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ABSTRACT
Production of the translation apparatus of E. coli is carefully matched to the demand for protein synthesis
posed by a given growth condition. For example, the fraction of RNA polymerases that transcribe rRNA
and tRNA drops from 80% during rapid growth to 24% within minutes of a sudden amino acid starvation.
We recently reported in Nucleic Acids Research that the tRNA pool is more dynamically regulated than
previously thought. In addition to the regulation at the level of synthesis, we found that tRNAs are subject
to demand-based regulation at the level of their degradation. In this point-of-view article we address the
question of why this phenomenon has not previously been described. We also present data that expands
on the mechanism of tRNA degradation, and we discuss the possible implications of tRNA instability for
the ability of E. coli to cope with stresses that affect the translation process.
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Introduction

Transfer RNAs (tRNAs) are one of the most abundant cellular
species, comprising approximately 15% of total RNA in rapidly
growing Escherichia coli cells. As the critical adaptors that pair
the codons of mRNA with their cognate amino acids, tRNAs
are essential for protein synthesis and thereby for cellular
growth. In addition, tRNAs and tRNA-derived fragments also
serve regulatory roles in E. coli1,2 and other bacteria (recently
reviewed in refs. 3,4). For example, in E. coli, uncharged tRNA
at the ribosomal A-site is the signal that stimulates RelA to pro-
duce guanosine tetraphosphate (ppGpp), which initiates the
stress response to amino acid starvation.2 With such key func-
tions, tRNA levels may be expected to be tightly and dynami-
cally regulated to match the changing needs of the cell. In
support of this expectation, Kurland and colleagues measured
tRNA concentrations under different growth conditions and
found that, indeed, individual tRNA abundances vary with
growth rate, albeit modestly, in a manner that reflects the
codon frequencies in the corresponding mRNA pools.5 In addi-
tion, there is evidence that an imbalance in the levels of com-
peting charged tRNAs can compromise the fidelity of protein
synthesis.6-8

To the extent that the regulation of tRNA levels has been
described, it relies on transcriptional control of tRNA synthe-
sis.9-12 However, while transcriptional activation could rapidly
upregulate tRNA levels, transcriptional repression could not, on
its own, mediate rapid downregulation of tRNA levels, because
tRNA reportedly has a very long half-life in E. coli.13 Thus, in
order to quickly downregulate tRNA levels, existing mature
tRNAs would need to be inactivated. We recently reported in
Nucleic Acids Research that the tRNA pool is rapidly and

substantially reduced under several growth conditions that
reduce the availability of substrate for protein synthesis. This
observation gave rise to a working model, in which a tRNA
becomes substrate for degradation whenever the tRNA supply
exceeds the demand for tRNAs in protein synthesis.14 We begin
this point-of-view article by underlining the importance of care-
ful normalization of gene expression data obtained from stress
conditions that disrupt steady-state growth, which may explain
why tRNA degradation has not been described earlier.

The important choice of a standard for normalization

For experiments that aim to compare the levels of a specific
RNA species among samples of cells experiencing different
growth conditions, an appropriate method for normalization of
the raw data must be carefully chosen. In the case of northern
blot experiments, it is custom to report the signal from the
probe that hybridizes to the RNA of interest relative to the sig-
nal in the same lane from RNA expressed from a reference
gene, often referred to as a “household” gene. Typical reference
choices for northern blot, or quantitative PCR techniques
mutatis mutandis, include a ribosomal RNA (rRNA) or another
RNA (rssA,15 idnT,16 cysG16) which is not expected to vary in
cellular level from sample to sample. However, amino acid
starvation triggers a major re-orchestration of the genome-wide
transcription pattern9,17,18 which results in a change in the cel-
lular concentration of most RNA species shortly after the onset
of starvation (refs. 18-20 and our manuscript in preparation).
Therefore, there is no endogenous reference transcript which is
known to be suitable for comparing the cellular levels of tRNA
(or any other RNA species) during amino acid starvation to
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the levels during steady-state growth. An alternative approach
is to report the signal from the RNA of interest relative to the
total amount of RNA loaded in the same lane. Similarly, for
quantification of RNA-seq data, reporting the reads mapping
to the gene of interest relative to the total mapped reads per
sample is a common approach. This method of normalization
is only reasonable if the total RNA content per cell is constant
across the tested conditions. For experiments such as ours that
are specifically designed to investigate whether the amounts of
a major component of total RNA differ upon the change in
growth conditions, this option is naturally not justifiable.

To circumvent these issues, we make use of spike-in cells
from a separate culture, which is added to the experimental
samples prior to RNA extraction.14,21 By quantifying a refer-
ence RNA that is highly expressed in the spike-in cells and
either absent or present at very low levels in the experimental
samples, it is possible to obtain accurate normalization by add-
ing only a small aliquot of spike-in cells to the experimental
samples. We typically add 1–5% spike-in cells to each sample
(based on optical density), and load a control sample contain-
ing only spike-in cells to quantify the contribution of the spike-
in cells to the signal from the RNA of interest.21 The spike-in-
cell approach has the clear advantage that no assumptions
about constancy of the levels of the reference RNA across the
tested conditions are necessary, because the spike-in cells are
added after harvest of the experimental samples. Addition of
the spike-in cells prior to RNA extraction (as opposed to the
addition of purified spike-in transcripts after RNA purification)
ensures that the reference RNA also reflects any sample-to-
sample variation in RNA recovery. Using the spike-in-cell
approach, we showed that the majority of cellular tRNA is
degraded within twenty minutes of the onset of a sudden amino
acid starvation.14

Recently, we have also applied the spike-in-cell approach to
quantify the kinetics of the transcriptome-wide changes that
occur in response to amino acid starvation (manuscript in
preparation). Importantly, we find that all three species of
rRNA (5S, 16S and 23S rRNA) decrease within minutes of the
onset of starvation, albeit more modestly than the tRNAs
(rRNA was reduced »2-fold one hour into starvation, data not
shown). It has been known for a long time that rRNA becomes
unstable upon starvation,22 and the degradation pathway has
been described by the group of M. P. Deutscher,23-25 but to our
knowledge, the rapid onset of rRNA degradation has not previ-
ously been reported. Since tRNA and rRNA together make up
more than 95% of the total RNA,26,27 this finding highlights
why normalizing to total RNA (or total reads in the case of
RNA-seq) cannot be recommended for this type of experiment.
Without calling attention to specific articles, we remark that
this new insight warrants a revisitation of previous work, in
which data was interpreted under the assumption of relatively
constant cellular levels of tRNA, rRNA or total RNA under dif-
ferent growth-compromising conditions.

A demand-based model for tRNA degradation

In the very beginning of a sudden amino acid starvation, trans-
lation is directly limited by the availability of the cognate
charged tRNA. Later, when the ppGpp concentration begins to

drop, translation is limited by the availability of mRNA sub-
strate.28,29 We found that reduced mRNA availability, induced
by treatment with rifampicin, which does not evoke the strin-
gent response, also led to rapid tRNA degradation. This finding,
together with the finding that the kinetics of tRNA decay upon
amino acid starvation are similar in wild-type E. coli and a relA
mutant, suggests that tRNA instability is not a unique conse-
quence of the stringent response, but may occur as a general
response to stresses that reduce translation.14 The argument is
supported by a recent report of extensive tRNA degradation
during oxidative stress,30 which causes stalling of ribosomes at
8-oxoG residues in the mRNA31 and thereby also limits the
pool of functionally intact mRNA available for translation.
Since the capacity to synthesize new protein is severely reduced
during amino acid starvation, a tRNA-degradation mechanism
that depends on synthesis of new protein may not be feasible.
Consistently, we found that global tRNA degradation occurs
even in cultures that are pre-treated with chloramphenicol,
revealing that a large capacity for tRNA degradation exists,
which does not require de novo protein synthesis.14 The sim-
plest model to explain these observations is that there is no
molecular signal per se that triggers tRNA degradation. Instead,
we propose a demand-based model for tRNA degradation, in
which tRNAs are protected from degradation when they are
occupied by binding to members of the translational machinery
(the aminoacyl-tRNA-synthetases, elongation factor Tu, and
the ribosomes), but they become accessible for degradation
once they are not engaged in charging and translation. This
model is in essence the same scenario as suggested by M.P.
Deutscher for rRNA degradation,23 the major difference being
that the degradation pathway for tRNA during starvation is
undescribed.

Effectors of tRNA degradation

The recent studies mentioned above14,30 suggest that tRNA
degradation could play an important, but hitherto overlooked,
role in the bacterial stress response to amino acid starvation as
well as other stresses that affect the availability of substrates for
translation. Many questions about the process and the impor-
tance of tRNA degradation during stress conditions remain to
be answered. The implications of tRNA degradation for bacte-
rial fitness and survival during stress, and the pathway for
tRNA degradation are among the most fundamental questions.
We are particularly pursuing the latter answer, because we
expect that knowledge about the pathway of tRNA degradation
can be applied to guide the construction of a mutant that is
impaired in tRNA degradation, thereby facilitating the investi-
gation of the effects of tRNA degradation on bacterial fitness
and stress survival.

Given the demand-based working model described above,
we assume that one or more “household” ribonucleases
(RNases) are responsible for tRNA degradation during amino
acid starvation, maybe aided by a factor that stimulates ribonu-
cleolytic attack on the tRNA either by modification of the
tRNA substrate or by up-regulation of RNase activity. The
E. coli genome encodes more than 20 ribonucleases, including a
number that participate in the processing of precursor tran-
scripts to generate mature tRNAs, such as RNase E, RNase P,
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RNase PH and RNase T (reviewed in refs. 32,33). However,
mature functional tRNAs are normally not considered sub-
strates for any of the cytoplasmic RNases, due to the protective
qualities of their compact tertiary structure, their aminoacy-
lated 30-ends, and their associations with cellular protein part-
ners (reviewed in refs. 34,35). The exception to this rule is
RNase I, a nonspecific endoribonuclease that is confined to the
periplasm.36,37 Upon treatment with agents that damage the
cell membrane, RNase I is known to cause massive degradation
of cellular RNA, including tRNA.38-40 As pointed out by M. P.
Deutscher,34 however, uncontrolled release of active RNase I
into the cytoplasm would effectively kill the cell. We have
observed that cell survival is unaffected for more than three
hours after the sudden onset of amino acid starvation.14 There-
fore, we favor the model that tRNA becomes a substrate for
one or more of the cytoplasmic RNases upon amino starvation
either due to a starvation-induced alteration of the tRNAs that
make them more accessible, or simply due to the increased pro-
portion of tRNAs that lose the protection from their protein
partners as a consequence of reduced protein synthesis activity
during starvation. In the following sections, we show the results
of a set of experiments designed to test whether either of two
likely candidates, poly(A) polymerase and RNase E, could be
the rate-limiting enzyme involved in tRNA degradation.

Poly(A) polymerase I

One modification that could target tRNAs for degradation is
polyadenylation. Poly(A) polymerase I (PAP I) is the primary
enzyme in E. coli that catalyzes the formation of 30-poly(A) tails
on mature RNA transcripts or degradation products, often
formed by RNase E, in which strong secondary structures
reduce the accessibility of exonucleases at the 30-end.41 Exten-
sion with poly(A) forms a loading platform that facilitates
30-end processing and degradation of such molecules by 30-exo-
nucleases.42,43 It has been shown that polyadenylation occurs
prior to the degradation of misfolded tRNA44 and unprocessed
tRNA precursors.45,46 To assess whether PAP I is necessary for
the general tRNA decay in the early response to amino acid
starvation, we measured tRNA levels in a rphC derivative of
MG1655 and the isogenic DpcnB strain, using the method
described previously.14,21 Fig. 1 shows that all measured tRNA
half-lives during starvation for isoleucine were unaffected by the
absence of PAP I. Thus, the degradation of mature, functional
tRNA seems to occur independently of PAP I activity. We
remark that the polynucleotide phosphorylase (PNPase), mainly
known for its exonuclease activity, can also generate heteropoly-
meric tails in vivo, and is responsible for the residual polyadeny-
lation observed in a pcnB mutant.47 Therefore, we cannot
exclude that polyadenylation plays a role in tRNA degradation.

Ribonuclease E

RNase E is considered the rate-limiting enzyme for the degra-
dation of many mRNAs48 and for rRNA decay during carbon
starvation and quality control.24 It is also a major endoribonu-
clease in tRNA49 and rRNA50 maturation. Furthermore, RNase
E is a core member of the degradosome which is a multiprotein
complex involved in RNA degradation48 assembled on RNase

E through PNPase, RhlB, and enolase binding to the C-terminal
half of RNase E.51-53 The degradosome is effective in structured
RNA decay from duplex unwinding by the helicase RhIB.54 For
these reasons, we investigated whether RNase E may be
involved in tRNA degradation after amino acid starvation.

Since RNase E function is essential for E. coli, we employed
two different experimental designs to evaluate the effects of
RNase E on tRNA half-life. In one setup we employed the tem-
perature-sensitive allele rne-3071 from strain EM1277.55 The
timing of the shift to the non-permissive temperature relative
to the induction of starvation was an important consideration
for this experiment, because the activation of one stress
response may alter the cellular response to a second stressor.
Namely, cells experiencing a heat shock at the time of amino
acid deprivation might alter their response to amino acid star-
vation and consequently reduce or increase the degree of tRNA
decay. In the experiment shown in Fig. 2, the temperature was
shifted from 30�C to 43�C five minutes after induction of
amino acid starvation. These results revealed that tRNA is
effectively degraded under these conditions both in the wild-
type and the isogenic rne-3071 strain. Another experiment was
conducted with the same strains where the temperature shift
was introduced five minutes prior to amino acid starvation to
ensure RNase E inactivation at the onset of starvation (data not
shown). Again, the two strains behaved similarly, indicating
that tRNA turnover is not affected by inactivation of RNase E.

In a parallel approach, we avoided the temperature shift
altogether by instead inhibiting RNase E via expression of the
phage protein Dip/GP37, which binds RNase E and reduces its

Figure 1. PAP I is not required for tRNA degradation at the onset of amino acid star-
vation. Transfer RNA counts quantified from a northern blot as described in ref. 14,
21. In brief, cultures of MG1655 rphC DpcnB::cat-sacB (PcnB) and MG1655 rphC (WT)
were grown in MOPS minimal media98 supplemented with 0.2% glucose for at least
ten generations in exponential phase prior to isoleucine starvation, which was
induced by the addition of 400 mg/ml valine.99 At the indicated time points, aliquots
of the cultures were harvested into 10% trichloroacetic acid before suspension on
ice.100 Spike-in E. coli cells over-expressing the seleno-cysteine tRNA (tRNAsec) were
added to constitute 5% of each sample based on OD436 units. RNA was extracted
with cold phenol.101 Northern blots were performed on 6% polyacrylamide gels, and
probed for tRNAsec, tRNAargVYZQ, tRNAaspTUV, tRNAgltTUVW. Spike-in-normalized counts
are shown relative to the average of three measurements from steady state growth
(shown at 0 minutes), which is set to unity. The generation times in steady state
were 57 min for DpcnB and 52 min for the isogenic wild type. The experiment was
repeated two times with similar results.
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affinity for RNA.56 Induction of plasmid-encoded dip, or a non-
functional variant of dip (GP37_C_his), for one hour prior to
amino acid starvation did not result in any inhibition of tRNA
turnover (data not shown).

In summary, two key enzymes in bacterial RNA metabolism,
poly(A) polymerase and RNase E, are here both ruled out as
being the rate-limiting enzyme for tRNA degradation during
amino acid starvation. Importantly, we remark that it may not
be possible to substantially impair tRNA degradation with a
single mutation, since many of the RNases in E. coli possess
overlapping activities.33,57

Why degrade tRNA?

E. coli has adapted to live a feast-or-famine existence where
nutrients are sometimes plentiful and other times limited, and
the durations of individual starvation periods are variable.
Nutrient limitation triggers alterations in the activity and pro-
moter preferences of RNA polymerase, and major changes in
the cell’s gene expression program prime the cell for mainte-
nance and survival rather than growth.58 Several starvation-reg-
ulated factors can directly influence transcription by RNA
polymerase, including the alarmone ppGpp (binding at the
b0-v and the b0-DksA interfaces of RNA polymerase),59,60 the
small RNA 6S (binding the s70-RNA polymerase holoen-
zyme)61,62 and a number of protein factors (DksA,63 alternative
sigma factors,64 and anti-sigma factors65) (reviewed in ref. 66).
The specific nature of the starvation (i.e., the type of nutrient
that has become limiting for growth) and the time spent under
nutrient limiting conditions affect the accumulation of these
modulators of transcription, presumably allowing cells to target
their stress response to best compensate for the shortage of par-
ticular metabolites.58,67-70 Similarly, we reckon that tRNA deg-
radation may only be beneficial during exposure to a subset of
the possible stressors a bacterium may encounter. In our
study14 (as in most other studies on the stringent response,

reviewed in refs. 71,72) we have used auxotrophic mutants to
introduce and maintain amino acid starvation. This has been
convenient and necessary for describing molecular processes
and dissecting regulatory pathways. However, such experi-
ments most likely represent an unnatural situation. First,
because an amino acid auxotroph E. coli cell would most likely
quickly be outcompeted in a natural environment where amino
acids are scarce,73 and second because, in a prototrophic E. coli
cell, amino acid starvation stress is expected to be a transient
phenomenon that is generally resolved once the enzymes nec-
essary for biosynthesis of the relevant amino acid(s) have been
produced. It would therefore be of great relevance to test the
effects of tRNA degradation on bacterial fitness and survival in
prototrophic strains exposed to transient amino acid starvation,
or even better, on environmental E. coli isolates growing in sur-
roundings that mimic their natural environment.

In the following discussion of the possible effects of tRNA
degradation as a stress response, we will concentrate on the
well-studied response to amino acid starvation in E. coli K-12.
In this case, the stringent response is initiated by ppGpp-signal-
ling, which causes a dramatic reduction in rRNA and tRNA
synthesis within minutes.74-77 This initial response is followed
by down-regulation of many growth-related genes and up-reg-
ulation of the general stress response genes by sS-bound RNA
polymerase.18,19

tRNAs and translation accuracy

Given that tRNA synthesis is already strongly reduced in the
amino-acid-starved cell, is it likely that degradation of existing
tRNA provides any additional benefits? The extensive break-
down of rRNA that is observed on the time-scale of hours to
days of starvation for carbon,78 phosphate,13,79 or nitrogen80 is
understood as a survival strategy, where the building blocks of
the ribosomes are released to provide nutrients for mainte-
nance and biosynthesis in the stressed cells.22 A similar argu-
ment can be made for the breakdown of tRNA. Additionally,
tRNA degradation may be beneficial for the amino-acid-starved
cell because it contributes to optimizing protein synthesis dur-
ing starvation. One well documented consequence of amino
acid starvation is an increase in the rate at which erroneous
amino acids are inserted into the nascent polypeptides.
Depending on the severity of the starvation, the error rate may
increase by an order of magnitude in stringent cells, and two
orders of magnitude in relaxed (relA¡) cells.7,81 The increased
error rate occurs mainly because competing near-cognate
tRNAs get access to deliver their amino acids to ribosomes
stalled at the “hungry” codons, due to a shortage of cognate
tRNA charged with the amino acid starved for.7,8,81 We con-
sider it highly plausible that degradation of the vacant tRNA
pool is important for reducing the translational error-frequency
because it would reduce the amount of competing near-cognate
charged tRNA. The reduction in tRNA levels upon amino acid
starvation is a combined effect of the ppGpp-mediated halt in
tRNA synthesis and the degradation of already existing tRNA
molecules. Which is more important? A conclusive answer
requires the experimental comparison of mutants impaired in
one or the other pathway. However, at this point it is clear that
degradation can overwhelm increased synthesis because tRNA

Figure 2. tRNA degradation at the onset of amino acid starvation occurs with simi-
lar kinetics in rneTS and WT strains at the nonpermissive temperature. Transfer
RNA counts were quantified from a northern blot as described for Fig. 1, except
that MG1655 rphC rne-3071 zce-726::Tn10 (rneTS) and MG1655 rphC zce-726::
Tn10 (WT) were grown at 30�C and shifted to 43�C five minutes after the induction
of starvation. The generation times in steady state at 30�C were 75 min for rneTS

and 80 min for WT.
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levels initially drop several fold upon amino acid starvation
even in a relA¡ mutant,14 which actually increases the rate of
tRNA synthesis upon amino acid starvation, rather than
decreasing it.9,82 Therefore, E. coli possesses a very large capac-
ity for tRNA degradation. The most prominent phenotype of a
relA¡ strain is the elevated level of mistranslation during amino
acid starvation,83 and we would anticipate that this rate would
increase even further if the levels of competing near-cognate
tRNAs were not reduced by degradation.

Substrates for translation under nutrient limitation

Another feature of translation that appears important for bacte-
rial growth physiology is the maintenance of an appropriate
translation elongation rate.84-87 A recent publication from the
laboratories of T. Hwa and collaborators shows convincingly
that the translation elongation rate is kept remarkably constant
over a wide range of growth rates, and drops less than two-fold
in E. coli (from 16 aa s¡1 to 9 aa s¡1) when the steady-state gen-
eration time is increased by 60 fold (from 20 min to 20
hours).88 The authors present compelling evidence that the
maintenance of a high translation elongation rate is enabled by
a reduction in the fraction of actively translating ribosomes
during slow growth.88 Ribosomal inactivation is attributed to
factors such as ribosome modulation factor (RMF), ribosome-
associated inhibitor A (RaiA), and ribosomal silencing factor
(RsfA), which are induced by the elevated level of ppGpp pres-
ent during slow growth.89-91 T. Hwa and collaborators88 argue
that ribosomal inactivation occurs without a concomitant
decrease in the concentration of available ternary complexes
(comprising aminoacylated tRNA, elongation factor TU and
GTP), which would ensure the maintenance of a reasonable
translation elongation rate. There is an apparent conflict
between the latter argument and our demand-based model of
tRNA degradation. As a first approximation, we would predict
that inactivation of a fraction of the total ribosomes would leave
behind unprotected tRNAs, which would be targets for degra-
dation, resulting in a concurrent decrease in the concentration
of ternary complexes. However, existing data suggests the con-
trary, namely that if anything, there are more tRNAs per ribo-
some at the very slow growth rates (<0.4 doublings h¡1) where
a large fraction of the ribosomes are inactivated than at higher
growth rates (ref. 92 and references within ref. 93). We hypoth-
esize that the resolution of this apparent conflict lies in the real-
ization that tRNA would not only be protected by active
ribosomes, but most likely, to some degree, also by its other
protein interaction partners, in particular elongation factor Tu.
In support of this hypothesis, the number of EF-Tu’s per ribo-
some were shown to increase from »6 during rapid growth to
»9 at very slow growth rates, thereby reaching a 1:1 stoichiom-
etry with tRNA (ref. 93 and references therein). As we have
demonstrated, a sudden amino acid starvation causes a sub-
stantial drop in tRNA concentrations,14 and this situation dif-
fers from the growth at very low growth rates where a steady
state has been reached over generations. During the stress
induced by sudden starvation, maintenance of an appropriate
translation elongation rate seems particularly important
because the protein synthesis capacity is low and the need for
synthesis of proteins with functions that can help the cell

overcome the starvation period is high.94,95 In this case, the
overall translation elongation rate must be limited mainly by
the concentration of the particular ternary complex that con-
tains tRNA charged with the amino acid starved for. Degrada-
tion of the unemployed tRNAs could therefore increase the
accuracy of protein translation without negatively affecting the
translation elongation rate, thus optimising the quality of the
protein products.

Concluding remarks

In our point of view, a demand-based model of tRNA degrada-
tion, in which the tRNAs that are engaged with components of
the translational apparatus are generally protected, whereas
surplus tRNAs are continually subject to degradation, provides
a satisfactory explanation for how quality in protein synthesis
is ensured during amino acid starvation. Thus, we propose that
the levels of components of the translational apparatus are not
only co-regulated at the level of their synthesis,5,9,93,96,97 but
that the level of actively translating ribosomes indirectly regu-
lates the tRNA pool, via degradation of the unengaged tRNAs.
Importantly, to maintain a reasonable translation elongation
rate even at very low concentrations of active ribosomes, we
propose that their association with other protein factors, in
particular the abundant elongation factor Tu, would protect a
sizable fraction of the tRNA and thereby set a lower bound on
the cellular concentration of ternary complexes.

The predicted beneficial effect of tRNA degradation on the
quality of protein synthesis during starvation, and therefore on
the bacteria’s ability to cope with starvation stress, needs to be
addressed experimentally. The identification of a mutant of
E. coli that shows impaired or abolished tRNA degradation
activity could greatly facilitate these efforts, and is an area of
active investigation in our laboratory. Given the pleiotropic
phenotypes of many RNase mutants, however, it will likely be
very challenging to identify a tRNA-degradation-deficient
mutant, which isn’t also defective in other ribonucleolytic
events, such as rRNA and tRNA maturation or mRNA decay.

We speculate that the demand-based model for tRNA stability
can also be extended to other growth conditions, including rapid
steady-state growth, where it could serve to dynamically fine-tune
the supply of tRNA to the demand in protein synthesis. To this
end, measurements of tRNA stability during other growth condi-
tions, using appropriate normalization, are pertinent. Experiments
designed tomore directly test features of the demand-basedmodel
should also be carried out. For example, tRNA stability would be
predicted to increase in experiments where the protein synthesis
activity is artificially increased during amino acid starvation.
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