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Abstract: Lipotoxicity is a phenomenon of lipid-induced cellular injury in nonadipose tissue. Ex-
cess of free saturated fatty acids (SFAs) contributes to hepatic injury in nonalcoholic fatty liver
disease (NAFLD), which has been growing at an unprecedented rate in recent years. SFAs and their
derivatives such as ceramides and membrane phospholipids have been shown to induce intrahepatic
oxidative damage and ER stress. Autophagy represents a cellular housekeeping mechanism to counter
the perturbation in organelle function and activation of stress signals within the cell. Several aspects
of autophagy, including lipid droplet assembly, lipophagy, mitophagy, redox signaling and ER-phagy,
play a critical role in mounting a strong defense against lipotoxic lipid species within the hepatic cells.
This review provides a succinct overview of our current understanding of autophagy-lipotoxicity
interaction and its pharmacological and nonpharmacological modulation in treating NAFLD.
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1. Introduction

Chronic liver diseases associated with deranged lipid metabolism constitute a major
part of the metabolic syndrome [1]. Nonalcoholic fatty liver disease (NAFLD), also known
as metabolic associated fatty liver disease (MAFLD) [2], has become a global epidemic
and is associated with other metabolic disorders, such as diabetes and obesity [3]. Given
the paucity of treatment options available for NAFLD, there has been a surge in under-
standing the molecular mechanism of this disease [3]. Studies show that “lipotoxicity”
is the central driving force that governs the progression of NAFLD from being a state
of benign lipid accumulation to a state of lipid-induced liver damage and inflammation
termed non-alcoholic steatohepatitis “NASH” [4]. Lipotoxicity at a cellular level involves
perturbation in the function of several intracellular organelles, namely, mitochondria, endo-
plasmic reticulum (ER), and lysosomes, induced by nonesterified fatty acids or free fatty
acids (FFAs), particularly those derived from saturated fats [5]. Autophagy is a cellular
cytoprotective process, which is not only affected by lipids but also acts to mitigate the
effect of lipotoxicity in animal models of NAFLD [6]. Autophagy inducers have shown to
limit the abundance of FFAs by increasing their sequestration into triglycerides (TAGs),
increasing their oxidation, and preventing the damage of intracellular organelles [7]. This
review covers autophagy-lipid crosstalk and its implication in countering lipotoxicity.

2. Lipotoxicity: A Mechanism of Lipid-Induced Cellular Injury

The deleterious effects of lipid species such as saturated free fatty acids (SFAs) and
cholesterol in nonadipose organs, termed “lipotoxicity,” was first described in 1994 by
Lee et al. [8]. Lipotoxicity is a key factor that drives the progression of NAFLD [9], which
is associated with type II diabetes and cardiovascular complications [4]. Given the in-
creased global prevalence of NAFLD, understanding the mechanism of progression and
developing antilipotoxic agents have gained immense attention [10]. At a molecular level,
lipotoxicity is characterized by the accretion of toxic lipids in hepatic cells, leading to
organelle dysfunction, cellular stress, and eventually apoptosis, which is referred to as

“lipoapoptosis” [11].
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Accumulation of lipids within the liver, which causes lipotoxicity, comes through
five different sources [12]. Firstly, in the state of insulin resistance (IR), lipolysis in the
adipose tissue is upregulated, thereby releasing FFAs in the systemic circulation. The
released FFAs are taken up by the hepatocytes and stored as lipid droplets. Fatty acid
transport proteins (FATPs), caveolins, and fatty acid translocase (FAT/CD36) are the main
hepatic plasma membrane proteins that are involved in hepatic fatty acid uptake and
contribute to the intrahepatic lipid pool. Among the FATP members, the genetic loss
of FATP2 and FATPS5 results in a decrease in hepatic steatosis in a diet-induced obesity
mouse model [13]. Similarly, in NAFLD patients, the expression of FAT/CD36 has been
shown to be upregulated and shows correlation with liver injury [14]. Moreover, the
hepatocyte-specific ablation of FAT/CD36 prevented fat accumulation in the liver and
repressed inflammation [15]. Secondly, hyperinsulinemia in response to IR in hepatocytes
drives the synthesis of fatty acids within the hepatocytes via a process known as “de novo
lipogenesis.” This process is regulated by two transcriptional factors: sterol regulatory
element-binding protein 1c (SREBP1c) and carbohydrate response element binding protein
(ChREBP), which are activated in response to glucose/fructose-induced insulin release.
Thirdly, hepatic lipid uptake from fat-rich food also leads to hepatic lipid accumulation.
Fourthly, the impaired peroxisomal and mitochondrial oxidation of fat may result in overt
hepatic lipid accumulation. Lastly, the inefficiency of hepatic cells to sequester FFAs in
TAGs and secrete them as VLDL particles into the circulation also leads to increased hepatic
lipotoxicity [12].

It is important to note that not all lipids cause lipotoxicity in the liver [16]. Previous
studies have shown that the assembly of TAGs within the lipid droplets is often an adaptive
response to counter FFAs’ influx in the liver [17]. In concordance, the loss of genes involved
in TAG synthesis results in extensive damage in the liver, characterized by NASH [17].
Of note, SFAs have been shown to induce lipotoxicity but not unsaturated fatty acids,
which may be attributed to their differential ability to get incorporated into TAGs [16].
Additionally, given their limited incorporation in TAGs, the free SFAs act as a precursor for
these two highly bioactive lipotoxic lipid species, ceramides [18]. In line with this, mice fed
with a diet rich in SFAs exhibit higher levels of ceramide than those fed with a diet rich in
unsaturated fatty acids [4]. The increased levels of intrahepatic ceramide are associated
with the repression of insulin signaling, leading to IR as well as increased hepatocyte
damage [4]. Together with ceramide, another fatty acid metabolite known as diacylglycerol
(DAG) has also been implicated in the development of IR in hepatocytes [19]. The link
between hepatic DAG accumulation and hepatic IR could be attributed to the activation
of PKCe, which was the predominant PKC isoform activated in the liver following fat
feeding [19]. Similar to the SFAs, cholesterol exhibits lipotoxic effects in the liver, and in
preclinical animal models cholesterol accumulation mediates the progression from benign
steatosis to NASH [20]. Mechanistically, free cholesterol causes changes in membrane
dynamics, resulting in mitochondrial and lysosomal defects, which are crucial for inducing
lipotoxicity [21]. Additionally, the uptake of free cholesterol crystals by Kupffer’s cells
promotes the activation of NLRP3 and other inflammatory patterns [22]. Furthermore, free
cholesterol also increases the sensitivity of hepatic stellate cells (HSCs) to transformative
growth factor (TGF)-B signaling, thereby promoting fibrosis in NASH [23]. Oxidized
derivatives of cholesterol, known as oxysterols, can also promote liver injury, causing
mitochondrial damage within hepatocytes [20].

Organelle damage, particularly involving endoplasmic reticulum (ER) and mitochon-
dria, is central to understanding the cellular manifestation of lipotoxicity [4]. In cases of ER,
the accumulation of lipid species such as cholesterol and ceramides leads to the activation
of endoplasmic reticulum (ER) stress mediators, such as activating transcription factor 4
(ATF4) and C/EBP homologous protein (CHOP), which initiate the pro-apoptotic signaling
in hepatocytes [4]. Additionally, ER stress—activated transcription factors such as X-box
binding protein 1 spliced (XBP-1s) also lead to the upregulation of de novo lipogenesis
within hepatocytes, which further aggravates lipotoxicity [24]. Similarly, SFA-induced
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mitochondrial damage leads to increased oxidative stress and activation of stress kinases,
including JNK and p38MAPK [25]. Besides the JNK pathway, the activation of Bcl-2—
associated X protein (Bax), a pro-apoptotic member of the Blc-2 family, which is linked
to the intrinsic apoptosis pathway activation, has been observed in human hepatocytes
chronically treated with palmitate [26] and in high fat—fed rats [27]. Additionally, the
increased rate of 3-oxidation in mitochondria, in response to FFA influx, also contributes to
oxidative stress within hepatocytes [25].

Toll-like receptors (TLRs) are innate immune cell-surface receptors that can be activated
by FFAs [28]. Studies show that saturated FFAs participate in the activation of TLRs,
resulting in the activation of inflammasome-mediated IL-1f3 production [29].

3. Autophagy and Its Modulation by Lipids

Autophagy is cellular defense mechanism that helps to counter threats from both
outside and inside the cells [30]. Its role is to degrade pathogens as well as to increase the
turnover of intracellular macromolecules and organelles in order to prevent cellular dam-
age and promote cellular rejuvenation [30]. There are several types of autophagy, including
macroautophagy, chaperone-mediated autophagy (CMA), and microautophagy [30]. Mech-
anistically, the most commonly studied, macroautophagy, involves the formation of a
double membranous structure that engulfs the cellular cargo containing damaged or-
ganelles, protein aggregates, and other macromolecules, including lipids and their fusion in
another intracellular organelle known as lysosomes [30]. This fused structure, known as the
‘autolysosome,” degrades the content within the autophagosomes by the action of several
pH-sensitive lysosomal hydrolases [30]. There are a number of proteins involved in the
formation of autophagosomes, the recognition of a specific cargo, the fusion of autophago-
somes with lysosomes, and lastly the activity of lysosomes [30]. The first set of proteins
that helps in the initiation of autophagosome formation includes Unc-51-like autophagy
activating kinase 1(ULK1), FIP200 and ATG13, followed by another set of ATG family genes
including PI3K complex (BECN1, VPS34, VPS15, and ATG14L), ATG9Y vesicle (ATG9A,
ATG2, WIPI1/2), ATG12-conjugation system (ATG7, ATG10, ATG12, ATG5, and ATG16L),
and LC3-conjugation system (ATG4, ATG7, ATG3, ATG12-Atg5, MAPILC3B). The recog-
nition of cellular cargo involves another set of proteins, such as SQSTM1, which helps in
bringing the destined target within the autophagosomes [30]. The fusion of the autophago-
some containing cellular cargo with the lysosomes results from the action of proteins such
as Rubicon, STX17, Rab7 and VAMPS. Finally, the lysosomal membrane-associated proteins
such as LAMP1, LAMP?2 and V-ATPases regulate lysosomal activity [30]. Autophagy is
highly sensitive to regulation by intracellular nutrient and energy levels, as well as by
extracellular hormones [31]. In an anabolic state, under sufficient nutrient availability for
an organism, insulin production inhibits autophagy via mammalian target of rapamycin
complex 1(MTORC1) activation [31]. In contrast, under low-energy state, AMP-activated
protein kinase (AMPK) activates autophagy by inhibiting MTORC1 activity [31]. Addi-
tionally, the transcriptional regulation of autophagy is also governed by several nuclear
hormone receptors and via transcription factor EB (TFEB), which coordinately regulate the
transcription of both autophagy and lysosomal genes [31,32].

Interestingly, lipids alter cellular autophagy, playing an important role mediating
lipotoxic injury in NAFLD [33]. In fact, autophagy has been shown to be impaired in
animal and human NAFLD and NASH [34].

However, the pleiotropic effect of different lipid species on autophagy is seen within
the cells and is regulated by their type as well as by the exposure dose and time. In this
regard, phosphoinositide (PIP3), which is a class of phospholipids derived from phos-
phatidylinositol, inhibits autophagy via regulation of MTORC1 activity [33]. Additionally,
PIP3 also contributes toward the formation of autophagosomal membrane and mediates
selected cargo capture via its interaction with autophagy-linked FYVE protein (Alfy), a
nuclear scaffold protein with a FYVE domain that binds PIP3 [35]. In contrast, a metabolite
of membrane phospholipid, phosphatidic acid and its derivative diacylglycerol, serves
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as an inhibitor of mTORC1 and positively regulates hepatic autophagy [36]. In addition
to phospholipids, sphingolipids, including both ceramides and sphingosine-1-phosphate,
induce autophagy via MTORC1-dependent or -independent pathways [37].

SFAs, such as palmitic acid (PA), which is a potent lipotoxic mediator, have been
shown to both induce and block autophagy depending on their concentration and exposure
time. Its pro-autophagic action is mediated via the activation of protein kinase C (PKC) and
JNK pathways in hepatocytes [38,39]. However, the chronic exposure of PA leads to defects
in autophagosomal-lysosomal fusion as well as lysosomal acidification [40]. Recently, PA
was shown to impair hepatic autophagy via suppression of immune surveillance protein
DDX58/Rig-1 (DExD/H box helicase 58) [41] and by activating the STING-MTORC1
pathway, which may explain the autophagy inhibition seen in advanced NAFLD [42].
Additionally, lipids and their derivatives also act as ligands for nuclear receptors such as
PPARs and LXRs, which are known to transcriptionally modulate autophagy [43].

4. Autophagy Induction Mitigates Hepatic Lipotoxicity

Given its cytoprotective nature, autophagy induction has been tested as a possi-
ble strategy to counter lipotoxicity in hepatocytes. Given below are several aspects of
autophagy-mediated antilipotoxic effects observed in cells and preclinical animal models:

4.1. Autophagy-Assisted TAG Assembly

As described earlier, TAG assembly into lipid droplets serves as an adaptive response
to sequester FFAs within the hepatocytes [17]. This process serves to limit the lipotoxicity
induced by FFAs [17] by reducing intracellular FFA and assisting lipid export out of the liver
via very-low-density lipoprotein (VLDL). There are several reports that provide evidence
of a prominent role of autophagy and autophagy proteins in TAG assembly and lipid
droplet biogenesis [44] (Figure 1). Specifically, some of the earlier studies demonstrated
that autophagy proteins MAP1LC3 [45], ATG7 [46] and FIP200 [47] are involved in the
TAG assembly, and there was an observed reduction in hepatic lipid droplet number in
knockout mice lacking these autophagic components. Recently, ULK1 was also shown
to limit SFA-induced lipotoxicity in hepatocytes by regulating the nuclear shuttling of a
nuclear corepressor, NCOR1, which leads to increased activation of LXRs and transcription
of SCD1 [48]. The activity of SCD1 leads to the conversion of SFAs into unsaturated
fatty acids, which are incorporated more easily into TAGs in the hepatocytes [48,49].
Similar effects were also observed with other autophagy genes that were dependent on
NCORI1 nuclear activity [50]. Additionally, the upregulation of the calcium-binding protein
S100A11 augments FOXO1-mediated autophagy to increase TAG formation within the
hepatocytes [51].

4.2. Lipophagy and Lysosomal Lipolysis

Lipophagy is a type of macroautophagic process that involves the ingestion of TAGs
within the autophagosomes and their digestion within the autolysosomal compartment [7].
Although the esterification of FFAs to form TAGs is a way to reduce lipotoxicity, the
prolonged storage of TAGs may cause them to become a source of lipotoxicity via lipid
peroxidation [17]. Additionally, lysophosphatidylcholine (LPC), which is a component of
lipid droplet-enveloped monolayers and VLDL, is an important phospholipid mediator of
SFA-induced lipotoxicity in NASH [52]. Therefore, the reduction of cytosolic stores of TAGs
within the hepatocytes by lipophagy is required to prevent the lipid buildup within the
hepatocytes, which may lead to cellular injury [53]. Furthermore, the release of fatty acids
from the action of lysosomal lipases helps to increase the mitochondrial 3-oxidation and
thus provide energy to hepatic cells [53]. Several pharmacological and nonpharmacological
treatments have been shown to upregulate lipophagy in preclinical NAFLD models and
reduce hepatic steatosis [53]. Several hormones and natural compounds/drugs such as thy-
roid hormone [54-57], caffeine [58], (-)-Epigallocatechin-3-gallate [59], and calcium channel
blockers [60] have been suggested as novel therapeutic approaches to manage NAFLD via
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lipophagy. Similarly, exercise [61], calorie restriction [62], and time-restricted feeding [63]
have been suggested to reduce hepatic steatosis by inducing lipophagy. Recently, the role of
TFEB has been implicated in the regulation of hepatic lipophagy, and it is being investigated
to see if TFEB activators may be beneficial in countering NAFLD through lipophagy induc-
tion [64]. Although the link between NAFLD and lipophagy/autophagy has been explored
extensively in preclinical studies, human data are still scarce and inconclusive. Recently,
Lin et al. [65] found a positive association between a variant in the lipophagy-associated
gene IRGM and the likelihood of developing childhood NAFLD [65]. These initial studies
thus provide groundwork for targeting lipophagy for countering lipotoxicity associated
with NAFLD/NASH (Figure 1).

Lipotoxicity
e Map1LC3
© TAGs
8 Autophagosomes
i)

‘ Autolysosomes

Damaged
mitochondria

; i

o 5

%Misfolded protein in
ER

Figure 1. Autophagic induction in hepatocytes confers protection against lipotoxicity. As a cellular
defense against nonesterified free fatty acid (FFA) flux, autophagy helps in their sequestration into
triglycerides (TAGs). Lipophagy helps in TAG lipolysis, which helps in 3-oxidation of stored lipids.
Autophagy-lysosomal degradation of damaged mitochondria and KEAP1 helps to counter oxidative
stress induced by saturated fats and their derivatives. Autophagy also helps to mitigate ER stress
by degrading misfolded proteins and, in certain cases, a part of ER itself through a process termed
“ER-phagy.”

4.3. Protective Effect of Autophagy in Relieving Lipotoxicity-Induced Oxidative Stress

SFAs, such as PAs, are known to impair mitochondrial energetics, resulting in reduced
ATP production followed by accelerated mitochondrial reactive oxygen species (ROS) pro-
duction [66]. In this context, mitochondrial autophagy, known as “mitophagy,” is a process
of mitochondrial pruning, which prevents the induction of lipoapoptosis in response to
oxidative stress [67,68]. Defective mitophagy has been demonstrated in both human NASH
and high fat diet (HFD)-induced in vivo mouse models, as well as in cultured hepato-
cytes treated with SFAs, associating with oxidative stress and lipoapoptosis [68]. Several
mechanisms have been implicated in the regulation of mitophagy in NAFLD [69]. The
expression of Acyl-CoA:lysocardiolipin acyltransferase-1 (ALCAT1) was upregulated in
an HFD-induced NAFLD mouse model, and its genetic ablation can restore mitophagy
in isolated hepatocytes, improving mitochondrial architecture and mtDNA fidelity and
preventing the onset of hepatic steatosis in mice [70]. Furthermore, the pharmacological
activation of PINK1/Parkin-dependent mitophagy by the plant flavonol quercetin alle-
viates HFD-induced hepatic steatosis [71]. Additionally, the overexpression of sirtuin 3
(SIRT3) activates mitophagy and rescues hepatic cells from PA-induced oxidative stress [72].



Genes 2023, 14, 553

6 of 13

Thyroid hormone and its mimetics, which have shown promising results in human NAFLD,
are known to activate hepatic autophagy via the ROS-AMPK-ULK1 pathway in human
hepatic cells to limit oxidative stress [73,74] (Figure 1).

Apart from mitophagy induction, autophagy also protects against lipotoxicity-induced
oxidative stress via degradation of kelch-like ECH-associated protein 1(KEAP1), which
results in nuclear factor erythroid 2-like 2 (NRF2/NFE2L2)-mediated transcription of
antioxidant genes [75]. In a recent study by Park et al., the authors found that autophagic
protein ULK1 mitigates hepatic lipotoxicity through the activation of NRF2 [75]. KEAP1,
under basal state, is a negative regulator of NRF2 activity by forming a NRF2-CUL3-RBX1
complex, leading to NRF2 degradation [76]. However, in the absence of KEAP1, NRF2
is stabilized, and its nuclear translocation activates the transcription of its target genes,
including NQO1 (NAD[P]H quinone dehydrogenase 1), GSTA1 (glutathione S-transferase
a 1), and HMOX1/HO-1 (heme oxygenase 1) [76]. SQSTM1/p62, which is an autophagy
receptor protein, relieves KEAP1-mediated NRF2 inhibition by specific binding of SQSTM1
to KEAP1, resulting in KEAP1 autophagic turnover, the stabilization of NRF2 [76]. In this
context, ULK1 enhances the interactions between SQSTM1 and KEAP1 in the hepatocytes,
which causes autophagic KEAP1 degradation [75,77]. Increased NRF2 levels are responsible
for the induction of several antioxidant genes, which protect hepatic cells against lipid-
induced oxidative stress (Figure 1).

4.4. Autophagy and Lipotoxicity-Associated ER Stress

The ER is a cellular hub for de novo protein synthesis and folding, which is critical to
serve cellular function [78]. The perturbations in ER function interfere with protein folding
in the ER, leading to proteotoxic ER stress, and hence igniting unfolded protein response
(UPR), which affects several aspects of hepatic lipid metabolism [78]. Canonically, the UPR
is activated via the luminal domains of three principal transmembrane sensors: inositol-
requiring enzyme (IRE)-1«, protein kinase RNA-like ER kinase (PERK), and activating
transcription factor (ATF)-6« [78].

SFAs including PA lead to ER stress by increasing the accumulation of di-saturated
glycerolipids in the ER, which trigger sustained IRE1x and PERK activation [79], as well as
by increased biosynthesis of saturated phospholipids, contributing to palmitate-induced
lipotoxic ER stress [80]. At a mechanistic level, PA-induced hepatocyte lipoapoptosis occurs
due to persistent UPR activation, resulting in the activation of JNK- and CHOP-mediated
upregulation of proapoptotic protein, such as p53 upregulated modulator of apoptosis
(PUMA) [81]. Similar to PA, other lipid species, such as lysophosphatidylcholine (LPC) [82]
and ceramide [18], are also potent inducers of hepatic ER stress, which may lead to both IR
and lipoapoptosis.

The misfolded proteins that cannot be repaired are eliminated from the cell through
the specialized processes, ER-associated protein degradation (ERAD) and autophagy [83].
Therefore, autophagy plays a very important role in relieving ER stress induced by lipids by
directly degrading misfolded proteins [83] (Figure 1). In a study using autophagy-deficient
mice, HFD feeding was associated with increased hepatic ER stress and IR [84]. Intriguingly,
the rescue experiments using overexpression vectors demonstrated that autophagy induc-
tion significantly rescued lipid-induced ER stress in the mouse liver along with recovery in
hepatic insulin sensitivity [84].

More recently, ER-to-lysosomal-associated degradative (ERLAD) pathways describe a
subset of processes that involve targeting of proteins in the ER lumen/membrane or the
ER membrane itself for lysosomal degradation [85]. This involves the direct engulfment
of a part of the ER by autophagosomes, and its degradation within lysosomes is called
“ER-phagy” [86]. While still a less-understood process, ER-phagy may indeed play a crucial
role in NAFLD pathogenesis. A role for ERLAD in NAFLD/NASH pathogenesis was
highlighted by RNA sequencing data from groups that compared NASH with healthy
controls. In this study, numerous ER-phagy receptors, such as ATL3, SEC62, and RTN3,
were differentially regulated [83]. These data point toward ER-phagy playing an essential
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role during NASH and underscore its importance as a possible novel strategy for NASH
treatment (Figure 1).

5. Pharmacological and Nonpharmacological Inducers of Autophagy and Their
Regulation of Hepatic Lipotoxicity

Pharmacological inducers of hepatic autophagy: Several natural and synthetic molecules
that have shown efficacy in inducing autophagy in cell culture and preclinical animal
models of lipotoxicity are described below:

FDA-approved drugs: To circumvent costly and lengthy drug discovery processes,
including safety assessment, dosing, and other pharmacokinetic and -dynamic characteri-
zations, a strategy known as repurposing (or repositioning) of approved drugs has become
an attractive choice to discover pro-autophagy drugs.

Some of the well-described drugs that also show pro-autophagic activity in this
class are metformin [87], rapamycin [88], statins [89], pioglitazone [90], fibrates [91],
canagliflozin [92], verapamil [93], and carbamazepine [94].

Targeted/Investigational drugs: These are molecules that specifically target a known
protein involved in the autophagy pathway. One such molecule is Tat-beclin 1 (Tat-BECN1),
a peptide known to stimulate autophagy through mobilization of endogenous Beclin 1 [95].
Other molecules in this class of drugs are TFEB activators [96] and ULK1 activators [97],
but their role in regulating hepatic lipotoxicity remains to be investigated.

Nutritional supplements: Several commonly used natural products and active ingre-
dients found in many Chinese and Indian traditional medicines have shown strong
autophagy-promoting activity [98]. First in this class of compounds are caffeine and
epigallocatechin gallate (EGCG), which are present in coffee and tea and are the largest
consumed beverages in the world. Caffeine induces hepatic autophagy via inhibition of
MTORC1 [58], whereas EGCG is an AMPK activator [59]. Resveratrol, a natural polyphe-
nol, has been reported to improve complications associated with NAFLD via its ability
to induce SIRT1-mediated autophagy [99]. Trehalose, a naturally occurring disaccharide
present in plants, bacteria, fungi, insects, and certain types of shrimp, is a known inducer
of autophagy and exhibits its antisteatosis action via an MTORC1 independent mecha-
nism [100]. Ginsenoside Rb2, one of the major ginsenosides in Panax ginseng, also exhibit
anti-NAFLD action in db/db mice, HepG2 cells and primary mouse hepatocytes via pro-
moting AMPK/SIRT1-driven autophagy [101]. Additionally, akebia saponin D (ASD),
extracts from Akebia quinata [102], and capsaicin, an extract of Capsicum annuum [103],
a common dietary supplement, have been shown to exert beneficial effects on NAFLD
via autophagy induction. Spermidine, a natural polyamine and health supplement, is
a potent autophagy stimulator and counters lipid-induced liver damage via autophagy
enhancement [104]. w-3 fatty acids present in fish oil, flaxseeds, and walnuts prevent FFA-
induced lipotoxicity through induction of autophagy in NAFLD [105]. Similarly, widely
used components in Indian traditional medicine, curcumin and its derivatives have shown
protective effects in animal models of NAFLD by an autophagy-mediated pathway [106].

Hormones and Vitamins: Endocrine hormones are pivotal regulators of cellular
metabolism, and their deregulation has been associated with the development of lipid-
associated metabolic disease, such as NAFLD. In line with this notion, the exogenous
administration of some hormones, hormonal derivatives or their mimetics has shown
efficacy in reducing lipotoxicity in animal models of NAFLD [31]. Thyroid hormones and
their metabolites exhibit potent pro-autophagy action in vivo, mitigating lipotoxicity and
hepatic lipid accumulation in hepatic cells [54-57,73]. In fact, many of the liver-specific
thyroid hormone analogues are currently under human trial for NASH treatment [107,108].
Similarly, other endocrine hormones, including epinephrine [109], glucagon-like peptide-
1(GLP-1) [110], ghrelin [111], and FGF21 [112], demonstrate anti-steatotic action coupled
with autophagy induction in hepatic cells. Besides hormones, vitamins also induce hepatic
autophagy and alleviate lipotoxicity in NAFLD preclinical models [113]. Notably, vitamin
D or 1,25(0OH)2 D3 diminished HFD-induced liver damage and steatosis, which was ac-
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companied by autophagy and upregulation of ATG16L1 expression [114]. Similarly, the
supplementation of vitamin B12 and folate recently has been shown to promote autophagic
flux in hepatocytes, thereby reducing FFA-induced liver injury [115].

Nonpharmacological inducers of hepatic autophagy: Since there are no approved drugs
prescribed for NAFLD/NASH in humans, exercise and lifestyle changes still remain the
cornerstone to counter NAFLD-associated lipotoxicity. Several new studies highlighting
the regulation of hepatic autophagy by physical activity and dietary interventions are
outlined below:

Exercise: Exercise or physical activity has shown promising results in clinical studies
as well as in experimental models of obesity and NAFLD management [116]. The beneficial
effects of exercise in NAFLD have been attributed to a potent stimulation of autophagy
during physical activity [61,117-125]. Specifically, exercise has been directly linked to
lipophagy-mediated TAG turnover [119] as well as mitophagy induction to counter FFA-
induced mitochondrial damage [123].

Calorie restriction, Chrono-nutrition, and dietary interventions: Calorie restriction, inde-
pendent of the macronutrient composition, is associated with NAFLD improvement and
reduction of hepatic fat [126-128]. Similarly, low-carb diets have shown beneficial effects in
reducing hepatic steatosis in humans [126]. Interestingly, using preclinical animal models,
both calorie restriction and time-restricted feeding have been shown to induce hepatic
autophagy [63,129,130].

6. Conclusions

Based on the urgent clinical need to treat metabolic liver diseases such as NAFLD,
understanding and targeting lipotoxicity have become a cornerstone of NAFLD research.
Autophagy has been shown to be efficient in preventing several aspects of lipotoxicity
in preclinical animal models. Further studies in humans are needed to realize its transla-
tional potential. As autophagy induction can be achieved by several nutraceuticals and
nonpharmacological approaches, further studies in this direction may broaden the horizon
of treatment strategies for NAFLD.
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