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With modern technologies such as microarray, deep sequencing, and liquid chromatography-mass spectrometry (LC-MS), it is
possible to measure the expression levels of thousands of genes/proteins simultaneously to unravel important biological processes.
A very first step towards elucidating hidden patterns and understanding themassive data is the application of clustering techniques.
Nonlinear relations, which were mostly unutilized in contrast to linear correlations, are prevalent in high-throughput data. In
many cases, nonlinear relations can model the biological relationship more precisely and reflect critical patterns in the biological
systems. Using the general dependency measure, Distance Based on Conditional Ordered List (DCOL) that we introduced before,
we designed the nonlinear𝐾-profiles clustering method, which can be seen as the nonlinear counterpart of the𝐾-means clustering
algorithm.Themethod has a built-in statistical testing procedure that ensures genes not belonging to any cluster do not impact the
estimation of cluster profiles. Results from extensive simulation studies showed that 𝐾-profiles clustering not only outperformed
traditional linear 𝐾-means algorithm, but also presented significantly better performance over our previous General Dependency
Hierarchical Clustering (GDHC) algorithm.We further analyzed a gene expression dataset, onwhich𝐾-profile clustering generated
biologically meaningful results.

1. Introduction

In recent years, large amounts of high dimensional data
have been generated from high-throughput expression tech-
niques, such as gene expression data using microarray or
deep sequencing [1], and metabolomics and proteomics data
using liquid chromatography-mass spectrometry (LC-MS)
[2]. Mining the hidden patterns inside these data leads to
an enhanced understanding of functional genomics, gene
regulatory networks, and so forth [3, 4]. However, the com-
plexity of biological networks and the huge number of genes
pose great challenges to analyze the big mass of data [5, 6].
Clustering techniques has usually been applied as a first step
in the data mining process to analyze hidden structures and
reveal interesting patterns in the data [7].

Clustering algorithms have been studied extensively in
the last three decades, with many traditional clustering tech-
niques successfully applied or adapted to gene expression
data, which led to the discovery of biologically relevant
groups of genes or samples [6]. Traditional clustering algo-
rithms usually process data on the full feature space while
emerging attention has been paid to subspace clustering. Tra-
ditional clustering algorithms, such as𝐾-means and expecta-
tion maximization (EM) based algorithms, mostly use linear
associations or geometric proximity to measure the sim-
ilarity/distance between data points [8].

When applying traditional clustering algorithms to the
domain of bioinformatics, additional challenges are faced due
to prevalent existence of nonlinear correlations in the high
dimensional space [9]. However, nonlinear correlations are
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largely untouched in contrast to the relative mature literature
of clustering using linear correlations [5, 10–12]. There are
several factors making nonlinear clustering difficult. First, a
pair of nonlinearly associated data points may not be close to
each other in high-dimensional space. Second, it is difficult to
effectively define a cluster profile (i.e., the “center” of a cluster)
to summarize a cluster given the existence of nonlinear
associations. Third, compared to measures that detect linear
correlations, nonlinear association measures lose statistical
power more quickly with the increase of random additive
noise. Fourth, given the high dimensions, computationally
expensive methods, for example, principal curves [13, 14], are
hard to be adopted even though they can model nonlinear
relationships.

In this paper, we try to address these problems by
developing a clustering method that can group data points
with both linear and nonlinear associations. We name this
method “𝐾-profiles clustering.” Our method is based on
the previously described nonlinear measure: the Distance
Based on Conditional Ordered List (DCOL) [15, 16]. The key
concept is to use data point orders in the sample space as the
cluster profile. We have previously described a hierarchical
clustering scheme named General Dependency Hierarchical
Clustering (GDHC). However the computation of GDHC
is very intensive. The new 𝐾-profiles clustering method is
much more efficient, representing a ∼20-fold reduction in
computing time. Conceptually, it is the nonlinear counter-
part of the popular 𝐾-means clustering method, while the
existingGDHC is the nonlinear counterpart of the traditional
hierarchical clusteringmethod. Another key advantage of the
𝐾-profiles clustering method is that, by building statistical
inference into the iterations, noise genes that do not belong
to any cluster will not interfere with the cluster profile
estimation, and they are naturally left out of the final results.

2. Methods

2.1. Distance Based on Conditional Ordered List (DCOL). We
first consider the definition of Distance Based onConditional
Ordered List (DCOL) in two-dimensional space. Given two
random variables𝑋 and𝑌 and the corresponding data points
{(𝑥
𝑖
, 𝑦
𝑖
)}
𝑖=1,...,𝑛

, after sorting the points on 𝑥-axis to obtain
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the DCOL is defined as
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1

(𝑛 − 1)

𝑛

∑

𝑖=2

󵄨󵄨󵄨󵄨𝑦𝑖 − 𝑦
𝑖−1

󵄨󵄨󵄨󵄨 . (2)

Intuitively, when 𝑌 is less spread in the order sorted on 𝑋,
𝑑col(𝑌 | 𝑋) is small. We can use 𝑑col(𝑌 | 𝑋) to measure the
spread of conditional distribution 𝑌 | 𝑋 in a nonparametric
manner [16].

The statistical inference on 𝑑col(𝑌 | 𝑋) can be conducted
using a permutation test. Under the null hypothesis that 𝑋
and 𝑌 are independent of each other, the ordering of the data
points based on 𝑋 is simply a random reordering of 𝑌. Thus
we can randomly permute {(𝑦

𝑖
)}
𝑖=1,...,𝑛

𝐵 times and calculate

the sum of distances between adjacent 𝑌 values in each per-
mutation.Then we can find the mean and standard deviation
from the 𝐵 values sampled from the null distribution. The
actual 𝑑col(𝑌 | 𝑋) can then be compared to the estimated
null distribution to obtain the 𝑝 value. Notice this process
does not depend on 𝑋. The permutation can be done once
for 𝑌 and the resulting null distribution parameters apply to
any𝑋, which greatly saves computing time.

2.2. Defining a Cluster Profile and Generalizing DCOL to
HigherDimensions. LetU be a𝑝-dimensional randomvector
(𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑝
), where each 𝑋

𝑖
is a random variable; then

an instance of random vector U can be seen as a point in the
𝑝-dimensional space. Assuming instances of random vector
U are sorted in the 𝑝-dimensional space, then 𝑑col(𝑌 | U)

can be computed according to (2) for any random variable 𝑌.
Therefore, the key problem is to define the order of a series of
𝑝-dimensional points.

When𝑋 is one-dimensional, we can easily prove that a list
of numbers (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
) is sorted if and only if ∑𝑛

𝑖=2
|𝑥
𝑖
−

𝑥
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| isminimized.We generalize this to𝑝-dimensional space
and define instances (u

1
, u
2
, . . . , u

𝑛
) as sorted if and only if the

sum of distances between the adjacent 𝑝-dimensional points
is minimized. Sorting the points is equivalent to finding
the shortest Hamiltonian path through the 𝑛 points in 𝑝

dimensions, the solution of which is linked to the Traveling
SalesmanProblem (TSP) [17].Manymethods exist for solving
the TSP [17].

If we consider the 𝑝 random variables as 𝑝 genes, we have
effectively defined a profile for the cluster made of these 𝑝

genes. Using this profile, we can compute the 𝑑col(𝑌 | U) for
any gene 𝑌 and determine if the gene is close to this cluster,
which serves as the foundation of the𝐾-profile algorithm.

2.3. The 𝐾-Profiles Algorithm. In this section, we outline
the DCOL-based nonlinear 𝐾-profiles clustering algorithm.
First, we define the gene expression data matrix 𝐺

𝑝×𝑛
, where

𝑛 samples are measured for 𝑝 genes and each cell 𝑔
𝑖𝑗
is the

measured expression level of gene 𝑖 on sample 𝑗. Each row
represents the expression pattern of a genewhile each column
represents the expression profile of a specified sample.

The 𝐾-profiles clustering process is analogous to the
traditional 𝐾-means algorithm overall. However there are
two key differences: (1) Different from the 𝐾-means cluster-
ing algorithm, we use the data point ordering (Hamiltonian
path) as the cluster profile rather than the mean vector
of all data points belonging to this cluster; (2) during the
iterations, the association of each point to its closest cluster
is judged for statistical significance. Points that are not
significantly associated with any cluster cannot contribute to
the estimation of the cluster’s profile.

Due to the random initialization of clusters, we use a
loose 𝑝 value cutoff at the beginning and decrease it iteration
by iteration as the updated cluster profiles become more
stable and reflect the authentic clusters more reliably as the
clustering process progresses.

(a) To start, we compute the null distribution of DCOL
distances for each gene (row) and obtain two parame-
ters, mean 𝜇

𝑖
and standard deviation 𝜎

𝑖
, for each gene
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Figure 1: Illustration of the four functions used in simulations.

simultaneously by permuting columns of the matrix
500 times. The gene-specific null distribution param-
eters are used to compute the 𝑝 values of the DCOL
whenever assigning a gene to the closest cluster.

(b) Initialize 𝐾 clusters by generating 𝐾 random orders
as cluster profiles; set 𝑝 value cutoff to upper bound.

(c) For each row vector, compute its DCOL distance to
each cluster according to corresponding cluster pro-
file𝑑col(𝑋𝑖 | U𝑘), where𝑋𝑖 is the 𝑖th gene andU𝑘 is the
𝑘th cluster. Assign it to the closest cluster if the DCOL
is statistically significant in terms of 𝑝 value. In this
step, we are implicitly computing𝐾 𝑝 values for each
gene and taking theminimum.Thuswe need to adjust
the 𝑝 value cutoff to address the multiple testing
issue. We assume each cluster profile is independent
of the others.Then it follows that, for each gene, the𝐾

𝑝 values are independent. Under the null hypothesis
that the gene is not associated with any of the clusters,
all the 𝑝 values are i.i.d. samples from the standard
uniform distribution. Thus the nominal 𝑝 value
cutoff 𝜋 is transformed to 𝜋

󸀠
= 1 − (1 − 𝜋)

1/𝐾.
(d) When all gene vectors have been assigned, recalculate

the profile of each cluster using a TSP solver.
(e) Repeat steps (c) and (d) until the cluster profiles no

longer change or the maximum iteration is reached.
We start with a loose 𝑝 value cutoff. In each iteration
we reduce the 𝑝 value cutoff by a small amount, until
the target 𝑝 value cutoff is reached.

The above procedure is conditioned on a given 𝐾, the
number of clusters. We used gap statistics for determination
of 𝐾. Other options such as prediction strength or finding
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Figure 2: Simulation results with nonlinear data.

the elbow of the variance-cluster number plot are also
available. Here we replace the sum of variances by the sum
of negative log𝑝 values.

2.4. Simulation Study. Wegenerated simulation datasets with
100 samples (columns) and𝑀 gene clusters, each containing
100 genes (rows). Another 100 pure noise genes were added
to the data. 𝑀 was set to 10 or 20 in separate simulation
scenarios. Within each cluster, we set the genes (rows) to be
either linearly or nonlinearly correlated using different link
functions, including (1) linear, (2) sine curve, (3) box wave,
and (4) absolute value (Figure 1).

Clusters were generated separately using three different
mechanisms, namely, (1) the hidden factor data generation
approach, (2) 1-dependent approach, and (3) 2-dependent
approach.

In the hidden factor approach, for each cluster, we first
generated the expression levels of a single controlling factor 𝑧
by sampling the standard normal distribution. Then for each
gene, a functionwas randomly drawn from the four functions
mentioned above (Figure 1). The gene was generated as the
function of the hidden controlling factor plus certain level of
noise from the normal distribution: 𝑥(new) = 𝑓(𝑧) + 𝜀.

In the 1-dependent approach, the expressions of genes
in a cluster were generated sequentially. The first gene was
generated by sampling the standard normal distribution.
From the second gene on, we first randomly chose one
gene that was already generated and randomly chose one
function from the four available functions (Figure 1).We then
generated the new gene as the function of the previously
generated gene: 𝑥(new) = 𝑓(𝑥

(selected)
). After the expression

of all genes in a cluster was generated, certain level of noise
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Figure 3: An example of confusionmatrices shown as images. Cleaner pictures indicate better agreement between true clusters and clustering
results. The left-most column of each subplot represents the pure noise gene group. (a) 𝐾-profiles clustering result. (b) GDHC result. (c) 𝐾-
means result.

was generated from the normal distribution and added to the
gene expression profiles.

The 2-dependent approach is similar to the 1-dependent
approach. The difference is that, for each new gene, two
previously generated genes were randomly selected, and
two functions were randomly chosen. The new gene was
generated as the summation: 𝑥

(new)
= 𝛽
1
𝑓(𝑥
(selected 1)

) +

𝛽
2
𝑔(𝑥
(selected 2)

). The 𝛽’s were sampled from the uniform
distribution between−1 and 1. Again certain level of noise was

generated from the normal distribution and added to the gene
expression profiles.

3. Results and Discussions

3.1. Simulation Results. In the simulation experiments, we
compared the 𝐾-profiles algorithm with General Depen-
dency Hierarchical Clustering (GDHC) and the traditional
𝐾-means clustering algorithm. The GDHC was paired with
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the dynamic tree cutting method to cut the trees into clusters
[18]. We used the efficient TSP R library to compute the
cluster profiles [19]. We adopted the external evaluation
metric Adjusted Rand Index (ARI) [20] to compare the
clustering results with the true cluster memberships to judge
the performance of the methods.

In Figure 2, the average ARI values were plotted against
the noise level. Higher ARI values indicate better cluster-
ing performance. The figure contains three columns and
two rows with each column representing a data generation
mechanism and each row representing a different number of
clusters. In the left column, data was generated by the hidden
factor mechanism, where all features in a true cluster were
linearly/nonlinearly linked to a latent factor. In columns 2 and
3, features in each cluster were generated using 1-dependent
and 2-dependent mechanism, respectively. In such a genera-
tion mechanism, genes generated later depend on previously
generated genes in the same cluster [15]. In themeantime, the
first row shows results from data with 10 clusters, while the
second row shows results from data with 20 clusters.

For GDHC, we used the dynamic tree cutting method
[18] to cut each tree. Various values of minimum cluster
size were tested. For 𝐾-profiles clustering, we started with
a 𝑝 value cutoff of 0.2 and gradually reduced the cutoff to
0.05 with the iterations. We ran each setting (cluster size,
data generation scheme) 20 times and plotted the average
results in Figure 2. We can see obviously that both𝐾-profiles
and GDHC outperformed linear relation-based 𝐾-means
clustering algorithm significantly in all cluster parameter
settings. 𝐾-profiles also did a better job than GDHC in
recovering the true clusters. We allowed four minimum
cluster size levels in the dynamic tree cutting, 50%, 75%, 95%,
and 100%, of the true cluster size. Generally the 50% setting
performed the best.

Figure 3 shows the confusion matrices of an example
clustering result as images. We can see the composition of
the reported clusters by the three different clustering algo-
rithms. Cleaner images indicate better agreement between
true clusters and the detected clusters. When looking into all
three confusion matrices, we can see that in each reported
cluster our proposed method discovered a dominant group
with only a little impurity. However, in traditional 𝐾-means
clustering, the reported clusters were mostly composed of
several small groups, which rendered it of little use when the
data contains much nonlinear relations. GDHC performed
much better than 𝐾-means with 4 reported clusters (rows)
composed mostly of elements from the same true clusters.
Clearly, the new 𝐾-profiles clustering method achieved the
best performance in the simulations.

The𝐾-profiles and GDHC clustering methods were both
based on DCOL, which detects both nonlinear and linear
relationships, although it has lower power to detect linear
relationship compared to correlation coefficient. Next we
studied how the methods behave when the true relationships
are all linear.We used the same hidden factor data generation
scheme but allowed only linear relations in the data genera-
tion, which means all genes in the same cluster were linearly
related to the same hidden factor. We simulated data with 10
clusters, each containing 100 genes, plus an additional 100
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Figure 4: Simulation results from data with linear associations only.
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Figure 5: Selecting the number of clusters for the Spellman dataset
by plotting sum of negative log𝑝 values against the number of
clusters.

pure noise genes. 𝐾-profiles achieved similar performance
to 𝐾-means when the noise was at low to moderate levels
(Figure 4). This is likely due to the fact that 𝐾-means does
not involve statistical testing to exclude noise genes from the
clusters.

Besides being a more effective nonlinear clustering
method, the 𝐾-profiles method is also more efficient com-
pared to GDHC. On a data matrix with 2000 rows and 100
columns, the average computing time of 𝐾-profiles was ∼30
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Figure 6: Significance levels of GO slims terms. Brighter colors indicate significance using the hypergeometric test for overrepresentation
analysis.

seconds on a laptop with i7-3537U CPU and 6Gb memory,
while the GDHC used ∼600 seconds.

3.2. Real Data Analysis. We conducted data analysis on
the Spellman yeast cell cycle data, which consists of four
time series synchronized by different chemical reagents, each
covering roughly two cell cycles [21]. One of the time series,
the cdc15 data, contains a strong oscillating signal [22]. We
removed the cdc15 dataset and used the data of the three
remaining time series.The data matrix consists of 49 samples
(columns) and 6178 genes (rows).

We applied the 𝐾-profiles clustering method using a
series of𝐾 values. With each𝐾 value, we retained the final 𝑝
value𝑝

𝑖
of every gene.We then took the negative sum of log𝑝

values ∑
𝑖
− log(𝑝

𝑖
) at every 𝐾 and plotted the value against

𝐾. An elbow was observed at around 30 (Figure 5). Thus we
chose 𝐾 = 30 for subsequent analyses.

Among the 6178 genes under study, 4874 were clustered
into 30 clusters. The minimum cluster size was 59, and
the maximum cluster size was 328. We then judged the
performance of the methods using functional annotations.
For this purpose, we resorted to Gene Ontology [23]. We
used a set of GO terms that categorize genes into broad

functional categories, the GO slim terms from the Saccha-
romyces Genome Database (SGD) [24]. Some of the GO slim
terms are too broad; we limited our analysis to terms with
2000 annotated genes or less. We found that almost all the
clusters are associated with certain GO slim terms using the
hypergeometric test [25] for overrepresentation (Figure 6).

From Figure 6, we see clearly that several clusters, includ-
ing clusters 2, 5, 7, and 12, are highly associated with cell
cycle related processes, which are clustered in the lower 1/3
region of the plot (Figure 6). We then plotted the heatmaps
of the expressions of the genes in these clusters, which indeed
showed strong periodical behavior. An example, cluster 2, is
presented in Figure 7.We notice the genes in this cluster were
mostly periodic genes, yet they exhibit different phase shifts.
Such genes may not be clustered together using traditional
methods based on linear associations.

The GO slim terms are broad functional categories and
do not offer enough detail. We further analyzed the data
using a set of 430 selected representative GO terms. The
approaches to select these terms were previously described
in [26, 27]. Essentially the selected terms were relatively
specific, yet they were still of reasonable size. We conducted
hypergeometric test for overrepresentation of these GO
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Table 1: Biological pathways significantly associated with clusters 2, 5, 7, and 12.

Cluster # genes GO Biological Process ID#
𝑃 value∗ Name of GO term

2 228

GO:0051301 1.03𝐸 − 07 Cell division
GO:0006468 0.0001307 Protein phosphorylation
GO:0010696 0.00163665 Positive regulation of spindle pole body separation
GO:0030473 0.00584256 Nuclear migration along microtubule
GO:0005977 0.00628021 Glycogen metabolic process

5 116

GO:0006301 5.94𝐸 − 06 Postreplication repair
GO:0043570 1.87𝐸 − 05 Maintenance of DNA repeat elements
GO:0006272 4.90𝐸 − 05 Leading strand elongation
GO:0000070 0.00043025 Mitotic sister chromatid segregation
GO:0009263 0.00067342 Deoxyribonucleotide biosynthetic process
GO:0006298 0.00074914 Mismatch repair
GO:0007131 0.00077629 Reciprocal meiotic recombination
GO:0045132 0.00300391 Meiotic chromosome segregation
GO:0006284 0.0034725 Base-excision repair
GO:0006273 0.0041114 Lagging strand elongation
GO:0006348 0.00415626 Chromatin silencing at telomere
GO:0009200 0.00485315 Deoxyribonucleoside triphosphate metabolic process
GO:0051301 0.00750912 Cell division

7 69

GO:0006334 4.57𝐸 − 12 Nucleosome assembly
GO:0030473 6.32𝐸 − 05 Nuclear migration along microtubule
GO:0030148 0.00299059 Sphingolipid biosynthetic process
GO:0000032 0.00650292 Cell wall mannoprotein biosynthetic process
GO:0009225 0.00774684 Nucleotide-sugar metabolic process

12 155

GO:0007020 1.07𝐸 − 05 Microtubule nucleation
GO:0000070 0.0006474 Mitotic sister chromatid segregation
GO:0006284 0.00078868 Base-excision repair
GO:0006493 0.00078868 Protein O-linked glycosylation
GO:0006273 0.00099378 Lagging strand elongation
GO:0006337 0.00099378 Nucleosome disassembly
GO:0000724 0.00151593 Double-strand break repair via homologous recombination
GO:0000086 0.00242563 G2/M transition of mitotic cell cycle
GO:0006368 0.00243303 Transcription elongation from RNA polymerase II promoter
GO:0006338 0.0038366 Chromatin remodeling
GO:0008156 0.00743106 Negative regulation of DNA replication

#Total number of GO Biological Process terms under study: 430.
∗
𝑃 value threshold: 0.01.

terms in each of the 30 clusters. We found almost all the
clusters significantly overrepresent somebiological processes.
As examples, we show biological processes associated with
clusters 2, 5, 7, and 12, which are clearly cell cycle related
based on the GO slim analysis (Table 1). Many clusters
clearly showed no periodical behavior. They were strongly
associated with functional categories such as metabolism
and signal transduction. The results are listed online at
http://web1.sph.emory.edu/users/tyu8/KPC.

4. Conclusion

In this paper, we described a new nonlinear clustering
method named 𝐾-profiles clustering. We incorporated sta-
tistical inference into the algorithm to remove the impact

of noise genes due to their common existence in real world
microarray data. The algorithm is efficient due to the quality
of the Distance Based on Conditional Ordered List (DCOL).
The algorithm outperformed our previous General Depen-
dency Hierarchical Clustering (GDHC) algorithm and the
traditional 𝐾-means clustering algorithm in our simulation
studies. It generatedmeaningful results in real data analysis. It
can be used in the analysis of high-throughput data to detect
novel patterns based on nonlinear dependencies.
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Figure 7: An example cluster with mostly periodically expressed genes.
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