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Abstract

Quantitative studies of the growth of dinosaurs have made comparisons with modern ani-

mals possible. Therefore, it is meaningful to ask, if extinct dinosaurs grew faster than mod-

ern animals, e.g. birds (modern dinosaurs) and reptiles. However, past studies relied on

only a few growth models. If these models were false, what about the conclusions? This

paper fits growth data to a more comprehensive class of models, defined by the von Berta-

lanffy-Pütter (BP) differential equation. Applied to data about Tenontosaurus tilletti, Alligator

mississippiensis and the Athens Canadian Random Bred strain of Gallus gallus domesticus

the best fitting growth curves did barely differ, if they were rescaled for size and lifespan. A

difference could be discerned, if time was rescaled for the age at the inception point (maxi-

mal growth) or if the percentual growth was compared.

Introduction

Mathematical growth models aim at a simplified description of growth in terms of curves that

fit well to size-at-age data [1]. As the growth of animals depends on multiple factors, the most-

informative data came from controlled studies, e.g. for chicken [2] or for pigs [3]. By contrast,

for wildlife and wild-caught fish, there remained considerable uncertainties about the proper

choice of the growth model [4]. Dealing with extinct species the situation was even worse, as

no weighing of body mass was possible for fossils. Nevertheless (e.g. Table 1), recent

approaches led to mathematical growth models for dinosaurs [5] that have “revolutionized our

understanding of dinosaur biology” [6]. For instance, it is now consensus that dinosaurs grew

faster than modern reptiles.

However, previous growth studies relied on few models only, whence model uncertainty

may be an issue for the comparisons of growth curves of different species. (This paper com-

pares several thousand models, as outlined in Fig 1). Another issue is scaling-up. [7] defined

dimensionless mass and time ratios and concluded from a plot that the so rescaled growth data

of 13 species were close to a “universal growth curve”. Thus, aside from the different scaling,

all animals would grow in the same way. We therefore reconsider the conceptual question,

how to compare the growth of species that differ in size and life span.
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With respect to model uncertainty, this paper studies a differential Eq (1) of [8], that

includes e.g. the models of Brody [9], von Bertalanffy [10], or Verhulst [11] as special cases. In

view of its generality it allows a more accurate comparison of growth curves. Literature refers

to this model as Bertalanffy-Pütter (BP) model; c.f. [12].

m0ðtÞ ¼ p �mðtÞa � q �mðtÞb ð1Þ

Eq (1) describes growth of mass m(t) at time t and it uses five free parameters that are opti-

mized to obtain a growth curve with a best fit to given data. [13] related the non-negative expo-

nent-pair a<b to the metabolism. The non-negative constants p and q are scaling constants.

The fifth parameter is the initial condition of the differential equation that is needed to deter-

mine the function m(t); e.g. m(0) = m0, where m0 > 0 is an estimate for the hatching (or natal)

mass.

In this paper we interpret Eq (1) as a definition for a class of models; the BP-class. Thereby,

each exponent-pair defines a unique BP-model. For instance, the Verhulst-model is defined

from the exponent-pair a = 1, b = 2. Each BP-models has three free parameters (p, q and m0).

Fig 1 illustrates this approach and it indicates the exceptional character of these named models,

when compared to the range of possible models, whereby for this paper we confined the search

for the best-fit exponent-pairs to the yellow area. Richards’ model [14], and the generalized

Bertalanffy model of Pauly [15] are represented as line segments (i.e. subclasses of the class of

BP-models). Further, the model of Gompertz [16] in the following sense is a limit-case of the

BP-class: Growth-curves of the Gompertz model are limits, for (a, b)! (1, 1), of BP-growth

curves with exponents a, b [17].

Lee and Werning [18] compared the growth of Tenontosaurus tilletti with the growth of

modern Alligator mississippiensis and they concluded that dinosaurs (more specifically: igua-

nodontids) were not scaled-up lizards, as they grew much faster. We revisit this issue and seek

the best fitting BP-models for their data. These data are from [18] (Table 2) about Tenonto-
saurus tilletti (twelve data points, mass 23–1102 kg, age 1–26 years) and the data about Alliga-
tor mississippiensis (41 data points, mass 0.1–40.7 kg, age 1–42 years), which we retrieved from

a plot in [18] (using DigitizeIt of Bormisoft1).

Fig 1. Named models (blue) and part of the search-region (yellow) for the exponent-pair of the best fitting growth

model.

https://doi.org/10.1371/journal.pone.0224168.g001
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We also verified the alligator-data from the original source [19], who over a time span of

forty years captured and partly recaptured ca. 7000 alligators from Louisiana, USA. In order to

explore the limits of dinosaur growth, we used data about modern avian dinosaurs, broiler

chicken that were bred for fast growth and reared under optimal conditions. To this end we

identified the best fitting BP-model for the data from [2] (Table 1) about the Athens Canadian

Random Bred strain of Gallus gallus domesticus (28 data points, mass 0.04–2.23 kg, age 0–170

days).

Within the BP-class, model uncertainty was related to the variability of the exponents. To

this end, the paper identified the region of near-optimal exponent-pairs. The exponent-pairs

of this region could also be used to model growth without affecting the fit to the data signifi-

cantly when the other parameters were optimized. We used them to explore the model

uncertainty.

The best-fitting and the near optimal exponents were then used to compare the growth of

different species despite their different scales in size and age. In addition, a dinosaur-year had

more days, but these were shorter. As overall a year covered about the same time span as

today, we used kg and years as units; e.g. weight gains in kg/year also for chicken.

Methods

The methods are explained in detail in our preprint [20] at BioRxiv. We therefore point out

only the main issues. As was observed e.g. for chicken [2], the standard deviation of mass

becomes higher for heavier animals, whence the method of least squares may not be suitable

for data-fitting. Instead, as in [21] we minimized the sum of squared errors between the loga-

rithm of the growth function and the logarithmically transformed data (SSLE). This defined

the following function (2):

SSLEoptða; bÞ ¼ minm0;p;q
ðSSLEÞ ð2Þ

, assuming model (1) with exponents a, b. An exponent-pair was near-optimal, if its SSLEopt(a,

Table 1. Age and mass data of Tenonotosaurus tilletti from [18].

age, yr 1 2 2 7 8 8 8 10 11 12 22 26

mass, kg 23 45 61 336 389 560 646 628 306 843 964 1102

https://doi.org/10.1371/journal.pone.0224168.t001

Table 2. Parameters of the best-fitting models.

Species: chicken alligators tenontosaurs

Exponent a: 0.89 0.68 0.8

Exponent b: 0.93 0.85 0.9

Initial condition m0: 32.92 g 158.82 g 22.18 kg

Scaling parameter p: 1.0952 1.6843 6.3743

Scaling parameter q: 0.7988 0.8882 3.1769

Asymptotic mass mmax: 2.67 kg 43.12 kg 1057.5 kg

Full age tfull: 184 d 36 a 21 a

Maximal growth rate m0max (inflection point): 7.3 kg/a 1.78 kg/a 72.5 kg/a

Mass at the inflection point minfl: 890 g 11.6 kg 325.7 kg

Age at the inflection point tinfl: 61 d 9.85 a 6.37 a

Note: We used the initial condition m(tfirst) = m0, where tfirst was the first age of the data.

https://doi.org/10.1371/journal.pone.0224168.t002
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b) exceeded the least SSLE by less than 5%. We did not minimize SSLE for each exponent-pair.

Instead we considered exponent pairs of the search region (yellow area in Fig 1) on a grid (dis-

tance 0.01 in the x and y directions, respectively). Thereby, we searched 26,200 grid-points for

the chicken, 88,730 for the alligators and 42,371 for Tenontosaurus.

Results

Table 2 summarizes the model parameters that minimized SSLE. The parameters for chicken

are from [21]. In order to define dimensionless coordinates, asymptotic mass mmax was com-

puted as the limit of the growth curve m(t), when time t approaches infinity. At “full age”, tfull,
90% of the asymptotic mass were reached; we used “full age” as a proxy for “adulthood”. (Fur-

ther, we used 90% to avoid excessive extrapolations, if the asymptotic mass was larger than the

observations.) The inflection point is defined by the maximal growth rate m0max; it was attained

at age tinfl with mass minfl. In comparisons between species the maximal growth rate (i.e. m´
(tinfl)) is used as a proxy for the basal metabolic rate [22]. These parameters were all computed

from the best fitting model.

In order to compare the growth curves, they were rescaled in dimensionless coordinates.

Ideally, the dimensionless time coordinate corresponds to about the same stage of the biologi-

cal development of the considered animals. We use a linear rescaling, assuming t = 0 has the

same biological meaning for the considered animals and seeking a second point of time with

the same meaning. Fig 2 of [20] used full age tfull; i.e. mass was reported as a fraction of the

asymptotic mass (mmax) and time was expressed as a fraction of full age. In terms of these

dimensionless coordinates, the best-fitting model curves were almost equal. The rescaled data,

too, were close to these curves, except for a larger spread for tenontosaurs. Similar plots were

obtained, if instead of tfull the half-weight age was used (i.e. m(t) = mmax/2) or any other frac-

tion of the asymptotic weight (e.g. 15%). As this seemed to indicate that all animals would

grow alike, aside from rescaling, we checked also other empirically meaningful ages.

In Fig 2 we used tinfl. In terms of this rescaling, a difference between the species could be

discerned, although the rescaled growth curves remained close together: The graphical

Fig 2. Growth data and best fitting growth curves in dimensionless coordinates (mass as a fraction of mmax, time as a

fraction of tinfl) for chicken (red), alligators (green), and tenontosaurs (blue).

https://doi.org/10.1371/journal.pone.0224168.g002
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representation of the results uses red for chicken, green for alligators and blue for Tenonto-
saurus. Chicken grew faster than tenontosaurs, and these grew faster than alligators, whereby

some tenontosaurs (blue points) grew even faster than chicken and slower than alligators.

As for another comparison of the growth, in Fig 3 we compared the relative growth rates

m´(t)/m(t) using a dimensionless time scale. This graphical representation emphasized the dif-

ferences in the growth rates best: well-fed broiler chicken grew more than ten times faster than

alligators and Tenontosaurus and the latter grew somewhat faster than alligators. Fig 3 displays

this for the rescaling using tinfl. In [20] this was also observed using tfull for rescaling.

With respect to model uncertainty, Fig 4 plots the optimal and near-optimal exponent-

pairs. Despite the similarity of the data in dimensionless coordinates, the optimal exponent-

pairs were different. However, due to the larger variance of the dinosaur-data the region of

near-optimal exponents for dinosaurs was larger and it included the regions for alligators and

for chicken. Thus, judging from the perspective of extinct dinosaurs, their growth data did not

display a systematic difference to modern species, whence there was no fundamental change in

the growth pattern. The regions of near-optimal exponents displayed fuzzy boundaries and

points close to the diagonal were not connected to the regions. This was caused by the optimi-

zation strategy, aiming at a high accuracy for points next to the diagonal and at faster

Fig 3. Growth rates relative to body mass for chicken (red), alligators (green) and tenontosaurs (blue) with time as a

fraction of tinfl.

https://doi.org/10.1371/journal.pone.0224168.g003
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computations thereafter. However, despite these deficiencies the visualization of the near-opti-

mal exponents verified the optimal character of the optimal exponent-pairs.

Fig 5 used the near-optimal models to explore, how sensitive the maximal growth rate was

to the choice of a model. The growth rate is a measure that cannot be observed directly from

the data; it is derived from a growth model and depends on what model is selected. This was

demonstrated for the maximal growth rate, which varied considerably even for growth curves

Fig 4. Optimal and near-optimal exponent-pairs for chicken (triangle and red area), alligators (upside triangle and

green area) and tenontosaurs (circle and blue area). For better orientation, the exponent-pairs of three named models

are plotted (blue).

https://doi.org/10.1371/journal.pone.0224168.g004

Fig 5. Maximal growth rate, m´(tinfl), and mass at the inflection point, minfl = m(tinfl), for near-optimal growth curves

m(t) for chicken (red), alligators (green) and tenentosaurs (blue).

https://doi.org/10.1371/journal.pone.0224168.g005
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that fitted well to the data. The clouds in Fig 5 display the values of m and m´ at the inflection

point of m(t), using near-optimal growth curves. Apparently, even well-fitting growth curves

resulted in inaccurate estimates for the maximal m´. Nevertheless, regardless of the near-opti-

mal model used, m´(tinfl) for chicken was much higher than m´(tinfl) for the larger alligators,

and m´(tinfl) for dinosaurs was largest, whereas relative to body size, i.e. in terms of m´(tinfl)/m
(tinfl), chicken grew fastest.

Discussion

For the data about three species of dinosaurs from [18] only Tenontosaurus provided feasible

data. For the two other species, the plot of the near-optimal exponent-pairs (c.f. Fig 4) dis-

played large regions that almost covered the search grid. As a large region of near-optimal

exponents indicates that data may not carry enough information to differentiate between

growth models, the paper did not use them. However, in view of the inherent uncertainties of

estimating the mass of dinosaurs [6], it was surprising that one in three datasets allowed to dif-

ferentiate between the models.

Further, for all species the optimal exponent-pairs were quite remote from the exponent-

pairs for the named models which are more common in growth studies. This indicates that

BP-models provide a significantly better fit than the conventionally used models. In fish-biol-

ogy it has long been accepted that exponent-pairs (a, b) with a< 1 and b = 1 might be better

compatible with biological constraints for growth; e.g. the growth of gill surface area relative to

mass growth [16]. Recently, also exponents b< 1 were considered as biologically meaningful

[23]. In epidemiology, too, recent publications supported the use of BP-models to analyze out-

breaks of diseases, e.g. [24].

The issue of rescaling proved to be tricky. Using the “full age” to define dimensionless coor-

dinates did not allow to discern different growth patterns for different species. Using the age at

the inflection point was more satisfactory and this age may have a biological meaning

(phenomenologically, growth is fastest at this age). For the present data, this rescaling resulted

in the expected outcome: Broiler chicken grew fastest and Tenontosaurus grew faster than

modern reptiles. This pattern was confirmed under three different perspectives (Figs 2, 3 and

5). However, using a linear transformation for rescaling may be an oversimplification, as for

different species the fraction t/tinfl may correspond to different stages of their biological devel-

opment. Yet, using this linear transformation was a convenient tool to combine data and

growth curves into one plot. Further, with respect to Fig 4 the faster growth of broiler chicken

will also be observed for any nonlinear transformation of time that aims at a proper represen-

tation of biological development.

Conclusion

It is generally acknowledged that mass-at-age estimates for dinosaurs are highly uncertain. It

was therefore surprising that data for Tenontosaurus allowed for the identification of a best fit-

ting growth model within the comprehensive class of BP-models (1) with relatively low vari-

ability in the parameters (i.e. small region of the near-optimal exponent-pairs). However, data

uncertainty did not allow to conclude that Tenontosaurus would need a different exponent-

pair (model) than modern alligators or birds. On the contrary, depending on the rescaling, dis-

playing the data in dimensionless coordinates did not always show notable differences. In

order to display differences, we rescaled mass relative to the asymptotic limit (of the best fitting

model) and time relative to the age at the inflection point (age of maximal growth). Using this

rescaling, we obtained the expected results: Modern broiler chicken grew much faster than

dinosaurs or alligators and dinosaurs grew faster than alligators.
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