphic tools have expanded the

visualization repertoire for temporal changes in bio-

logical processes, as we will detail in the next

sections.

Although all these efforts have contributed signifi-

cantly to our understanding of biological phenom-

ena, there are still many challenges to face. Some of

the biggest bottlenecks are the heterogeneity of the

data and the diversity of systems that can be repre-

sented and analysed [25]. Moreover, in the past few

years, there has been an increased shift in biology

from 2D to 4D-5D (spatiotemporal) network ana-

lysis [26]. Adding to the complexity is the issue of the

limits on temporal resolution: what time range is

sufficient to capture a useful understanding of pro-

cesses? Efforts have been put into tackling all these

aspects and expounding the temporal outlook in

biology. Here, we review the traditional ways of

representing time visually, as well as some of the

more recent techniques used to elucidate the intri-

cacies of the temporal dimension.

VISUALDEPICTIONSOF TIME IN
BIOLOGY
Representations of time vary greatly with the pur-

pose of these representations and the targeted users.

However, in the field of biology, one can identify

five main approaches to represent time: (i) linear

representations, (ii) heat maps, (iii) circular design,

(iv) tree-like diagrams and (v) layers, as depicted in

Figure 2. While linear representations, like line, bar

or parallel coordinate plots, confer a sense of con-

tinuity and enable point-by-point tracking of the

evolution of a variable (e.g. enzyme concentration

changes over time), heat maps serve well at compar-

ing and grouping similar factors, like genes with

similar expression profiles [27]. Circular design is

suitable for describing recurring processes, like

phases of the cell cycle or circadian rhythms, and

extends to concepts like limit cycles [28] or spiral

waves [29]. Tree diagrams (dendograms) are mostly

used in biology in phylogenetic analysis, for evolu-

tionary relationship inference [30]. Layers help dis-

tinguish processes or levels of information, in a

comparative and integrative manner, e.g. by distri-

buting network components according to their

cellular localization [31]. More complex representa-

tions, like splines, contour plots, phase space trajec-

tories or bifurcation diagrams [32, 33], build on top

of these, many of them inspired from approaches in

other fields [34].

The choice between continuous and discrete rep-

resentations of time provides both advantages and

disadvantages. While for visualization techniques,

the discrete representation is usually preferred, ani-

mations provide a way to depict continuous changes

in the data. There is a trade-off between a temporally

flat representation that can often confuse the user and

a chronological representation with successive states

visualized, where the temporal context might be lost.

Flat representations of time often exhibit a high level

of data compression into one image and possibly un-

realistic co-localization of entities that exist at differ-

ent time points. In animations, on the other hand,

transitions are sometimes hard to observe given the

short time span, and sequential time points cannot be

compared [35]. The current approaches to visualizing

time in biology often aim for a partial reconciliation

between the two modes, as described in the follow-

ing section.

TOOLS FORREPRESENTINGTIME
IN BIOLOGY
An excellent review [8] that draws the attention on

the necessity of switching from a static to a dynamic

view of biological systems details the different algo-

rithms and methods of analysing time in biology.

Visualization is always accompanied by statistical ana-

lysis, and this spans a broad spectrum of methods by

itself. Singular value decomposition (SVD), principal

component analysis (PCA) [36], self-organizing maps
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(SOMs) [37], recurrence quantification analysis

(RQA) [38], fast Fourier transform (FFT) [39],

wavelet decomposition [40] or time warping algo-

rithms [41] are some of the most widely used tools to

study different dynamic aspects. These range from

species variation studies like community develop-

ments in the gut microbiome [42] to systems pro-

cesses like cell cycle-imposed oscillations in a single

cell or a cell colony [43, 44], organ dynamics like

age-dependent heartbeat rhythms [45], genetic net-

work organization derived from expression measure-

ments [46], genome-wide effects of cellular

regulators [47] and even macromolecule properties

resulting from sequences viewed as time series [48].

While the previously mentioned methods are mostly

used to identify periodicities or help synchronize

time series data, other approaches exist to explore

more general properties of a system, like stability

and attractor dynamics, feedback loops, deterministic

and stochastic behavior [49]. We will not discuss

these in detail, because the scope of this article is

the visual rather than the statistical aspect of inter-

preting time series data.

Here, we will focus on some of the most widely

used tools that have been specifically designed with

the purpose of visually integrating the temporal

component. Table 1 in the Supplementary Material

summarizes some of the most popular ones, and

Figure 3 gives an overview of methods for repre-

senting time at different levels of (sub)cellular-,

organism- or population-wide organization. The

list is by no means exhaustive, but it tries to

focus on examples of different approaches to visu-

alization and particularly on those that have as

primary purpose the representation of the time

component.

Figure 2: Different representations of time in biology: (A) Linear representations of temporal processes: expres-
sion profiles for genes can be displayed one by one or in parallel (using a parallel coordinates representation);
(B) Heat maps cluster genes or other entities according to the similarity of their time course profiles; (C) Circular
depictions divide recurring processes like the cell cycle into phases that can be subsequently described; (D) Tree dia-
grams represent phylogenetic relationships, indicating the evolutionary distance between different organisms;
(E) Layers enable simultaneous comparison of network states at different time points.
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Figure 3: Temporal depictions of biological processes at different scales are shown, along with a selection of tools
that perform the task. (A) At the molecular level, simulations of molecular movement can be followed in an anima-
tion using Amber or as trajectory traces using Jmol (example shows MAP kinase P38, as taken from MoDEL library
[50]); (B) At the gene level, time course expression data reflecting high fat diet effects on small intestine in mouse
(dataset GDS3357 from Gene Expression Ominbus [51]) is visualized in clustered timeline plots using STEM or in

(continued)
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Time at the molecular level
For single proteins, understanding the molecular dy-

namics and conformation transitions is supported by

molecular dynamics simulation software like Amber

[56] (Figure 3A, left), Gromacs [57], CHARMM

[58], NAMD [59] or Desmond [60]. The trajectories

of the molecules can then be visualized using tools

like VMD [61], UCSF Chimera [62], Discovery

Studio Modeling Environment (developed by

Accelrys Software Inc. [63]), Sirius [64],

MacroModel [65], Yasara [66] and others. PyMOL

[67, 68] and Jmol [69] (see Figure 3A, right) can also

be used, even though it is less common. Many of

these have been extensively reviewed in [70].

Molecular dynamics simulations involve many calcu-

lations of protein state evolution based on molecular

entropy and are computationally costly. Hence, only

very short time scales (in the range of microseconds)

can be simulated and visualized [71]. The bottleneck

here is thus not the visualization itself, but the cal-

culations required to determine the amino acid pos-

itions at every time point. From the visualization

point of view, it is the area that is most developed

in biology: the tools offer impressive 3D visual de-

pictions of static and dynamic conditions of proteins,

based on advanced graphic libraries, ray tracing and

image rendering packages.

Time at the gene level
With the introduction of the microarray technology

[72], biology has taken an important step into under-

standing gene regulation under a variety of condi-

tions and a huge amount of data containing gene

expression profiles has been produced [73, 74].

RNA-Seq methods have taken this a step further,

and now genome-wide expression levels are readily

measurable [75]. Analysing time course gene

expression information is rather standardized now-

adays, heat maps being the most widely used tool

to get a comparative insight into changes in gene

expression for a certain dataset. There are, however,

notable attempts at more comprehensive visual de-

pictions of gene expression dynamics, as described

below.

Tools like STEM [76] (see Figure 3B, left) or

XMAS [77] provide linear methods to visualize

changes and correlations in gene expression patterns,

through profile reordering, functional enrichment

analysis or multiple trajectory tracking. Others, like

GATE [78] (Figure 3B, right), mimic the microarray

set-up in a grid of hexagonal cells positioned to

denote similarities in gene expression time course

profiles. Clustering, animations and network recon-

struction enhance the informational content.

Beyond gene expression measurements, recent

technology like ChIP-chip or ChIP-seq also enables

us to measure temporal variation in chromatin state,

histone marks or transcription factor and polymerase

occupancy, like in [79] or [80]. Furthermore, some

genome-wide association studies allow estimation of

time-dependent genetic effects on dynamic traits like

body weight, tumour size or drug response [81].

Quantitative trait loci affecting developmental trajec-

tories can be visualized using software like fGWAS

[82, 83], which captures genotypic differences

underlying phenotypic curves.

The main limitation in this area is creating a good

balance between the level of visualization and the

scale of the system, while at the same time integrat-

ing more information (functional, network etc.).

It is harder to understand temporal changes for

larger and more complex gene networks, so better

tools are needed especially for upcoming time-

resolved genome-wide measurements of expression.

Figure 3 Continued
an adjacent hexagon display using GATE; (C) At the network level, time course changes can be tracked using differ-
ent Cytoscape plugins, e.g. by animating colour changes in the network with VistaClara [52], drawing pie chart
slices with MultiColored Nodes [53], or using bar charts embedded in the network nodes with SpotXplore [54].
Fluxes through pathways can be simulated deterministically or stochastically and illustrated in line plots using
CellDesigner. BioLayout Express 3D simulates changes in gene expression in 3D through colour and node size in-
crease or decrease in an animation (connections represent correlations). Arena3D depicts changes at every time
point through colour and clustering on separate 3D layers, corresponding to different phenotypes (low and high
fat effects) that can be compared (connections represent correlations). The data used for these examples are the
same as in (B). (D) At the organismal level, multiple sequence alignment visualizers, like Jalview, and phylogenetic
tree builders, like iTOL, depict evolutionary distances between entities of different organisms. The example shows
such depictions for aurora kinase B orthologs in four species. In the case of iTOL, additional time course data can
be visualized in the form of discs, heat maps or animations (here we show the phases in the cell cycle where this
gene has a periodic peak of transcription, as obtained from Cyclebase [55]).
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Furthermore, better visualization approaches are

needed for studying phenotypic consequences of

combinatorial genotypic effects in a temporal

context.

Time at the network level
When it comes to representing network dynamics,

there are two approaches depending on whether one

wants to understand the changes in the system bio-

chemically or on a binary level of on–off inter-

actions. The former looks at the biochemical

reactions between system components and uses dif-

ferent mathematical algorithms to study the proper-

ties of the system. These are afterwards summarized

mostly in linear plots illustrating concentration trends

and other characteristics. Examples are CellDesigner

[84] (as shown in Figure 3C), COPASI [85, 86],

Dizzy [87], etc.

The latter approach looks at time-wise changes in

the links of the network or in the concentration

levels of the different proteins. Tools like Cytoscape

[88], VANTED [89], VisANT [90, 91], etc. visualize

expression changes directly on the graph representa-

tion of the network, using movement, colour

changes or embedding of bar charts within the meta-

node. See Figure 3C for examples that use the Vis-

taClara [52], MultiColored Nodes [53] and

SpotXplore [54] plug-ins within Cytoscape. Regard-

ing dynamics of interactions between proteins, the

only example of software that deals with this so far

(to our knowledge) is TVNViewer [92], which re-

wires the network connections at every time point.

Other tools, like BioTapestry [93], MODAM [94]

or BioLayout Express 3D [95] Figure 3C), go a step

further and partially combine the two approaches for

tracking fluxes through pathways and integrating

multi-omics data. They highlight the different

active reactions at every time point within the

network.

The main limitation at this level remains the size:

the larger the network, the harder it is to capture

temporal patterns. Another factor is the temporal

resolution, i.e. the availability of information about

timings of different processes and their duration. We

anticipate that these aspects will be better integrated

in the future by using a temporal framework that

combines different modelling techniques, from

Boolean logic to stochastic methods and beyond,

to optimally simulate different parts of the system

and then incorporate them into a common platform.

Time at the cellular level
At the cellular level, time-resolved data comes from a

wide variety of experiments, ranging from live imaging

of cellular processes or developmental stages to fMRI

scans of brain activities. Although there is specialized

software to deal with this kind of data, it mostly focuses

on image-processing techniques for extracting the data

rather than computational representations targeted at

simulation and analysis [96]. One exception would be

STSE, a set of tools that perform spatiotemporal simu-

lations based on microscopy images [97].

Until recently the only attempts at visualization of

processes in the context of the whole cell had been

done in a qualitative manner only and mostly

through animation with educational purposes, like

the BioVisions project from Harvard University in

collaboration with XVIVO [98] or the Virtual Cell

Animation Collection from NSDU [99]. We expect

a complete revolution in this area with the arrival of

the first whole-cell computational model that is able

to simulate a different range of cellular processes and

predict phenotypes upon mutations [100]. Although

this is not so much a visually driven approach, we

envision that it will trigger subsequent developments

and collaborations in the visualization area, similar to

those started with E-Cell [101], VCell [102] or

VisibleCell/Illoura [103] projects, to aid understand-

ing of whole-cell systems.

Time at the organismal level
At the organismal level, visualization of processes in

different types of cells and tissues would be desired,

but is not achievable with the current technology.

Nevertheless, physiological models of tissue anatomy

and function are often used to simulate different

processes in development, e.g. pancreatic organo-

genesis [104], or disease, e.g. tumour growth and

spreading [105]. Furthermore, gene expression data

at different time points for different tissues has been

measured and can be visualized using techniques

described in the previous sections. One tool that

goes further in the direction of simultaneously com-

paring different cellular states or different tissues is

Arena3D [106, 107] (Figure 3C). Tissues and their

respective phenotypes can be visualized on different

layers in 3D, highlighting the corresponding gene

networks for each tissue and enabling comparison

and linking between layers at every time point.

However, a better integration of the data in the

context of networks, cellular conditions, stress and

other factors is desired for a better comparison of
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tissue-level regulation. We thus expect develop-

ments in the area of integrative visualization that

would comprise these aspects.

Time at the population level
Mathematical models for population outgrowth and

interactions have been developed early on [108], but

usually the fluctuations in populations are represented

using simple line graphs that indicate the population

spread over time. A more visual approach is encoun-

tered at the level of tracking the spread of diseases in a

population, like in the suggestively titled SPREAD

software [109]. It uses a Bayesian framework for infer-

ring and visualizing phylogeographic history and

traces the spatial and temporal trajectory of diseases

throughout the globe based on given population data.

The trajectories are mapped as arcs connecting differ-

ent locations on a map and the dynamics of connec-

tions forming can be visualized in an animation.

Time at evolutionary scales
At the species level, time is implicit when talking about

evolution, even if it does not always directly appear on

one of the axis of the representation. Naturally all mul-

tiple sequence alignment or phylogeny tools (like

ClustalX [110], Jalview [111], TreeView [112],

MEGA [113], etc.) and other similar software reflect

changes or differences between organisms that are the

result of the time component [114]. Colouring of con-

served amino acids in the former case, and dendograms,

in the latter, are the classical depictions for this kind of

data. Tools like Circos [115], Vista [116] or MizBee

[117] extend this analysis to whole-genome level,

enabling tracking of genome evolution by highlighting

sequence and structural variation features or compara-

tive genomics by aligning genomes of different organ-

isms and finding conservation relationships. Besides

these, there are also tools where changes imposed by

time at a smaller scale are incorporated along with the

phylogenetic analysis. The Interactive Tree of Life

(iTOL) [118] is one example. It is a phylogeny tree

display and annotation tool that allows the user to

add different types of information about the different

organisms or strains visualized, in the form of gradients,

heatmaps, domains, pie charts and others (example

shown in Figure 3D).

To facilitate whole-genome comparison, a poten-

tial solution has been recently proposed in the form

of evolutionary barcodes [119]. Inspired from the

DNA barcodes [120], these are graphical representa-

tions of evolutionary histories at genomic scale,

pre-calculated and assigned to each human protein.

The visual representation takes the form of a heat

map where colours describe multiple statistical par-

ameters assessed for the respective protein in different

species.

Statistical tools are often incorporated to estimate

population diversity, mutation rates, ancestral se-

quences, etc. and to test different hypotheses about

the forces that shape the evolution of genes, networks,

communities and species [121, 122]. However, des-

pite the large repertoire of tools, the ability to perform

whole-genome alignments and comparisons for dif-

ferent species in a phylogenetic context is still limited

and we expect future endeavours in this direction.

OPENCHALLENGES IN VISUAL
EXPLORATIONOF BIOLOGICAL
SYSTEMS
When it comes to biological systems in the context

of visualization and information integration, most of

the tools focus on visualizing microarray data and

gene expression information, while the network

context is often neglected. More in-depth analysis

is largely missing especially in the case of metabolic

pathways, even though some software is already

available [123]. The fact that temporal variations

are present in ranges of several orders of magnitude

adds another layer of complexity [8].

The heterogeneity of biological data imposes the

challenge of tackling large datasets. Visual represen-

tations become more complex with increasing size,

noise and number of relationships to be taken into

account. Differences in the states of the system, the

scale of the system and other properties stand as proof

that handling biological data is not as straight forward

as it seems and can become quite a daunting task if a

global approach is aimed at [124]. Improving meth-

ods for data dimensionality reduction or borrowing

and extending new ones from computer science or

related fields are, in our view, the best approaches for

this. As data becomes bigger, it becomes progres-

sively harder to handle not only because of size but

also because of the increasing amount of noise. Noise

elimination and scaling down to extract essential fea-

tures of the data is therefore required in visualization:

even if we could visualize everything, there would

be too much information for efficient processing.

Connecting back to the different levels of biolo-

gical information discussed previously, we foresee

some needed changes in particular areas. At the
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genomic level, there is a serious absence of visualiza-

tion methods for changes of the data with time.

Humans accumulate more and more mutations

throughout their life, so resequencing of genetic in-

formation should be coupled with tools able to visu-

alize these changes in time and make insightful

inferences and correlations. This would be very

useful for tracking or predicting disease evolution.

At the cell level, the ideal would be to develop a

simulation tool that is able to visualize changes both

at the molecular level and in the cell morphology

upon perturbation. This would go along the lines of

recent work on whole-cell simulation resources

[100], but with greater emphasis on the visual rep-

resentation as an aid to analysis. Such a system would

enable in silico studies of mutation effects in a com-

binatorial manner, such that complex phenotypes

would be predicted at a low cost and in less time,

without the need to spend many resources in experi-

mental laboratories. Like all predictive models, this

would act as a pre-screening method before in vivo
validation of interesting targets.

We foresee a significant impact of time-related

visualization in future research, especially in over-

coming the information deluge and clarifying devel-

opmental processes and disease progression. The

strategy will likely move more towards combining

the extraction of patterns from ‘big data’ [125] with

multidimensionality and concept linking. Using in-

telligent visualization techniques can alleviate the

bottleneck of data deluge from genome-wide studies

or ‘omics’ experiments. In the context of systems

biology, visualization will serve as an integrative plat-

form for heterogeneous data, to discover individual

and system-wide changes. Most importantly, visual-

ization is and will continue to be a critical compo-

nent in filtering true biological results, leading to

better experiment design: outcomes of visualization

techniques feed back into the research framework

and help guide future analysis methods.

The ultimate goal would be to develop an inte-

grated visualization environment spanning several

biological dimensions, from micro to macro. This

system should also integrate data from different data-

bases or at least link to them, an aspect that is largely

missing in visualization of time series data but would

be very useful. This tool should be able to deal with

any type of network and provide thorough insight

into the spatiotemporal states and evolution of the

biological system under analysis, while at the same

time allowing for flexibility from the user’s side and

easy comprehension and manipulation of the struc-

tures. While rather too optimistic for the present, we

are confident that this vision is accomplishable in the

future, with the aid of sustained developments in

computer power and graphic devices.

Shaping all this into a viable user-friendly applica-

tion would not only save a lot of time and effort by

synthesizing hours of searching through different art-

icles and databases in a visually comprehensive ana-

lysis at a click of a button, but would also potentially

enable the discovery of new relationships between

proteins, hypotheses about biological functions, links

between processes and patterns in evolution.

SUPPLEMENTARYDATA
Supplementary data are available online at http://

bib.oxfordjournals.org/.

Key points

� Temporal representations in biology differ depending on the
scale and are suited to answer specific questions at that scale.

� Linear, heatmap, circular, tree-like, layered depictions and com-
binations of these are used to represent time in biology.

� An extended repertoire of visualization tools has been de-
veloped to analyse biological data at every temporal scale, from
molecular to organismal and evolutionary level, but a proper in-
tegration into one common platform for comprehensive insight
is stillmissing.

� Challenges like heterogeneity, size and noise in the data should
be overcome in the futurewith the help of improved algorithms,
simplified graphical depictions and increased computer power.
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