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Building integrated photovoltaic (BIPV), based on tandem PV cells, is considered a new 
alternative for combining solar energy with buildings. Accurately predicting the BIPV-harvested 
annual output energy (𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙) is crucial for evaluating the BIPV performance. Machine 
learning (ML) is a potential candidate for solving such a problem without the time-consuming 
process of experimental investigations. This contribution proposes an artificial neural network 
(ANN) to predict the 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 of 4-terminal perovskite/silicon (psk/Si) PV cells under realistic 
environmental conditions. The input variables of the proposed model consist of the input 
solar irradiance (𝑃𝑖𝑛), incident light’s angle (𝐴𝑖𝑛), the PV module’s temperature (𝑇𝑚𝑜𝑑 ), the 
psk absorber’s thickness (𝑇ℎ𝑝𝑠𝑘), and the psk absorber’s bandgap (𝐵𝑝𝑠𝑘). The input data were 
received from the simulated results. This work also evaluates the degree of importance of each 
input variable and optimizes the architecture of the ANN using the surrogate algorithm before 
predictions. The optimized ANN-3 (three hidden layers) model shows superior performance 
indicators, including a mean squared error of MSE = 0.02283, correlation coefficient R = 
0.99999, and Willmott’s index of agreement 𝐼𝑤 = 0.99999. Consequently, the predicted highest 
𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 at 𝐵𝑝𝑠𝑘 of 1.71 eV is 297.73, 115.01, 193.98, and 97.6 kWh/m2 for the rooftop, east, 
south, and west facades, respectively.

1. Introduction

A building-integrated photovoltaic (BIPV) system has been designed based on the basic requirements of construction works 
to replace conventional construction products, such as rooftops, walls, windows, facades, and so on [1]. The BIPV systems could 
generate electricity for buildings while protecting them from adverse climatic conditions [2,3]. In addition, BIPV is considered a 
promising option that contributes to meeting the carbon-neutral energy system. Although BIPV has appeared since the early 1990s 
[4], its growth rate is relatively slow. By 2030, it is estimated that the BIPV system could achieve an approximate efficiency level of 
22% [5]. So far, two PV cell categories in the market are composed of crystalline silicon (c-Si) wafer-based technology and thin-film 
technology (amorphous silicon (a-Si), chalcogen, and organic PV cells). The primary technology for BIPV is based on silicon wafers 
due to technological advancements and low cost of production [6]. The use of perovskite/silicon (psk/Si) tandem PV cells, which 
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Nomenclature

Lists of Abbreviations

2T 2-terminal

4T 4-terminal

ANN Artificial neural network

ANN-1 One-hidden-layer artificial neural network

ANN-2 Two-hidden-layer artificial neural network

ANN-3 Three-hidden-layer artificial neural network

ANN-4 Four-hidden-layer artificial neural network

ANN-5 Five-hidden-layer artificial neural network

BIPV Building-integrated photovoltaics

c-Si Crystalline silicon

DM Data mining

FL Fuzzy logic

GPR Gaussian process regression

MAE Mean absolute error

ML Machine learning

MSE Mean squared error

RF Random forest

RMSE Root mean squared error

SHJ Silicon heterojunction

SI Supplementary information

STC Standard test conditions

SVR Support vector regression

List of Symbols

𝜂 Power conversion efficiency

𝐴𝑖𝑛 Incident light’s angle

𝐵𝑝𝑠𝑘 psk absorber’s bandgap

𝐸𝑖𝑛,𝑎𝑛𝑛𝑢𝑎𝑙 Annual input energy

𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 Annual output energy

𝐼𝑤 Willmott’s index of agreement

𝑃𝑖𝑛 Input irradiance

𝑃𝑜𝑢𝑡,𝑏𝑜𝑡 Bottom-cell output power density

𝑃𝑜𝑢𝑡,𝑡𝑎𝑛𝑑𝑒𝑚 Tandem-cell output power density

𝑃𝑜𝑢𝑡,𝑡𝑜𝑝 Top-cell output power density

𝑇𝑚𝑜𝑑 PV module’s temperature

𝑇ℎ𝑝𝑠𝑘 psk absorber’s thickness

𝑏 Bias

𝑅 Correlation coefficient

𝑤 Weight

have a theoretical efficiency potential of up to 44%, is considered a viable choice for the BIPV system [7]. So far, record efficiency 
is 30.1% for a 4-terminal (4T) psk/Si tandem PV cell [8] and 33.7% for a 2-terminal (2T) psk/Si tandem PV cell [9]. Although the 
4T tandem PV cell has a record efficiency not so high as the 2T tandem PV cell, the advantages of the 4T tandem PV cell compared 
to the 2T tandem PV cell are easily processable and have no current matching constraint. Hence, the 2T and 4T tandem PV cells are 
emerging as good substitutes for the traditional c-Si PV cell in the context of the BIPV system.

Some recent works presented numerical methods for estimating the annual output energy (𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙) of the 2T psk/Si tandem 
PV cell for the BIPV under natural operating conditions composed of input solar irradiance (𝑃𝑖𝑛), incident light’s angle (𝐴𝑖𝑛), PV 
module’s temperature (𝑇𝑚𝑜𝑑 ). The first method used one-dimensional optical simulation (GenPro4 program) combined with electrical 
calculations based on the one-diode model [10]. The second method employed two-dimensional optical and electrical simulations 
(Atlas framework) [11]. Because of the incredibly long simulation duration (several years) and a lack of complex refractive index 
(n,k) data for a continuous psk absorber’s bandgap range, the 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 estimation for the continuous psk absorber’s bandgap range 
is impossible. So, both these methods were conducted for a sole psk absorber’s bandgap. The third method utilized the combination 
of Atlas simulation and an artificial neural network (ANN) model [12], which could overcome the shortcoming of both methods 
mentioned above. However, no previous investigation has presented estimating the annual output energy (𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙) of the 4T psk/Si 
tandem PV cells for the BIPV under realistic environmental conditions. It is, therefore, crucial to precisely simulate and estimate the 
𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 of the 4T tandem PV cells to improve their efficiency and assess the tandem-based BIPV performance. Furthermore, the 
estimation is also necessary to compare the efficiency of psk/Si tandem PV cells with the different numbers of terminals.

This work presents a 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 predictive method of the 4T psk/Si tandem PV cell using an ANN based on the atlas simulation 
results. Different machine learning (ML) techniques can provide predictive solutions with superior accuracy for various applications 
in renewable energy fields, including wind energy, power generation from energy, power demand, etc. In numerous investigations, 
ML models have been performed extensively for PV power generation predictions based on solar irradiance. The applied ML models 
are very diverse and include fuzzy logic (FL) models [13–15], artificial neural network (ANN) models [15–17], support vector 
regression (SVR) models [18–20], Gaussian process regression (GPR) models [21,22], random forest (RF) models [23–27]. According 
to the survey of the available literature, the authors propose that ANNs are simple but provide superior performance in terms of 
the estimation error for predicting power generation from solar energy. Therefore, the authors deploy the ANN for estimating the 
generation of the annual output energy (𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙) of 4T tandem PV cells for the BIPV under realistic environmental conditions. 
Determining the optimal architecture of an ANN relies heavily on determining the number of hidden layers and their corresponding 
neurons. This step is crucial as it directly impacts the network’s performance. Nevertheless, arriving at the optimal architecture 
remains a complex and challenging problem. In previous studies, researchers have employed different methods to determine the 
topologies of ANNs, including approaches that rely solely on the number of input and output neurons [28,29], trial and error 
[30,31], and the rule of thumb [32,33]. However, these methods were solely conducted for one or two hidden layers. In this work, 
the authors utilize the surrogate algorithm for optimizing the ANN architecture with various hidden layers up to five. Fig. 1 depicts 
2

this work’s general framework for predicting the tandem-based BIPV 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 under realistic environmental conditions.
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Fig. 1. The general framework of the intelligent system for predicting the tandem 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 for the BIPV.

2. Methodology

2.1. 4T psk/Si tandem PV cell architecture and its simulation method

The physical architecture of the 4T psk/Si tandem PV cell includes the top (psk PV cell) and bottom (silicon heterojunction (SHJ) 
PV cell) sub-cells separated by an optical gap, as demonstrated in Fig. 2. The psk sub-cell includes a thin film’s lithium fluoride (LiF) 
as an anti-reflective coating, a thin film’s indium tin oxide (ITO) as a front contact, a thin film’s titanium oxide (TiO2) as an electron 
transport layer, a psk absorber, a thin film’s spiro-OMeTAD as a hole transport layer, and an ITO rear contact layer. The SHJ sub-cell 
comprises a front contact’s ITO thin film, n+ doped and intrinsic (𝑖) hydrogenated a-Si layers, the c-Si wafer, 𝑖, and p+ doped a-Si 
layers and a rear contact’s silver thin film. The optical gap between the psk and SHJ sub-cells is a silicon nitride (SiN𝑥) thin film of 
16 μm (instead of air gap), which separates the two sub-cells electrically and manages near-infrared (NIR) light absorption between 
the two sub-cells [34]. The simulation results presented the outstanding advantage of the SiN𝑥 optical gap in enhancing the tandem 
PV cell performance compared to the air gap, as shown in Fig. S.2 (SI). In this study, the authors assumed that all 4T tandem PV cell 
interfaces were optically flat and without any surface imperfections.

The (n,k) data used to simulate the 4T tandem PV cells were obtained from previously published literature sources: LiF [35], ITO 
[36], TiO2 [36], the psk absorber with various bandgaps (1.55, 1.62, 1.67, 1.70, and 1.73 eV) [37,38], Spiro-OMeTAD [36], p+-a-Si 
[39], a-Si(i) [39], c-Si(n) [40], n+-a-Si [39]. The SiN𝑥 thin film’s the (n,k) data (refractive index 2.71 at 600 nm) were estimated by 
an ellipsometric system for the film deposited by catalytic chemical vapor deposition and depicted in Fig. S.1 of the supplementary 
information (SI). The input parameters of the psk sub-cell layers [41,42], the SHJ cell’s layers [43,44] in the 4T tandem PV cell 
are listed in Table S.1 (SI). Also, we took into consideration the characteristics of defect states at both the TiO2/psk interface, as 
described in previous works [45–47], and the a-Si/c-Si interface, as reported in a study by Lu et al. [43] during our simulations (Table 
S.2 of SI). The other material parameters were set as default values in the Atlas module. Besides, the simulations utilized a fixed 
surface recombination velocity (𝜐𝑠𝑢𝑟𝑓 ,𝑛 = 𝜐𝑠𝑢𝑟𝑓 ,𝑝 = 10 cm/s) for the a-Si layers. Series resistance (𝑅𝑠) of the top and bottom sub-cells 
referenced from recent work [48] were set as 1.1 and 3.8 Ω. The Atlas simulations were performed on a Dell Precision 5820 Tower 
Workstation running Red Hat Linux version 7.9. The workstation was equipped with a 3.7 GHz Intel(R) Xeon(R) W-2135 processor 
and 64 GB DDR4 RAM, providing the computational resources necessary for the simulations. Various Atlas physical models for this 
work’s numerical simulations could be referred to in the literature [11]. All simulated results examine the influence of parameters 
𝑃𝑖𝑛, 𝐴𝑖𝑛, 𝑇𝑚𝑜𝑑 , the psk absorber’s thickness (𝑇ℎ𝑝𝑠𝑘), and the psk absorber’s bandgap (𝐵𝑝𝑠𝑘) on the power conversion efficiency (𝜂) of 
the 4T psk/SHJ tandem PV cells, as presented in Figure S.3 and 4 (SI).

2.2. Data collection and pre-processing for building an ANN

Selecting dependent or independent variables is crucial in building and optimizing an ANN and should be conducted thoroughly. 
In this work, the authors characterized the influence of the output psk (𝑃𝑜𝑢𝑡,𝑡𝑜𝑝) and SHJ (𝑃𝑜𝑢𝑡,𝑏𝑜𝑡) power densities on the structural 
parameters composed of 𝑇ℎ𝑝𝑠𝑘 and 𝐵𝑝𝑠𝑘, and environmental conditions comprised 𝑃𝑖𝑛, 𝐴𝑖𝑛, and 𝑇𝑚𝑜𝑑 . In the recent study on the 
3

𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 prediction of the 2T psk/Si tandem PV cell for the BIPV, they used two input predictive variables of visible-spectral (𝑃𝑣𝑖𝑠) 
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Fig. 2. Architecture of the 4T psk/Si tandem PV cell.

and near-infrared-spectral (𝑃𝑛𝑖𝑟) solar irradiances as instead of using one 𝑃𝑖𝑛 variable in the proposed ANN because they proved that 
the 𝑃𝑜𝑢𝑡 value of the 2T tandem PV cell depends on both irradiance and shape of the solar spectrum [12,49]. In this work, the spk 
and SHJ sub-cells of the 4T tandem PV cell are optically and electrically independent, so the behavior of the output power (𝑃𝑜𝑢𝑡) of 
the 4T tandem PV cell is not influenced by changes in the shape of the solar spectrum. The mean squared error (MSE) indicator does 
not exhibit a significant difference between the two ANNs when considering the effect of solar spectral shapes versus not considering 
it. This observation is demonstrated in Figure S.5 of the supplementary information (SI). Note that the MSE indicator of an ANN, 
as presented in Sub-section 2.3.3, is employed to assess the predictive performance of an ANN. Consequently, the 𝑃𝑖𝑛 variable is 
sufficient for the ANN in predicting the 4T tandem 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 .

All input environmental variables for building (training and validation) the ANN and predicting the 𝑃𝑜𝑢𝑡,𝑡𝑜𝑝 and 𝑃𝑜𝑢𝑡,𝑏𝑜𝑡 values were 
measured, collected, and estimated in Gifu prefecture, located at a latitude of 35.42◦N and a longitude of 136.76◦E, Japan, from 6 
to 18 o’clock daily in 2015. Note that the 2015 data of real operating conditions in Gifu, Japan, is just the representative to make 
a database for the ANN. The data of any other year could also be employed to replace the input predictive variables of this work 
without affecting the ANN performance. The training and validation data set for the ANN consists of data specifically from August 
2015 for the sole direction (rooftop) of buildings, as shown in Fig. 3 (a-c). Meanwhile, the data set for predicting the 𝑃𝑜𝑢𝑡,𝑡𝑜𝑝 and 
𝑃𝑜𝑢𝑡,𝑏𝑜𝑡 values consists of the data for the whole year of 2015 in four building orientations of the rooftop, east, south, and west [10]. 
The 𝑃𝑖𝑛 variable values for the ANN are the experimentally measured data by a project under Japan’s New Energy and Industrial 
Technology Development Organization (NEDO), as depicted in Fig. 3 (d). The website pvlighthouse .com was utilized to estimate 
the values of the variable 𝐴𝑖𝑛, as illustrated in Fig. 3 (e-h) (referred to [11] (SI)). The 𝑇𝑚𝑜𝑑 variable values were calculated by an 
estimation method for the silicon-wafer-based PV cell [50], as shown in Fig. 3 (i-l) (referred to [11] (SI)). The 𝐵𝑝𝑠𝑘 variable values 
comprise 1.56, 1.62, 1.67, 1.70, and 1.73 eV. In contrast, the 𝑇ℎ𝑝𝑠𝑘 variable values are systematically investigated across the 400 to 
700 nm range, with a step size of 20 nm applied for each 𝐵𝑝𝑠𝑘 point. The simulated 𝑃𝑜𝑢𝑡,𝑡𝑜𝑝, 𝑃𝑜𝑢𝑡,𝑏𝑜𝑡 values are the target responses, 
which are utilized to compare the predicted 𝑃𝑜𝑢𝑡,𝑡𝑜𝑝 and 𝑃𝑜𝑢𝑡,𝑏𝑜𝑡 values. The data set used to construct the ANN consisted of 32,240 
data points, randomly split into two portions: 75% for training and 25% for validation.

2.3. ML-based prediction method

2.3.1. ANN architecture

An ANN includes three primary input, hidden, and output layers with many artificial neurons (nodes) in each layer, as shown in 
Fig. 4. In this contribution, the input layer has five neurons as predictive variables composed of 𝑃𝑖𝑛, 𝐴𝑖𝑛, 𝑇𝑚𝑜𝑑 , 𝑇ℎ𝑝𝑠𝑘, and 𝐵𝑝𝑠𝑘, which 
are provided for the ANN to learn and derive the final results. In an ANN model, the hidden layer positioned between the input and 
output layers performs computations and identifies hidden features and patterns. It is possible to have more than one hidden layer 
in the ANN to enhance its ability to capture complex relationships. Optimizing the number of hidden layers and neurons is critical 
in achieving an optimal and accurate architecture for the ANN model. The output layer in the ANN model presents the final result 
4

derived from all the performed computations. This work’s output layer comprises two neurons of 𝑃𝑜𝑢𝑡,𝑡𝑜𝑝 and 𝑃𝑜𝑢𝑡,𝑏𝑜𝑡 responses. An 

http://pvlighthouse.com
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Fig. 3. Input environmental variables for building an ANN composed of 𝑃𝑖𝑛 , 𝐴𝑖𝑛 , and 𝑇𝑚𝑜𝑑 (a-c), input environmental variables for predicting the 𝑃𝑜𝑢𝑡,𝑡𝑜𝑝 and 𝑃𝑜𝑢𝑡,𝑏𝑜𝑡

values based on the trained ANN for four building orientations of the rooftop, east, south, and west in 2015 (d-l). Note that the 𝑃𝑖𝑛 value is simultaneously the same 
for four building orientations.

Fig. 4. The ANN composed of one input layer with five neurons (𝑃𝑖𝑛 , 𝐴𝑖𝑛 , 𝑇𝑚𝑜𝑑 , 𝑇ℎ𝑏𝑠𝑘 , and 𝐵𝑏𝑠𝑘), three hidden layers with the numbers of corresponding neurons (𝑘, 
5

𝑚, and 𝑙), one output layer with two neurons (𝑃𝑜𝑢𝑡,𝑡𝑜𝑝 and 𝑃𝑜𝑢𝑡,𝑏𝑜𝑡).
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ANN performs two propagation processes composed of forward-propagation [51–53] to compute weights (𝑤) and biases (𝑏) of the 
ANN and back-propagation [54] to diminish the error between the target and prediction values by adapting the 𝑤 and 𝑏 values.

The forward-propagation process conducts four steps as follows:

• Step 1: Scale all input and output data to a normalized range −1 to 1 via Eq. (1):

𝑦 =
(𝑦𝑚𝑎𝑥 − 𝑦𝑚𝑖𝑛)(𝑥− 𝑥𝑚𝑖𝑛)

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
+ 𝑦𝑚𝑖𝑛 (1)

where 𝑥 is the actual values of the predictive variables whose 𝑥𝑚𝑖𝑛 and 𝑥𝑚𝑎𝑥 are the minimum and maximal values. Furthermore, 
𝑦𝑚𝑖𝑛 = −1, 𝑦𝑚𝑎𝑥 = 1, and the value of 𝑥 is normalized and denoted as 𝑦.

• Step 2: The weight (𝑤) and bias (𝑏) values are randomly initialized. A hyperbolic tangent sigmoid transfer function is applied to 
compute the values within the hidden layers, which can be implemented using a MATLAB function presented by Eq. (2):

𝑇 𝑎𝑛𝑠𝑖𝑔(𝑥) = 2
1 + 𝑒𝑥𝑝(−2 × 𝑥) − 1

(2)

• Step 3: Compute the normalized output values using a purelin function (a linear transfer function in MATLAB), denoted by 
𝑝𝑢𝑟𝑒𝑙𝑖𝑛(𝑥) = 𝑥.

• Step 4: Re-scale the normalized output values to the predicted actual responses using the mapminmax function (a MATLAB 
function), which processes matrices by normalizing the minimum and maximum values of each row to [𝑦𝑚𝑖𝑛 , 𝑦𝑚𝑎𝑥].

The back-propagation process employs the Bayesian algorithm to minimize squared errors and adjust the weights (𝑤) accordingly. 
This algorithm aims to determine the optimal combination of weights that results in a well-generalized ANN [55]. The Bayesian 
algorithm can help an ANN obtain superior performance and address the over-fitting issue compared to the Levenberg-Marquardt 
algorithm. The ANN with the Bayesian algorithm introduces weights into the objective function 𝐹 (𝑤), as denoted by Eq. (3):

𝐹 (𝑤) = 𝛼
∑

𝑤2 + 𝛽
∑

𝑒2 (3)

where 𝑤 and 𝑒 are weights and errors of the ANN, respectively. Herein, 𝛼 and 𝛽 are objective parameters. The ∑ 𝑒2 value is 
minimized by the Levenberg-Marquardt algorithm [12,54], then computing 𝐹 (𝑤). According to the Bayesian rule, the objective 
function parameters 𝛼 and 𝛽 are optimized by Eq. (4) [56]:

𝛼∗ = 𝛾

2
∑(

𝑤∗
)2 𝛽∗ = 𝑁 − 𝛾

2
∑(

𝑒∗
)2 𝛾 =𝑁 − 𝛼∗𝑡𝑟𝑎𝑐𝑒−1(𝐻(𝑤∗)) (4)

where 𝛼∗, 𝛽∗, and 𝑒∗ are the optimal 𝛼, 𝛽, and 𝑒 values at the minimum point 𝑤∗, respectively. In this context, the symbol 𝛾 represents 
the number of effective ANN parameters utilized to reduce the error function. The work by Kumar et al. [57] discussed the concept 
of effective parameters and their role in quantifying the complexity or expressive capacity of the ANN. In order to determine the 
𝛼∗, 𝛽∗, and 𝛾 values, it is necessary to calculate the Hessian matrix 𝐻(𝑤∗) of the objective function 𝐹 (𝑤∗) at the 𝑤∗ point using the 
Gauss-Newton approximation [58]. Fig. 5 (a) illustrates the flowchart of the Bayesian back-propagation algorithm. For this study, 
we utilized the back-propagation Bayesian algorithm, which was implemented using the neural fitting toolbox of MATLAB R2022a 
software. The training, validation, and deployment of the Artificial Neural Network (ANN) for prediction purposes were conducted 
on a desktop computer with Windows 11 Pro OS (Microsoft), equipped with a 2.9 GHz Intel Core i7-10700 processor and 16 GB 
RAM.

2.3.2. Optimization of the number of hidden layers and the number of neurons in each layer

Designing an optimal ANN architecture involves a crucial step of determining the number of hidden layers and their corresponding 
neurons because it dramatically impacts the performance of the ANN [59–61]. However, determining the optimal ANN architecture 
is still a challenging and complex issue that needs to be solved [33,62]. Suppose the determined ANN architecture does not match 
the needs, which results in under-fitting or over-fitting of the ANN, leading to the reduction of ANN performance. Some methods 
have been performed to determine the ANN architecture based on the rule of thumb [32,33], input and output attributes [28,29], 
trial and error [31], and K-means clustering and principal component analysis [63].

So, this work presents the optimization of the number of hidden layers and their neurons to improve the performance of the ANN 
and prevent its over-fitting and under-fitting problems. Because the number of hidden layers and the number of neurons in each layer 
are integer values, an algorithm solving an optimization problem related to integer variables must be applied. Therefore, this work 
optimizes the number of hidden layers and the number of neurons in each layer using the surrogate algorithm [64], available in the 
MATLAB Global Optimization Toolbox. The surrogate algorithm aims to find the best possible outcome of an objective function with 
minimal evaluations by balancing exploration and speed during optimization. The surrogate optimization algorithm performs two 
following processes:

• Process 1: Construct the surrogate algorithm composed of three steps:

– Step 1: Choose random initial points within the given boundaries.
6

– Step 2: Assess the objective function at these specified points.
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Fig. 5. The Bayesian back-propagation algorithm (a) and the flowchart of the surrogate algorithm deployed in an ANN to optimize the number of hidden layers and 
the number of neurons in each layer (b).

– Step 3: Create a substitute for the objective function using a radial basis function to interpolate through the given points.

• Process 2: Look for a minimal objective value composed of five steps:

– Step 1: Collect a few thousand random points within the boundaries.

– Step 2: Assess a merit function using the surrogate value obtained from the previously assessed points, then consider exploring 
other points within the distances where the objective function has been assessed.

– Step 3: Identify the optimal point based on its merit function measurement.

– Step 4: Assess the objective function at the optimal point.

– Step 5: Modify the surrogate and utilize the updated value for all future searches.

The surrogate algorithm could solve an integer-variable optimization problem in terms of the below Eq. (5):

𝑚𝑖𝑛
𝑥
𝑓 (𝑥) 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡

⎧⎪⎨⎪⎩
𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑠 ≤ 𝑥 ≤ 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑𝑠

𝑥 =
{
𝑥1, 𝑥2, 𝑥3, ..., 𝑥𝑖

}
, 𝑥𝑖 ∈ 𝑖𝑛𝑡𝑒𝑔𝑒𝑟

𝑖 ∶ 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠 , 𝑖 = 1,2,3...
(5)

where 𝑓 (𝑥) and 𝑥𝑖 are objective function and integer variables, respectively. All variables have to be an integer within finite bounds. 
In this contribution, the performance of the ANN is determined by the mean squared error (MSE) value denoted by 𝑓 (𝑥), where 𝑥𝑖
represents the number of neurons in the ANN’s 𝑖𝑡ℎ hidden layer. This helps to evaluate the ANN performance accurately. The number 
of hidden layers is examined for optimization from 1 to 5. The number of corresponding hidden layer neurons is varied from 1 to 30. 
Thus, this work optimizes the number of hidden layers and the number of neurons in each layer to obtain the minimum value of the 
validation-stage MSE indicator. Each hidden layer has a minimum and maximum number of neurons known as the lower and upper 
bounds, respectively. The flowchart of the surrogate optimization algorithm is depicted in Fig. 5 (b).

2.3.3. Assessment of ANN performance

Five employed statistical indicators are of MSE, root mean squared error (RMSE), mean absolute error (MAE), correlation coef-

ficient (R), and Willmott’s index of agreement (𝐼𝑤) [65] to assess the ANN performance. These indicators were represented by the 
following Eqs. (6)–(10).

1
𝑛∑( )2
7

𝑀𝑆𝐸 =
𝑛

𝑖=1
𝑃𝑖,𝑜𝑢𝑡(𝐴𝑡𝑙𝑎𝑠) − 𝑃𝑖,𝑜𝑢𝑡(𝐴𝑁𝑁) (6)
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Fig. 6. Correlation matrix indicating the relationship between the input variables used for prediction and the target responses.

𝑅𝑀𝑆𝐸 =

√√√√ 1
𝑛

𝑛∑
𝑖=1

(
𝑃𝑖,𝑜𝑢𝑡(𝐴𝑡𝑙𝑎𝑠) − 𝑃𝑖,𝑜𝑢𝑡(𝐴𝑁𝑁)

)2
(7)

𝑀𝐴𝐸 = 1
𝑛

𝑛∑
𝑖=1

||||𝑃𝑖,𝑜𝑢𝑡(𝐴𝑡𝑙𝑎𝑠) − 𝑃𝑖,𝑜𝑢𝑡(𝐴𝑁𝑁)
|||| (8)

𝑅 =

∑𝑛

𝑖=1

(
𝑃𝑖,𝑜𝑢𝑡(𝐴𝑁𝑁) − 𝑃 𝑜𝑢𝑡(𝐴𝑁𝑁)

)
×
(
𝑃𝑖,𝑜𝑢𝑡(𝐴𝑡𝑙𝑎𝑠) − 𝑃 𝑜𝑢𝑡(𝐴𝑡𝑙𝑎𝑠)

)
√∑𝑛

𝑖=1

(
𝑃𝑖,𝑜𝑢𝑡(𝐴𝑁𝑁) − 𝑃 𝑜𝑢𝑡(𝐴𝑁𝑁)

)2
×
∑𝑛

𝑖=1

(
𝑃𝑜𝑢𝑡(𝐴𝑡𝑙𝑎𝑠) − 𝑃 𝑜𝑢𝑡(𝐴𝑡𝑙𝑎𝑠)

)2
(9)

𝐼𝑤 = 1 −

∑𝑛

𝑖=1

(
𝑃𝑖,𝑜𝑢𝑡(𝐴𝑡𝑙𝑎𝑠) − 𝑃𝑖,𝑜𝑢𝑡(𝐴𝑁𝑁)

)2

∑𝑛

𝑖=1

(|||||𝑃𝑖,𝑜𝑢𝑡(𝐴𝑡𝑙𝑎𝑠) − 𝑃 𝑜𝑢𝑡(𝐴𝑡𝑙𝑎𝑠)

|||||+
|||||𝑃𝑖,𝑜𝑢𝑡(𝐴𝑁𝑁) − 𝑃 𝑜𝑢𝑡(𝐴𝑡𝑙𝑎𝑠)

|||||
)2 (10)

where 𝑛 is the number of data points. 𝑃𝑖,𝑜𝑢𝑡(𝐴𝑡𝑙𝑎𝑠) and 𝑃𝑖,𝑜𝑢𝑡(𝐴𝑁𝑁) are the 𝑖𝑡ℎ simulated and predicted output power densities, respec-

tively. Furthermore, 𝑃 𝑜𝑢𝑡(𝐴𝑡𝑙𝑎𝑠) and 𝑃 𝑜𝑢𝑡(𝐴𝑁𝑁) are the mean values of simulated and predicted output power densities, respectively.

3. Results and discussions

3.1. Analysis of the importance degree of input variables to an ANN

In this work, the authors examined and evaluated the impact degree of each input variable comprised 𝑃𝑖𝑛, 𝐴𝑖𝑛, 𝑇𝑚𝑜𝑑 , 𝑇ℎ𝑝𝑠𝑘, and 
𝐵𝑝𝑠𝑘 to the predictive performance of the objective responses 𝑃𝑜𝑢𝑡,𝑡𝑜𝑝 and 𝑃𝑜𝑢𝑡,𝑏𝑜𝑡 of the 4T tandem PV cells. A correlation matrix 
between the predictive input variables and the objective responses reveals their linear correlation, as shown in Fig. 6. The Pearson 
correlation (𝐶𝑝) index is crucial to determine the connection between the input variables used for prediction and the objective 
responses. The 𝐶𝑝 indexes of 0.98 and 0.97 (𝑃𝑖𝑛 vs. 𝑃𝑜𝑢𝑡,𝑡𝑜𝑝 and 𝑃𝑖𝑛 vs. 𝑃𝑜𝑢𝑡,𝑏𝑜𝑡), 0.78 and 0.76 (𝐴𝑖𝑛 vs. 𝑃𝑜𝑢𝑡,𝑡𝑜𝑝 and 𝐴𝑖𝑛 vs. 𝑃𝑜𝑢𝑡,𝑏𝑜𝑡), 0.96 
and 0.95 (𝑇𝑚𝑜𝑑 vs. 𝑃𝑜𝑢𝑡,𝑡𝑜𝑝 and 𝑇𝑚𝑜𝑑 versus 𝑃𝑜𝑢𝑡,𝑏𝑜𝑡) demonstrate the highly linear correlation between the input environmental variables 
(𝑃𝑖𝑛, 𝐴𝑖𝑛, and 𝑇𝑚𝑜𝑑 ) and the responses. So, these variables are considered crucial variables for the predictive ANN. Meanwhile, the 
input structural variables (𝑇ℎ𝑝𝑠𝑘 and 𝐵𝑝𝑠𝑘) have a nonlinear correlation with the objective responses because of their 𝐶𝑝 indexes 
around zero. However, further evaluation is required to determine the nonlinear correlation between the input predictive variables 
and the objective responses, as stated in [66].

The authors compared and assessed the metrics of each ANN with a sole input variable. For these evaluations, five uncomplicated 
artificial neural networks were utilized. Each network consisted of one single-neuron input layer, one 14-neuron hidden layer, and 
one two-neuron output layer. Table 1 listed the metrics of each ANN with a sole input variable. An ANN performs better if it has lower 
indicators of MSE, RMSE, and MAE and higher indicators of R and 𝐼𝑤. According to Table 1, the importance degree of the variables 
for the predictive performance in descending order is 𝑃𝑖𝑛, 𝑇𝑚𝑜𝑑 , 𝐴𝑖𝑛, 𝐵𝑝𝑠𝑘, and 𝑇ℎ𝑝𝑠𝑘. Regarding the R indicator, the environmental 
variables have the most impact predicting the 𝑃𝑜𝑢𝑡,𝑡𝑜𝑝 and 𝑃𝑜𝑢𝑡,𝑏𝑜𝑡 of the 4T tandem PV cells. In contrast, the other structural variables 
have an insignificant effect. However, in terms of the 𝐼𝑤 indicator, it is clear that the structural variables also play a not small 
role in building a good-performance ANN. Note that the 𝐼𝑤 indicator can serve as a standardized measure to identify differences 
in the model prediction error. This indicator can detect additive and proportional variations in the target and simulated means and 
8

variances [65]. The value of 𝐼𝑤 can range from 0 to 1. The indicator of 1 indicates a perfect match, while 0 indicates no agreement.
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Table 1

Assessment of impact degree of each input variable for the predictive performance.

Metrics Input variables

Sole 𝑃𝑖𝑛 Sole 𝐴𝑖𝑛 Sole 𝑇𝑚𝑜𝑑 Sole 𝑇ℎ𝑝𝑠𝑘 Sole 𝐵𝑝𝑠𝑘

MSE 56.81 607.64 85.89 1931.25 1951.73

RMSE 7.54 24.65 9.27 43.95 44.18

MAE 5.39 16.57 6.81 35.12 35.10

R 0.98 0.83 0.97 0.03 0.06

𝐼𝑤 0.70 0.51 0.61 0.22 0.23

Table 2

The optimal numbers of hidden layers and their neurons based on the given boundary conditions.

ANN 
models

Number of 
hidden layers

ith hidden 
layer

Minimal 
neurons

Maximal 
neurons

Optimal number 
of neurons

Optimal validation-stage indicators

MSE RMSE MAE

ANN-1 1 1𝑠𝑡 1 30 14 0.43872 0.66236 0.44492

ANN-2 2 1𝑠𝑡 1 30 18 0.10446 0.32321 0.19883

2𝑛𝑑 1 30 16

ANN-3 3 1𝑠𝑡 1 30 19 0.02283 0.15111 0.10243

2𝑛𝑑 1 30 19

3𝑟𝑑 1 30 16

ANN-4 4 1𝑠𝑡 1 30 19 0.05024 0.22414 0.11949

2𝑛𝑑 1 30 20

3𝑟𝑑 1 30 19

4𝑡ℎ 1 30 4

ANN-5 5 1𝑠𝑡 1 30 10 0.04131 0.20325 0.10338

2𝑛𝑑 1 30 20

3𝑟𝑑 1 30 18

4𝑡ℎ 1 30 13

5𝑡ℎ 1 30 11

3.2. The optimal ANN and its performance assessment

This work examined five ANNs with various hidden layers, including the 1-hidden-layer (ANN-1), 2-hidden-layer ANN (ANN-2), 
3-hidden-layer (ANN-3), 4-hidden-layer (ANN-4), and 5-hidden-layer (ANN-5) ANNs. The boundary conditions of the variables of 
the ANN’s hidden layers and the number of neurons in each hidden layer for optimizing the ANN architecture are presented in 
Table 2. The optimal neuron number in hidden layers are (14), (18 and 16), (19, 19, and 16), (19, 20, 19, and 4), and (10, 20, 18, 
13, and 11) for the ANN-1, ANN-2, ANN-3, ANN-4, and ANN-5 models, respectively. Fig. 7 (a) depicts the progress in optimizing 
the validation-stage indicators (MSE, RMSE, and MAE). When the minimal validation-stage MSE values were found, the optimization 
progress stopped after the objective evaluation number of 30 for ANN-1, 200 for ANN-2 to ANN-4, and 250 for ANN-5. Also, Fig. 7 (b 
and c) shows that an ANN with a more significant number of hidden layers needs a longer time for each evaluation. The cumulative 
time for the objective evaluation process is 1, 9, 23, 24, and 36 h for ANN-1 to ANN-5, respectively. As shown in Fig. 7 (d), the 
optimal validation-stage MSE values are 0.43872, 0.10446, 0.02283, 0.05024, and 0.04131, respectively. Thus, the results reveal 
that the ANN-3 model with the lowest optimal validation-stage MSE values has the best predictive performance.

Table 3 lists five statistic indicators composed of MSE, RMSE, MAE, R, and 𝐼𝑤 to quantify the validation of the ANNs and confirm 
an ANN with the best performance. According to the comparison of the results, the two models of ANN-3 and ANN-5 have the lowest 
error indicators of MSE, RMSE, and MAE and the highest indicators of R and 𝐼𝑤. These two models have the same indicators of R 
and 𝐼𝑤. The ANN-5 model has training-stage error indicators better than the ANN-3 model. Still, the ANN-3 model has validation-

stage error indicators better than the ANN-5 model. Because the validation-stage indicators take precedence in evaluating the ANN 
performance, the ANN-3 model is considered the most superior model for predicting the 𝑃𝑜𝑢𝑡,𝑡𝑜𝑝 and 𝑃𝑜𝑢𝑡,𝑏𝑜𝑡 values of the 4T tandem 
PV cells.

Fig. 8 illustrates the regression plots of five predictive ANNs for the training (a-e) and validation (f-j) stages, which graphically 
and quantitatively depict the consistency of the simulated (target) and predicted 𝑃𝑜𝑢𝑡 (including top and bottom) values. According 
to the results, the ANN-3 model’s predicted 𝑃𝑜𝑢𝑡 values closely resemble the target 𝑃𝑜𝑢𝑡 values compared to other ANNs’ predictions. 
Moreover, the authors comprehensively performed the deviation analysis to assess the ANN accuracy better, as depicted in Fig. 9

(a-f). Herein, the relevant distribution of the deviation values was denoted by 𝐷𝑖 = 𝑃𝑖,𝑜𝑢𝑡(𝐴𝑁𝑁) − 𝑃𝑖,𝑜𝑢𝑡(𝐴𝑡𝑙𝑎𝑠). According to Fig. 9, the 
deviation values generated by the ANN-3 model are much more compressed in both the training (a, c, and e) and validation (b, d, 
and f) stages than in the other models.

Another recent study presented that an ANN (1.25994 in MSE, 1.12247 in RMSE, 0.42133 in MAE, and 0.99979 in R) could 
9

predict the annual output energy (𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙) of the 2T psk/Si tandem PV cells for the BIPV with the tiny relative error values (0.10 
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Fig. 7. Progress in optimizing the MSE values using the surrogate algorithm (a), time for each objective evaluation and cumulative time for all objective evaluations 
(b-c), comparison of optimal MSE values for three ANNs (d).

Table 3

Metrics in assessing the performance of five ANNs.

Performance 
metrics

Training Validation

ANN-1 
model

ANN-2 
model

ANN-3 
model

ANN-4 
model

ANN-5 
model

ANN-1 
model

ANN-2 
model

ANN-3 
model

ANN-4 
model

ANN-5 
model

MSE 3.03500 0.20409 0.03775 0.06942 0.02508 0.43872 0.10446 0.02283 0.05024 0.04131

RMSE 1.74212 0.45176 0.19429 0.26348 0.15836 0.66236 0.32321 0.15110 0.22414 0.20325

MAE 0.47038 0.19885 0.10078 0.11802 0.09623 0.44492 0.19883 0.10038 0.11949 0.10243

R 0.99911 0.99995 0.99999 0.99996 0.99999 0.99994 0.99998 0.99999 0.99998 0.99999

𝐼𝑤 0.99864 0.99991 0.99998 0.99997 0.99999 0.99981 0.99995 0.99999 0.99998 0.99999

for the rooftop, 0.16 for the south, 1.05 for the east, and 0.90% for the west) between the simulated and predicted 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 values 
for the 2T tandem PV cells at the 1.67-eV𝐵𝑝𝑠𝑘 [12]. Compared to such an ANN, the ANN-3 model of this work has a superior 
performance (MSE of 0.02283, RMSE of 0.15110, MAE of 0.103383, and R of 0.99999). Consequently, the ANN-3 models have been 
proposed as the optimal model for predicting this work’s 𝑃𝑜𝑢𝑡,𝑡𝑜𝑝 and 𝑃𝑜𝑢𝑡,𝑏𝑜𝑡 values of the 4T tandem PV cells.

It is worth knowing that the ANN was built based on a database of input data (𝑃𝑖𝑛 , 𝐴𝑖𝑛, 𝑇𝑚𝑜𝑑 , 𝑇ℎ𝑝𝑠𝑘, and 𝐵𝑝𝑠𝑘) and output data 
(𝑃𝑜𝑢𝑡,𝑡𝑜𝑝 and 𝑃𝑜𝑢𝑡,𝑏𝑜𝑡.), which does not depend on the database of any year and climatic zone. In this work, the authors just utilized the 
database of natural operating conditions in a specific climatic zone (Gifu of Japan) for a particular month (August 2015) to build the 
ANN. Such data represents the database for building the ANN. So, employing the realistic condition data of any year and climatic 
zone to build the ANN does not change its predictive performance. The advantage of the ANN is to predict the 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 values in any 
year and any climatic zone without performing any other simulations, as long as we have the input database of the desired year and 
climatic zone. In other words, the ANN can predict the 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 values of 4T tandem PV cells worldwide from the corresponding 
input database.

3.3. Tandem annual output energy predicted by the trained ANN

This study predicted the 𝑃𝑜𝑢𝑡,𝑡𝑜𝑝 and 𝑃𝑜𝑢𝑡,𝑏𝑜𝑡 values using the optimal ANN-3 for the 4T tandem architecture. The predictions were 
made for psk materials with various bandgaps in a 1.66–1.75 eV range with a step size of 0.01 eV and different thicknesses in a 
400–900 nm range with a step size of 10 nm. The tandem 𝑃𝑜𝑢𝑡 value of the 4T tandem PV cell is calculated by Eq. (11):

𝑃𝑜𝑢𝑡,𝑡𝑎𝑛𝑑𝑒𝑚 = 𝑃𝑜𝑢𝑡,𝑡𝑜𝑝 + 𝑃𝑜𝑢𝑡,𝑏𝑜𝑡 (11)

Then, the annual input (𝐸𝑖𝑛,𝑎𝑛𝑛𝑢𝑎𝑙) and output (𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙) energies, and 𝜂𝑎𝑛𝑛𝑢𝑎𝑙 of the 4T tandem PV cells are integrated as denoted 
10

by Eqs. (12) – (14):
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Fig. 8. Regression plots of five predictive ANNs for training (a-e) and validation stages (f-j).

𝐸𝑖𝑛,𝑎𝑛𝑛𝑢𝑎𝑙 =

365

∫
1

18

∫
6

𝑃𝑖𝑛(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (12)

𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 =

365

∫
1

18

∫
6

𝑃𝑜𝑢𝑡,𝑡𝑎𝑛𝑑𝑒𝑚(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (13)

𝜂𝑎𝑛𝑛𝑢𝑎𝑙 =
𝜂𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙

𝜂𝑖𝑛,𝑎𝑛𝑛𝑢𝑎𝑙
× 100% (14)

where 𝑥 and 𝑦 are time points of a day (6 ≤ x ≤ 18) and the days of a year (1 ≤ y ≤ 365), respectively. At a specific time on a day 
of the year, the values of 𝑃𝑖𝑛(𝑥, 𝑦) and 𝑃𝑜𝑢𝑡,𝑡𝑎𝑛𝑑𝑒𝑚(𝑥, 𝑦) represent the 𝑃𝑖𝑛 and 𝑃𝑜𝑢𝑡,𝑡𝑎𝑛𝑑𝑒𝑚 respectively. Furthermore, 𝜂𝑎𝑛𝑛𝑢𝑎𝑙 is the annual 
output efficiency harvested by the 4T tandem PV cell.

Fig. 10 (a-d) illustrates the contour plots and their color mapping of the predicted 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 values of the 4T tandem PV cells for 
various 𝑇ℎ𝑝𝑠𝑘 and 𝐵𝑝𝑠𝑘 variables in four different directions of buildings. We observed that the 4T tandem PV cells work well in the 
area at a 𝐵𝑝𝑠𝑘 range from 1.70 to 1.73 eV with various 𝑇ℎ𝑝𝑠𝑘 values from 500 to 750 nm for both the east and west orientations, from 
11

500 to 900 nm for the south facade, and 850-900 nm for the rooftop. The comparison of the maximal 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 and 𝜂𝑎𝑛𝑛𝑢𝑎𝑙 values 
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Fig. 9. The deviation values between the target and predicted 𝑃𝑜𝑢𝑡 values for five predictive ANNs in the training (upper images) and validation (lower images) stages. 
The deviation values are in the form of data point plots for the full deviation range (a and b), for the zoom-in deviation in a range from -5 to 5 (c and d), and in the 
form of box-chart plots (e and f).

Fig. 10. Contour plots and their color mapping of the predicted 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 values of the 4T tandem PV cells for various 𝑇ℎ𝑝𝑠𝑘 and 𝐵𝑝𝑠𝑘 variables in four different 
directions of buildings (a-d).

generated by the 4T tandem PV cells with the various 𝑇ℎ𝑝𝑠𝑘 and 𝐵𝑝𝑠𝑘 values in the standard test condition (STC) and the actual 
operating conditions for four different directions are depicted in Table 4. Based on the available 𝐵𝑝𝑠𝑘 of 1.56, 1.62, 1.67, 1.70, and 
1.73 eV in this work, the 4T tandem PV cell achieved the best-simulated power conversion efficiency (𝜂) of 31.32% at a 𝐵𝑝𝑠𝑘 of 1.70 
eV and 𝑇ℎ𝑝𝑠𝑘 of 780 nm under the STC.

The results of 𝜂𝑎𝑛𝑛𝑢𝑎𝑙 and 𝐸𝑎𝑛𝑛𝑢𝑎𝑙,𝑜𝑢𝑡 under real operating conditions show that the optimal 𝐵𝑝𝑠𝑘 value is 1.71 eV with the optimal 
𝑇ℎ𝑝𝑠𝑘 values of 660 nm for the east and west orientations, 720 nm for the south, and 900 nm for the roof, respectively. Hence, the 
4T tandem PV cells obtain the maximal 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 of 297.73, 193.98, 115.01, and 97.6 kWh/m2 and the maximal 𝜂𝑎𝑛𝑛𝑢𝑎𝑙 of 23.90, 
15.57, 9.23, and 7.84% for four building orientations of the rooftop, south, east, and west, respectively. When used for BIPV, the 
actual operating performance of the 4T tandem PV cell is significantly lower compared to its performance under STC because the 
12

realistic tandem performance is considerably adversely influenced by environmental factors 𝑃𝑖𝑛, 𝐴𝑖𝑛, and 𝑇𝑚𝑜𝑑 . According to Table 4
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Table 4

Comparison of the maximal 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 and 𝜂𝑎𝑛𝑛𝑢𝑎𝑙 values harvested by the 2T [12] and 4T tandem PV cells with the various 𝑇ℎ𝑝𝑠𝑘 and 𝐵𝑝𝑠𝑘 values in 
the standard condition and the real operating conditions for four different directions.

Tandem Conditions Direction Optimal 𝐵𝑝𝑠𝑘

(eV)

Optimal 𝑇ℎ𝑝𝑠𝑘

(nm)

Maximal 𝜂𝑡𝑎𝑛𝑑𝑒𝑚
(%)

Maximal 𝜂𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙
(%)

Maximal 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙

(kWh/m2)

2T [12] STC 1.73 1090 31.41

Realistic East 1.72 680 8.44 105.07

Roof 1.73 700 22.68 282.54

South 1.72 680 14.03 174.71

West 1.72 680 7.29 90.79

4T (this work) STC 1.70 780 31.32

Realistic East 1.71 660 9.23 115.01

Roof 1.71 900 23.90 297.73

South 1.71 720 15.57 193.98

West 1.71 660 7.84 97.60

Fig. 11. Comparison of 𝜂𝑡𝑎𝑛𝑑𝑒𝑚 values between the 2T and 4T tandem PV cells for the BIPV by real operating conditions (a), different solar spectral shapes including 
red-rich, AM1.5G, and blue-rich (b), comparison of 𝜂𝑡𝑎𝑛𝑑𝑒𝑚 values between 2T (𝐵𝑝𝑠𝑘 of 1.73 eV) and 4T (𝐵𝑝𝑠𝑘 of 1.70 eV) tandem PV cells versus 𝑇ℎ𝑝𝑠𝑘 under conditions 
composed of 𝑇𝑚𝑜𝑑 = 300 K, 𝐴𝑖𝑛 = 0◦ , solar spectrum with 𝑃𝑖𝑛 = 1000 W/m2 and different shapes (c), zoom-in 𝜂𝑡𝑎𝑛𝑑𝑒𝑚 values of 2T and 4T tandem PV cells versus 
𝑇ℎ𝑝𝑠𝑘 in a range from 660 to 900 nm under the blue-rich solar spectrum (d).

and Fig. 11 (a), although the maximal 𝜂𝑡𝑎𝑛𝑑𝑒𝑚 of the 2T tandem PV cell is higher than that of the 4T tandem PV cell under the STC, 
the 4T tandem PV cell has the higher maximal 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 and 𝜂𝑎𝑛𝑛𝑢𝑎𝑙 values than the 2T tandem PV cell under the realistic condition. 
This result is attributed to the effect of solar spectral shapes on the 𝜂𝑡𝑎𝑛𝑑𝑒𝑚 values. Fig. 11 (c) indicates comparison of 𝜂𝑡𝑎𝑛𝑑𝑒𝑚 values 
between 2T (𝐵𝑝𝑠𝑘 of 1.73 eV) and 4T (𝐵𝑝𝑠𝑘 of 1.70 eV) tandem PV cells versus 𝑇ℎ𝑝𝑠𝑘 under conditions composed of 𝑇𝑚𝑜𝑑 = 300 K, 
𝐴𝑖𝑛 = 0◦, solar spectrum with 𝑃𝑖𝑛 = 1000 W/m2 and different shapes in AM1.5G spectra, red-rich spectra, and blue-rich spectra 
(Fig. 11 (b)). The identification of different solar spectral shapes was mentioned in the literature [12,49]. According to Fig. 11 (c), the 
𝜂𝑡𝑎𝑛𝑑𝑒𝑚−4𝑇 is lightly enhanced by blue-rich spectra but reduced by red-rich spectra compared to under AM1.5G. However, the solar 
spectral shape does not change its 𝜂𝑡𝑎𝑛𝑑𝑒𝑚−4𝑇 curve shape. Blue and red light is known to be absorbed by the tandem PV cell’s psk 
and SHJ cells, respectively. The psk sub-cell contributes significantly more to the 𝜂𝑡𝑎𝑛𝑑𝑒𝑚−4𝑇 than the SHJ cell, as shown in Figure S.3 
(SI). The blue-rich spectra explain the enhancement of the 𝜂𝑡𝑎𝑛𝑑𝑒𝑚−4𝑇 value, while its reduction is attributed to the red-rich spectra. 
The shape of the 𝜂𝑡𝑎𝑛𝑑𝑒𝑚−4𝑇 curve remains unchanged as the 4T tandem PV cell remains unaffected by the current density matching 
condition between the psk and SHJ cells. For the 2T tandem PV cell, the solar spectral shape changes the 𝜂𝑡𝑎𝑛𝑑𝑒𝑚−2𝑇 behavior [12,49]. 
Fig. 11 (d) indicates that the 𝜂𝑡𝑎𝑛𝑑𝑒𝑚−4𝑇 in a 𝑇ℎ𝑝𝑠𝑘 range from 660 to 900 nm is significantly higher than the 𝜂𝑡𝑎𝑛𝑑𝑒𝑚−2𝑇 under the 
blue-rich spectra. The blue-rich spectrum is the primary solar spectrum in Gifu, Japan [12]. In real operating conditions, the 𝜂𝑡𝑎𝑛𝑑𝑒𝑚
of the 4T tandem PV cell exceeds that of the 2T tandem PV cell by a significant margin. The authors suggested that the 4T tandem 
13

PV cell work more effectively than the 2T tandem PV cell in the BIPV.
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4. Conclusion and limitation

The authors examined an ANN in predicting the 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 values of the 2T psk/Si tandem PV cell for the BIPV. The proposed ANN 
in this work employed the input environmental (𝑃𝑖𝑛, 𝐴𝑖𝑛, and 𝑇𝑚𝑜𝑑 ) and structural (𝑇ℎ𝑝𝑠𝑘 and 𝐵𝑝𝑠𝑘) variables. This work evaluated the 
impact degree of each input variable on the ANN performance in predicting the 𝑃𝑜𝑢𝑡,𝑡𝑜𝑝 and 𝑃𝑜𝑢𝑡,𝑏𝑜𝑡 values of the 4T tandem PV cell. The 
results revealed that all input variables mentioned above are crucial in building a good-performance ANN. Thus, the environmental 
variables are the most critical factors in that contribution. Based on the optimization method using the surrogate algorithm, the 
ANN-3 model attained the best predictive performance (MSE of 0.02283, RMSE of 0.15110, MAE of 0.10338, R of 0.99999, and 𝐼𝑤
of 0.99999). The authors, therefore, determined that the ANN-3 model with the architecture including one input layer (5 neurons), 
three hidden layers (19, 19, and 16 neurons for the 1𝑠𝑡, 2𝑛𝑑 , and 3𝑟𝑑 , respectively), and one output layer (2 neurons) are the optimal 
model used for the predictions in this work. The prediction result using the ANN-3 model presented that the 4T tandem PV cell can 
obtain the best performance within the 𝐵𝑝𝑠𝑘 range from 1.70 to 1.73 eV with various 𝑇ℎ𝑝𝑠𝑘 ranges for different directions of buildings 
under natural operating conditions. Meanwhile, the optimal 𝐵𝑝𝑠𝑘 values are proposed as 1.71 eV, where the highest 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 values 
obtained are 297.73, 115.01, 193.98, and 97.60 kWh/m2. The corresponding highest 𝜂𝑎𝑛𝑛𝑢𝑎𝑙 are 23.90, 9.23, 15.57, and 7.84% for 
four building orientations of the rooftop, east, south, and west, respectively. Furthermore, comparing the maximal 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 and 
𝜂𝑎𝑛𝑛𝑢𝑎𝑙 values between the 2T and 4T psk/Si tandem PV cells revealed that the 4T tandem PV cell is better than the 2T tandem PV 
cell in the BIPV.

This work solely aims at the theoretical prediction by combining the simulated and predicted results. The experiment is conducted 
to verify the agreement between simulation and experimental results. It may be published in another work shortly. In this project, the 
task of developing an experimental procedure to evaluate the accuracy of the ANN still needs to be addressed. The authors have been 
looking for practical solutions to overcome those challenges. In parallel, the prediction of the 3T psk/Si tandem PV cell is currently 
underway to comprehensively evaluate the 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 and 𝜂𝑎𝑛𝑛𝑢𝑎𝑙 of the tandem PV cells with different terminals, then select the best 
tandem configuration for the BIPV. Furthermore, predicting the 𝐸𝑜𝑢𝑡,𝑎𝑛𝑛𝑢𝑎𝑙 and 𝜂𝑎𝑛𝑛𝑢𝑎𝑙 values of 2T, 3T, and 4T psk/Si tandem PV cells 
taking into account the degradation rates of psk and silicon PV cells has been considered to perform and publish somewhere.
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