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A B S T R A C T   

Optical coherence tomography (OCT) is a noninvasive high-resolution imaging technology that can accurately acquire the internal characteristics of 
tissues within a few millimeters. Using OCT technology, the internal fingerprint structure, which is consistent with external fingerprints and sweat 
glands, can be collected, leading to high anti-spoofing capabilities. In this paper, an OCT fingerprint anti-spoofing method based on a 3D con-
volutional neural network (CNN) is proposed, considering the spatial continuity of 3D biometrics in fingertips. Experiments were conducted on self- 
built and public datasets to test the feasibility of the proposed anti-spoofing method. The anti-spoofing strategy using a 3D CNN achieved the best 
results compared with classic networks.   

1. Introduction 

Every individual possesses unique biological characteristics, such as fingerprints, palm prints, voice prints, gait, and iris patterns. 
The limitations of traditional identity verification can be overcome by utilizing biometrics for identity authentication, enhancing both 
the accuracy and convenience of identity recognition [1]. 

Among various biometric features, fingerprints have emerged as the most widely adopted and popular because of their uniqueness, 
invariance, and convenience. This attribute has positioned fingerprints as a commonly employed trait for authentication [2,3], with 
more than 40% of biometric authentication systems worldwide employing fingerprint identification [4]. Even if two individuals are 
identical twins [5], an identification system can accurately and reliably determine their identities using fingerprints. Currently, 
automatic fingerprint identification systems primarily assess external fingerprint images using detailed features obtained by imaging 
the surface of fingers. However, external fingerprints can be susceptible to artificial when using materials such as silica gel and 
capacitive glue. Furthermore, unauthorized individuals can easily acquire and provide various counterfeit fingerprint samples to gain 
unauthorized access [6,7]. Additionally, self-made artificial fingers have been used to attack automatic fingerprint identification 
systems [5], and a considerable number of artificial fingerprints have been misjudged by automatic fingerprint identification systems. 
Hence, the anti-spoofing ability of fingerprint recognition systems has attracted the attention of researchers in biometrics and related 
fields. Researchers have begun to explore methods that can distinguish artificial fingerprints in different directions. 

In recent years, the use of neural networks for computer vision has produced astounding results in areas such as face pose esti-
mation [8–10], click prediction [11,12], and face recognition [13,14]. Neural networks also perform well in the field of fingerprint 
anti-spoofing. A series of neural-network-based methods have been proposed. The characteristics of bonafide and artificial 
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fingerprints, including the type of minutiae, ridge flow or orientation, ridge contour or shape, and ridge spacing or ridge density, are 
used to detect demonstration attacks of artificial samples using these neural-network-based methods. Park et al. [15] proposed a small 
fully convolutional neural network (CNN) that can be integrated into a fingerprint acquisition system. Anti-spoofing identification can 
be performed by classifying the collected images into bonafide fingerprints, artificial fingerprints, and background information. Wang 
et al. [16] cut the fingerprint image into blocks and input the local fingerprint image into a fully connected layer network for clas-
sification to determine the authenticity of the fingerprint. Uliyan et al. [17] used discriminative restricted Boltzmann machines to 
accurately recognize the fingerprints against fabricated materials used for spoofing. Maheswari et al. [18] proposed convolution neural 
network and dynamic differential annealing (CNN-DDA)-based spoofed fingerprint detection to analyze and evaluate fingerprint 
spoofing and forgery authentication systems. Kong et al. [19] proposed a novel method for handling noisy information: channel-wise 
feature denoising for fingerprint presentation attack detection (CFD-PAD). The aforementioned methods are all based on surface 
fingerprints for anti-spoofing. 

Simultaneously, hardware-based live detection methods have been introduced into fingerprint anti-spoofing research. Baldisiserra 
et al. [20] integrated odor sensors into a fingerprint collection system to sense the odor difference between human skin and artificial 
samples and to judge the authenticity of the detected samples. Through biological research, Drahansky et al. [21] found that heart 
contraction causes changes in blood flow, thus causing changes in the contact volume of the finger on the fingerprint reader. The tiny 
changes were collected by the sensor, amplified, and transmitted back to the control center to conduct anti-spoofing research on the 
tested fingerprint. Venkata et al. [22] used sensors to obtain the absorbance of the finger and artificial finger films for light of different 
wavelengths to determine the blood oxygen content of the finger and realize automatic anti-spoofing of the finger. Yau et al. [23] 
developed a fingerprint tactile sensing system that utilized the conductive characteristics of a finger to identify the authenticity of the 
collected finger. To further enhance the anti-spoofing ability of fingerprint recognition systems, researchers have explored the use of 
advanced imaging technologies such as optical coherence tomography (OCT). 

OCT is based on the principle of low-coherence interferometry [24] and has been widely used in the field of biomedical imaging for 
more than 30 years [25,26]. OCT is suitable for various biomedical applications, such as retinal nerve fiber layer [27], COVID-19 [28], 
and skin layer detection [29]. OCT can collect three-dimensional (3D) volumetric data from 0 to 3 mm below the surface of the finger 
skin. Based on the rich fingertip information collected by OCT systems, researchers have explored their anti-spoofing characteristics. 
Chugh et al. [30] extracted the features of a single slice and input them into the Inception-V3 network and compared the network 
prediction value with the threshold value to determine whether the fingerprint was bonafide or artificial. Liu et al. [31,32] proposed 
the one-class PAD (OCPAD) method, which only requires bonafide cross-sectional OCT-based fingerprint images for training and an 
efficient fingerprint anti-spoofing system with high accuracy and robustness using OCT to anti-counterfeit the fingerprints. Zhang et al. 
[33] combined one-class wavelet transforms to propose a frequency-domain OCT presentation attack detection method. 

However, existing OCT-based fingerprint anti-spoofing methods suffer from significant limitations, pertaining to the early 
employment of conventional techniques as well as the more recent utilization of neural networks for fingerprint anti-spoofing. These 
approaches primarily focus on individual cross-sectional images (B-scans) extracted from the volume data acquired using the OCT 
system. Unfortunately, these approaches do not fully leverage the inherent 3D spatial continuity within the volume data during the 
anti-spoofing procedure, and fail to consider the correlation between B-scans. 

Building on the limitations of existing OCT-based fingerprint anti-spoofing methods, our study seeks to bridge this gap by har-
nessing the inherent 3D spatial continuity present within the volume data acquired through OCT. As shown in Fig. 1 and (a) presents a 
series of B-scans of OCT volume data and Fig. 1 (b) is an example of the 3D volume data reconstructed from (a). It can be observed that 
3D biometrics, such as sweat glands as well as the epidermis and dermis of the fingertips in OCT cross-sectional images, are continuous 
in 3D space. The biometrics in the volume data of the fingertips collected by OCT have 3D information and spatial continuity, which 
represent significant advantages over most current fingerprint collection devices. To leverage the spatial coherence present in OCT 
data within a 3D space, researchers have incorporated 3D CNNs across various domains of OCT data. They aimed to capitalize on 
intrinsic spatial relationships and enhance the effectiveness of their methodologies in their respective domains. For instance, 
Maetschke et al. [34] used 3D CNNs to differentiate between the OCT-captured images of healthy eyes and those afflicted by glaucoma. 
Their approach focused on direct analysis of the optic nerve papillae (ONH) to accurately categorize OCT-captured eye images. 
Similarly, Yang et al. [35] utilized 3D fully CNNs to partition and extract both internal and external patterns from OCT fingerprint data. 

Fig. 1. (a) A series of B-scans of OCT volume data. (b) An example of OCT volume data [35].  
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Considering the exceptional capabilities of 3D CNNs in processing OCT 3D volume data, we explored its application in extracting 
continuous 3D spatial information from OCT volume data in the realm of fingerprint anti-spoofing research. To the best of our 
knowledge, this is the first study to use the spatial continuity of OCT 3D volume data for fingerprint anti-spoofing research using a 3D 
CNN. 

This study proposes an anti-spoofing method that utilizes the 3D spatial continuity of OCT for the anti-spoofing field of OCT 
fingerprints. This method focuses on continuous information in the 3D space of fingerprints collected using OCT. We devised a 
methodology to extract small patches of the region of interest (ROI) from OCT 3D volume data. Furthermore, we crafted a 3D CNN in 
conjunction with a suite of anti-spoofing strategies, leveraging the extracted small patches to accurately determine the authenticity of 
the OCT volume data. As shown in Fig. 3 (c), the double-layer fingerprint film is locally very similar to the bonafide fingerprint, 
resulting in a high score in the certain area. We then designed a strategy to prevent the partial score of artificial fingerprints from being 
too high, which may cause the final anti-spoofing results to be incorrect. The anti-spoofing capability of this technique was tested on 
two OCT databases obtained using different OCT systems and different types of artificial materials. The results were satisfactory, 
demonstrating the robustness and security of the proposed method. 

2. Methods 

2.1. OCT system and data acquisition 

Our research focused on OCT systems utilizing a central light source with a wavelength of 1310 nm [36]. The setup of the 
spectral-domain OCT system is illustrated in Fig. 2 (a). The OCT system is enclosed within a protective casing to enhance system 
stability and mitigate external influences. A schematic diagram of the system in the shell is shown in Fig. 2 (b), whose basic structure is 
that of a Michelson interferometer. The light from the broad light source is divided into reference and sample arms using a 50 × 50 
fiber coupler. In the reference arm, the light is returned to the fiber through mirror reflection; while in the sample arm, the light is 
reflected off the detection tissue material. The two beams of returned light interfere with the fiber coupler, and a spectrometer with a 
charge-coupled device (CCD) is used to obtain the depth information of the fingertips (A-line). Finally, OCT volumetric data corre-
sponding to the real finger scanning area, measuring 18 mm × 14 mm, are acquired. These data possess dimensions of 500 × 1800 ×
1400 pixels owing to the scanning conducted by the X and Y scanners, as shown in Fig. 2(c) and (d) is the corresponding physical 

Fig. 2. The OCT system. (a) The experimental platform. (b) A schematic diagram. (c) A schematic diagram of the OCT system for scanning fingertips 
to obtain the 3D volumetric data. (d) The corresponding physical structure [37]. 
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structure. 
In this study, we developed 21 types of artificial fingerprint materials [38] that can be roughly divided into two categories: external 

pattern simulation (e.g., clear silicone and conductive silicone) and internal structure simulation (e.g., double-layer and ultrathin 
fingerprint films). Fig. 3 illustrates typical examples of bonafide and artificial B-scans. In contrast to Fig. 3 (b), (c) is more prone to 
inducing identification errors in automatic fingerprint identification systems. Consequently, anti-spoofing methods that focus solely on 
a single cross-sectional image (B-scan) from the volume data can result in misjudgment. Therefore, we introduced an OCT fingerprint 
anti-spoofing method based on a 3D CNN, enabling us to extract discriminating features more accurately from OCT volume data while 
preserving spatial continuity. 

2.2. Dataset description 

As shown in Table 1, our self-made OCT fingerprint database is denoted as the Zhejiang University of Technology External and 
Internal Fingerprint Database (ZJUT-EIFD) [38]. The training and testing datasets used in the proposed method were selected from this 
database. A total of 160 fingers from 20 individuals aged 22–55 years were used as bonafide samples. Each finger was sampled eight 
times. Finally, 1280 sets of bonafide OCT volume data were obtained. 

For artificial fingers, 21 common materials were used, and each material consisted of five different artificial fingers. Each artificial 
finger was sampled five times. Finally, 525 sets of artificial OCT volume data were obtained. 

Generally, the potential failure of the fingerprint anti-spoofing method can often be attributed to the presence of unknown artificial 
fingerprint materials. Therefore, the generalization ability of the model is the key to evaluating the anti-spoofing method. We divided 
the ZJUT-EIFD data into two parts: D1 for the network performance experiment and D2 for the anti-spoofing performance experiment. 
The details are presented in Table 1. In the D1 dataset, we used 24 fingers of three people, resulting in a total of 72 bonafide volume 
data points for training. Simultaneously, D1 was divided into three equal parts for three-cross validation. Illustration of some bonafide 

Fig. 3. (a) The bonafide fingerprint and the corresponding B-scan. (b) The artificial fingerprint with external pattern simulated (conductive silicone) 
and the corresponding B-scan. (c) The artificial fingerprint with the internal structure simulated (a double-layer fingerprint film made in clear 
silicone + flesh pigmented silicone) and the corresponding B-scan. 

Table 1 
The data description of ZJUT-EIFD.  

Type Number of Volume Data D1 D2 

Volume Data Volume Data 

Bonafide 20 × 8 × 8 = 1280 3 × 8 × 3 = 72 17 × 8 × 8 = 1088 
Artificial 21 × 5 × 5 = 525 12 × 2 × 3 = 72 9 × 5 × 5 = 255  
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B-scans in D1 are shown in Fig. 4(a). To balance the positive and negative sample sizes, 24 subjects using 12 materials were utilized, 
resulting in a total of 72 artificial volume data points for training. In the D2 dataset, we used 1088 bonafide volume data points for the 
remaining 17 people and 225 artificial volume data points for the remaining nine artificial samples for testing, as shown in Fig. 4(c). 

Fig. 4(b)–(d) shows some of the samples used for training and testing. Artificial samples composed of various materials can be 
classified into two categories: simulated external patterns and simulated internal structures. Unlike the traditional automatic 
fingerprint recognition system, which is easily deceived by artificial fingerprints of the simulated external patterns, OCT is deceived 
more by artificial fingerprints of the simulated internal structures because of its ability to collect images of 0–3 mm below the fin-
gertips. Therefore, to better test the generalization performance, the artificial fingerprints used for training in D1 were all simulated 
external pattern artificial fingerprints, while those used in D2 for testing were simulated internal structure artificial fingerprints. The 
anti-spoofing performance was tested on D2 using unknown samples. 

2.3. The 3D convolutional neural network 

ResNet [39,40], based on a 3D CNN combined with a convolutional block attention module (CBAM) [41], was used for fingerprint 
anti-spoofing collected by the OCT system. As shown in Fig. 5, the network used in this study maintains the network weight of key 
features, thus enhancing the network focus on the subcutaneous key organization information of fingerprints to achieve the 
authenticity identification of fingerprints. Most importantly, we used 3D convolution to extract 3D spatial information based on the 
spatial continuity of OCT fingerprint data for anti-spoofing, instead of using 2D convolution to extract the feature information of a 
single B-scan as in most studies. 

2.4. The proposed method for OCT fingerprint anti-spoofing 

Our proposed method utilizes a 3D CNN to extract anti-spoofing features from the volume data of fingertips collected using OCT. 
This was achieved by leveraging the 3D spatial continuity of the volume data to accurately distinguish bonafide fingerprints from 
artificial fingerprints. The main anti-spoofing procedures for OCT fingerprints are shown in Fig. 6. Original 3D volume data are 
collected using the OCT system, and eight ROI patches with a size of 128 × 128 × 128 pixels are randomly extracted. The identification 
results are then used for anti-spoofing. If a single patch is predicted to be an artificial fingerprint, the volume data are predicted to be 
artificial fingerprints. Meanwhile, if all patches are predicted to be bonafide fingerprints, the volume data are confirmed to be bonafide 
fingerprints. 

2.4.1. Preprocessing 
A significant number of black background regions were present in the OCT-collected fingerprint data. These regions have no impact 

on OCT fingerprint anti-spoofing and are therefore considered redundant information. To this end, we extracted the ROI from the OCT 
volume data, which were small patches. Small ROI patches are shown in Fig. 7(a)(b). Small patches can reduce the interference of 
redundant black background information while preserving important anti-spoofing information, such as the epidermis, sweat glands, 
and viable epidermis. This approach can effectively enhance the judgment accuracy while reducing the amount of data processing and 
training time required. In this section, we describe the process of extracting small ROI patches. This is shown in Algorithm 1. 

Fig. 4. (a) and (c) illustration of some bonafide B-scans collected from different human fingers for training and testing. (b) illustration of some 
artificial B-scans collected from artificial fingers with external pattern simulated for training. (d) illustration of some artificial B-scans collected from 
artificial fingers with internal structure simulated for testing. 
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Fig. 5. Network structure diagram.  

Fig. 6. The flowchart of the proposed anti-spoofing of OCT fingerprint algorithm.  

Fig. 7. (a) Illustration of bonafide patches using patch extraction method. (b) Illustration of artificial patches using patch extraction method. (To 
better demonstrate the operation of image enhancement). 
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Algorithm 1 
Extract the ROI patches of OCT volume data  

Input: The OCT volume data T with the size of D£L£W (where ‘D’ represents the Depth of the volume data, ‘L’ represents the Length of the volume data, and ‘W’ 
represents the Width of the volume data, which is the number of B-scans.) 
Output: The ROI patches of the OCT volume data 
1: Define constants: the arrays of random numbers A, B, the number of autocorrelation terms Nct, the size of patches D’ × L’ × W′ 
2: for (i = 0, i < L, i++) do 
3: if (i in A) then 
4: for (j = Nct, j < D, j++) do 
5: obtain sum: XS = SUM(T[i][j]) 
6: end for 7: obtain the max value of XS: Vmax = max (XS) 
8: obtain the index of the Vmax: H = index (Vmax) + Nct//H as cover glass line 
9: if H + D’ > D then 
10: H = D-D′-1//prevent value out of bounds 
11: end if 
12: for (m = 0, m < W, m++) do 
13: if (m in B) then 
14: obtain the ROI patches: Dataset = [T [i-L’: i, H:H + D′, j: j + W’]] 
15: end if 
16: end for 17: end if 
18: end for 19: return Dataset  

First, we summed the gray values of each row of pixels in the B-scan. It can be clearly found that the gray value of biological tissues 
in the image acquired by OCT was generally higher than the background area. In the OCT B-scans, the glass layer exhibits the largest 
pixel. Leveraging this characteristic, we accumulate the pixel values along the length direction to obtain the cumulative values along 
the depth direction. The maximum value within this accumulation approximates the position of the glass layer, which is denoted as the 
‘cover glass line’ [31,38], where the selection range for x is [Nct, D). The value is not from the position of the 0th pixel because the top 
rows of the autocorrelation terms are caused by the OCT system itself, which interferes with the selection of the cover glass line. We 
selected the maximum value from the sum of the values, determined the position of the maximum value, and added the pixels of Nct 
that were originally deleted. The final position was the intercepted cover glass line. As the difference between the positions of the cover 
glass line of the adjacent B-scan was small, after obtaining the cover glass line of the B-scan, a small patch was cut into the previous 
B-scan. 

The separation between the cover glass line and critical anti-spoofing data within the OCT images, such as internal fingerprints and 
sweat glands, did not exceed 100 pixels [42]. To save GPU computer power, we set the size of the cut patches to 128 pixels in length, 
width, and height. Fig. 7(a)(b) illustrates some bonafide and artificial patches by the patch extraction method. 

The skin curvature of the edge area in the B-scan was relatively large. Simultaneously, the middle part of the B-scan, finger, and 
glass surface were closely fitted, and the subcutaneous information of the finger was complete and clear. Therefore, the method 
described in this study discarded the 300-pixel areas at each boundary in the x-direction. During the network training, to obtain more 
small patches, 36 feature patches were cut from each volume of data to ensure that the network had sufficient learning data, to ensure 
learning on different biological tissue parts, and to fully learn the forged information of different artificial materials. Then, we used 
eight patches that were extracted randomly in the anti-spoofing performance experiment and the robustness experiment to ensure the 
performance of the proposed method. We chose eight small ROI patches because they could cover the anti-spoofing information 
distribution of OCT volume data. The slider windows slid along the cover glass line in the x-direction, 128 B-scans were cut forward in 
the y-direction at the B-scan position of the cover glass line, and 128-pixel regions were cut downward in the z-direction according to 
the cover glass line. 

2.4.2. Process of anti-spoofing using 3D CNN 
Algorithm 2 
Process of fingerprint anti-spoofing strategy using 3D CNN  

Input: The OCT volume data T 
Output: Fingerprint data authenticity identification results 
1: V = Algorithm 1(T); 
//Step 1. Divide the input OCT volume data T into patches randomly 
2: for (i = 0, i < the length of V, i++) do 
3: R[i] = model(V[i]); 
5: end for//Step 2. Input the local feature patch into the trained network model and return the prediction result of each patch 
6: for (j = 0, j < the length of V, j++) do 
7: if (R[j] = = false) then 
8: RS = false; 
9: break; 
10: end if 
11: end for//Step 3. Judge whether there is false sample in the recognition results 
12: return Rs//Step 4. Output classification results  

Y. Zhang et al.                                                                                                                                                                                                          



Heliyon 9 (2023) e20052

8

Fig. 6 shows the OCT fingerprint anti-spoofing process proposed in this study and the input is the OCT volume data collected by the 
OCT system. 

Algorithm 2 outlines the specific anti-spoofing process used in the fingerprint anti-spoofing stage. We used OCT collection 
equipment to obtain fingertip data, from which we randomly selected eight ROI patches as input into our trained network model to 
generate the prediction scores and results for each patch. Specifically, if the prediction result for any of the eight ROI patches was 
artificial, the prediction result of the volume data was output as an artificial fingerprint, and the predicted results were then output. 

3. Experiments and analysis 

This section verifies the superiority of the proposed anti-spoofing method. The network performance experiment was used to assess 
the classification effect of each patch, while the anti-spoofing performance experiment was used to identify each OCT volume data 
point after the anti-spoofing process described in Section 2.4.1. Subsequently, we conducted cross-device experiments on the SZU 
database [43] to demonstrate the robustness of the proposed method by estimating the recognition error rate on this database. Finally, 
we used Grad-CAM [44] for visualization and analyzed whether our proposed method is based on the location of the OCT volume data 
for anti-spoofing. 

The identification error rate (ERR) is a crucial evaluation metric for fingerprint anti-spoofing because of its quantifiable nature. A 
lower ERR indicates a higher accuracy in distinguishing genuine from counterfeit products and improving security and trustworthi-
ness. Therefore, it was used as an evaluation metric to assess the efficiency of the proposed method. The ERR is defined as Eq. (1): 

ERR=
FP + FN

TP + TN + FP + FN
, (1)  

where TP (True Positive) refers to the number of positive instances correctly predicted as positive, TN (True Negative) represents the 
number of negative instances correctly identified as negative, FP (False Positive) denotes the number of negative instances incorrectly 
classified as positive, and FN (False Negative) indicates the number of positive instances incorrectly predicted as negative. This metric 
is fundamental for evaluating the performance of binary classifiers and assessing their ability to correctly identify positive and negative 
samples. 

3.1. Network performance experiment 

To validate the effectiveness of the proposed method, we conducted a comparison with current mainstream supervised networks, 
including PreResNet [45], DenseNet [46], WideResNet [47], and R(2 + 1)D [48] Simultaneously, we replicated the state-of-the-art 
methods, DSResNet [13] and the ResNet used CDCN [14], which are widely used in the field of face recognition, which is similar 
to fingerprint anti-spoofing. We compared the experimental results to explore whether the algorithms developed for face recognition 
could deliver exceptional performance in the field of OCT fingerprint anti-spoofing. The proposed patch extraction method was 
configured for all the supervised networks to make the comparison more intuitive. 

The D1 dataset was used for the experiment. We adopted the three-fold cross-validation method for network training to verify and 
compare the ERRs of the aforementioned four different network models. The artificial materials in D1 were divided into three equal 
groups, with two groups used for training and one group used for verification in each fold. The experimental results are listed in 
Table 2. 

Observing the experimental results of the different network comparisons in Table 2, the experimental results presented in the table 
were obtained by combining the results from the three-fold cross-validation. From the results, compared to other supervised-based 
models, our method achieved optimal performance in ERR. With our method, the ERR was 3.57%, which was 0.36% lower than 
the second-best result. In this experiment, all 3D supervised learning networks achieved relatively good performance when tested on 
both bonafide and simulated artificial fingerprints, even with limited training data. In future experiments, we will test artificial 
samples of unknown materials and fingerprint volume data collected from different databases to verify the robustness and general-
izability of our method for unknown artificial materials and different OCT acquisition systems. The results were obtained by averaging 
three-fold cross-validation. 

Table 2 
Performance comparison of different network (%).   

ERR 

PreResNet [45] 4.29 
DenseNet [46] 4.44 
WideResNet [47] 4.57 
R(2 + 1)D [48] 3.93 
CDCNResNet [14] 4.36 
DSResNet [13] 4,48 
Proposed Method 3.57  
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3.2. Anti-spoofing performance experiment 

In this section, we compare the proposed method with current mainstream supervised networks configured using the proposed 
patch extraction method and anti-spoofing process. In addition, we also compared the OCT fingerprint anti-spoofing methods with 
Chugh’s method [30], which is designed for single B-scan anti-spoofing; to ensure a fair comparison, we used an equal number of 
B-scans for anti-spoofing when applying their approach. The final anti-spoofing score for the 3D volume data was obtained by 
averaging the individual anti-spoofing scores of all B-scans involved in the prediction process. For this experiment, we used the D2 
dataset, which contained 1088 bonafide volume data points and 255 artificial volume data points. The results of the different methods 
are listed in Table 3. 

As described in Section 3.3, the anti-spoofing process yielded extremely low error rates for all supervised networks that identified 
artificial samples. In this experiment, CDCNResNet and DSResNet, did not demonstrate significant advantages over the other super-
vised learning methods. The proposed method was able to identify all the artificial samples in this experiment and achieved the best 
recognition results, with a recognition error rate of 0.92% on the bonafide fingerprint database, thus verifying its superior anti- 
spoofing performance. 

Based on the experimental results, it is evident that the performance of the supervised networks that use 3D convolution is 
considerably superior to that of Chugh’s method, which relies on 2D convolution. This is because OCT volume data possess spatial 
continuity, and 3D convolution can extract more anti-spoofing features than 2D convolution. Furthermore, the materials used to 
generate artificial fingerprints are highly complex, resulting in poor performance when identifying fingerprints. Additionally, 
compared with other supervised networks, the proposed approach demonstrated a better ability to proactively focus on internal 
structural differences with limited training sets, comprising only two individuals for bonafide fingerprints and eight materials with 
only simulated external patterns. Therefore, the proposed method can ensure the generalizability of artificial samples. 

3.3. Runtime experiment 

We measured the runtime of the CNN using a machine equipped with an Intel Xeon Gold 5218 R 2.10GHZ and an NVIDIA GeForce 
RTX 3090. 

Regarding OCT fingerprint anti-spoofing, it is essential to consider the entire 3D volume data captured by the OCT system because 
focusing solely on a single B-scan cross-section would not yield meaningful results. For this experiment, all time performance cal-
culations were based on the OCT volume data. The approach for evaluating the time performance involved predicting 20 sets of OCT 
volume data consecutively, recording the time overhead for each set, and subsequently computing the average value. 

To better demonstrate the time overhead for each method, we present the prediction time for each method using the volume data in 
two segments. These two segments are the processing and prediction runtimes. 

As shown in Table 4, for the 3D CNN-based supervised learning methods, the preprocessing methods used are the same, so their 
prediction runtime, total runtime and params are recorded in the table. Processing runtime is about 1.643 s. For prediction, excluding 
PreResNet, which boasts a simpler network structure resulting in notably lower prediction times compared to other methods, the 
remaining approaches did not exhibit substantial advantages or disadvantages in terms of time performance. Nevertheless, in terms of 
the total runtime, these methods did not demonstrate particularly noticeable advantages or disadvantages in terms of temporal per-
formance. In terms of parameter count, DenseNet has significantly fewer parameters compared to other methods due to its densely 
connected architecture. WideResNet increases the parameter count by widening the network’s width while keeping its depth un-
changed. Meanwhile, DsResNet employs a dual-stream branching structure, resulting in roughly twice the parameter count of a single- 
branch structure. The proposed method slightly increases in parameter count due to the incorporation of attention modules. 

To enhance the accuracy and persuasiveness of our experimental results, we computed the time overhead of Chugh’s method [30]. 
During the data preprocessing phase, the time overhead was 368.162 s, whereas the network prediction phase took 214.364 s. These 
runtimes significantly exceeded those of the 3D CNN-based supervised learning method. The reason for the high processing time 
overhead was the Non-Local Means denoising of the B-scan. The extra time overhead added when using Non-Local Means denoising for 
a single B-scan might not be very obvious; however, in the ZJUT-EIFD [38] database, the OCT fingerprint volume data had 1400 
B-scans, resulting in a significant increase in time overhead. This explains why the processing time overhead of Chugh’s method was 
much higher than that of other methods. During the prediction runtime, their method used no more than 60 ROI patches to predict a 
single B-scan. As a result, when predicting the authenticity of the entire data volume, the number of ROI images used for prediction 

Table 3 
The Anti-spoofing performance of different methods (%).  

Methods ERR of Bonafide ERR of Artificial 

PreResNet [45] 3.89 0.44 
DenseNet [46] 4.81 0.29 
WideResNet [47] 1.41 0.59 
R(2 + 1)D [48] 2.27 0.89 
CDCNResNet [14] 3.52 0.74 
DSResNet [13] 3,56 0.44 
Chugh’s method [30] 3.31 5.34 
Proposed method 0.92 0  
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exceeded 10,000. By contrast, the proposed method only needs to validate eight ROI patches, making the time overhead of Chugh’s 
method in the network prediction phase significantly higher than that of other methods. 

3.4. Cross-device research 

The OCT data distribution can vary significantly because of the use of different OCT acquisition devices and methods. Conse-
quently, robustness and device generalizability are major challenges facing OCT fingerprint anti-spoofing methods. 

To assess the robustness and device generalizability of the proposed anti-spoofing method, it is necessary to evaluate its perfor-
mance on fingerprints collected using different OCT devices. To this end, we used the SZU database [34], which contains 1807 
bonafide volume data collected by an 840 nm spectral domain OCT system, with an OCT data volume of 500 × 1500 × 400 pixels, 
which is different from our database and has large differences in image distribution. For our OCT system, we collected 1400 B-scans in 
volume data, which correspond to an actual finger length of 14 mm. Liu’s database only has 400 B-scans for volume data, but cor-
responds to an actual finger length of 15 mm. Our dataset features a significantly higher scanning density in the B-scan direction than 
Liu’s dataset. This allowed us to determine whether the proposed method was affected by imaging differences between different OCT 
devices. 

The results presented in Table 5 demonstrate that the proposed fingerprint anti-spoofing method achieved the best experimental 
results. In addition to the proposed method, the performance of other methods on the SZU database significantly decreased. As shown 
in Fig. 2(a), the SZU database contains only 400 B-scans in the y-direction, while our database comprises 1400 B-scans in the same 
direction. The density of the data collected from fingertips in our database was higher than that in the SZU database. This is evident in 
the 3D space, where the 3D information of patches with the same size was notably different, thereby resulting in a significantly inferior 
performance of other networks on the SZU database. From Table 5, the two methods applied to face recognition did not show good 
robustness on this task. Furthermore, the proposed method achieved an error rate of 6.40% on the SZU database, which was 4.99% 
lower than the lowest result. This indicates that the proposed method can accurately distinguish bonafide fingerprints from those 
collected by unknown OCT devices. Additionally, the results demonstrate the generalizability and robustness of the proposed anti- 
spoofing method. 

3.5. Visualization 

As shown in Fig. 8, we used Grad-CAM [37] to draw heat maps of the network results to visualize the network learning charac-
teristics of the results and more intuitively display the information features on which the network prediction labels depend. 

Fig. 8 (a) shows a partial cross-sectional view of a bonafide fingerprint block. The network focus on the internal fingerprint in-
formation and sweat glands under the skin for bonafide fingerprints. The network pays more attention to this internal information than 
to the epidermal information near the glass layer. Simultaneously, along the y-direction (which is the direction of generating the B- 
scan), the network continues to focus on the internal structure of the bonafide fingerprints. From the perspective of the entire volume 
of data, the content on which the network focuses exhibits spatial continuity. For the partial cross-sectional images of the artificial 
fingerprints with the external pattern simulation blocks shown in Fig. 8 (b), the network focuses more on the artificial fingerprint 
information through the glass layer, which is completely different from the bonafide fingerprint. For the artificial patch with the 
simulated internal structure, as shown in Fig. 8 (c), the network also focuses on the internal artificial structure. However, the spatial 
continuity of artificial fingerprints with simulated internal structures cannot support the network in focusing on their internal 
structures from the perspective of the entire 3D volume data. Therefore, the network distinguishes artificial fingerprints with simulated 
internal structures from bonafide fingerprints. 

Our method enhances the ability to extract internal features of OCT volume data and automatically identifies the differences in the 
internal structure of bonafide and fake fingerprints, thereby greatly improving the effect of fingerprint anti-spoofing. 

4. Conclusion 

This paper presented an OCT fingerprint anti-spoofing method based on a 3D CNN. Using a 3D CNN, this approach effectively 
focuses on key structural information and 3D spatial continuity from the volume data of the fingertips collected by OCT. Compared 
with existing methods, our proposed method demonstrated the best network performance and anti-spoofing capabilities, exhibiting 
high distinguishability for both bonafide and artificial fingerprint samples. Furthermore, we thoroughly explored the anti-spoofing 

Table 4 
Runtime of each method.  

Method Runtime of prediction (s) Total Runtime (s) Params (M) 

PreResNet [45] 0.125 1.768 46.97 
DenseNet [46] 0.215 1.858 11.24 
WideResNet [47] 0.269 1.912 158.25 
R(2 + 1)D [48] 0.213 1.856 47.02 
CDCNResNet [14] 0.191 1.834 46.97 
DSResNet [13] 0.195 1.838 93.11 
Proposed method 0.217 1.86 49.50  
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performances of various OCT acquisition devices. The results highlighted the excellent generalizability and robustness of the proposed 
method for different OCT equipment setups, thus demonstrating its effectiveness in addressing security concerns related to fingerprint 
authentication. 
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