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ABSTRACT The mouse pituitary cell line, AtT-20, packages the adrenocorticotropic hormone 
(ACTH) in secretory vesicles and releases it when the cell is stimulated with secretagogues. 
These cells have the capacity, after transfection with the appropriate DNA, to package 
heterologous peptide hormones into the regulated secretory vesicles (Moore, H. P. H., M. D. 
Walker, F. Lee, and R. B. Kelly, 1983, Cell, 35:531-538). To test if other secreted proteins 
prefer a different route to the surface, we have transfected AtT-20 cells with DNAs coding for 
a fragment of a membrane protein, the vesicular stomatitis virus G protein from which the 
membrane spanning domain has been deleted (Rose, J. K., and J. E. Bergmann, 1982, Cell, 
17:813-819). We found that the secreted vesicular stomatitis virus G proteins were not 
transported to the regulated secretory vesicles. Instead they preferentially exited the cell by 
the constitutive pathway previously found in these cells (Gumbiner, B., and R. B. Kelly, 1982, 
Cell, 28:51-59). In contrast, human growth hormone transfected into the cells by the same 
procedure was transported to the regulated pathway with a similar efficiency as the endoge- 
nous hormone ACTH. Transport of the secreted G protein to the regulated pathway, if it 
occurs at all, is at least 30-fold less efficient than peptide hormones. We conclude that the 
transport machinery in AtT-20 cells must selectively recognize different secreted proteins and 
sort them into distinct secretory pathways. 

Most higher eucaryotic cells can secrete proteins into the 
extracellular space. It has been known for some time that 
secretion from a given cell type can be either regulated or 
constitutive (31). Regulated secretory cells store specialized 
secretory products at high concentrations in secretory vesicles, 
which accumulate in the cytoplasm until exocytosis is trig- 
gered by a stimulus. In constitutively secreting cells, newly 
synthesized protein is not stored but leaves the Golgi appa- 
ratus in short-lived membrane vesicles that fuse immediately 
with the plasma membrane in the absence of any extracellular 
signal. In both types of secretory cell, different secretory 
proteins can be found in the same secretory vesicle. It was 
therefore plausible to suggest that secreted proteins are not 
segregated from one another in the Golgi apparatus (7). 

Segregation of secretory proteins needed to be reconsidered, 
however, when the constitutive and the regulated secretory 
pathways were found to co-exist in the same cell. The pituitary 
cell line, AtT-20, has a regulated pathway in which the adre- 
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nocorticotropic hormone (ACTH) ~ precursor, proopiomelan- 
ocortin (POMC), is processed to mature ACTH, stored in 
regulated secretory vesicles, and released only when the cells 
are stimulated, for example, with 8-Br-cAMP. The AtT-20 
cells use the constitutive pathway to externalize a viral mem- 
brane glycoprotein (gp70) made by these cells (12). Further 
evidence that there are two routes to the surface in endocrine 
cells was obtained using inhibitors (10, 17). 

Although membrane proteins preferentially take the con- 
stitutive route to the surface, secreted proteins examined thus 
far appear to use both pathways for externalization. Some 
newly synthesized hormones, for example, did not enter the 

Abbreviations used in this paper. ACTH, adrenocorticotropic hor- 
mone; CAT, chloramphenicol acetyltransferase; Endo H, endogly- 
cosidase H; ER, endoplasmic reticulum; hGH, human growth hor- 
mone; POMC, proopiomelanocortin; RIA, radioimmunoassay; RSV- 
LTR, Rous sarcoma virus long terminal repeats; SV40, Simian virus 
40; TG, truncated G protein; VSV, vesicular stomatitis virus. 
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regulated pathway but were secreted by the constitutive path- 
way (12, 19). Similarly, when AtT-20 cells were treated with 
drugs that elevated the synthesis ofglycosaminoglycans, these 
sugar chains were detectably secreted by both pathways (2). 
One possibility consistent with the earlier proposal that secre- 
tory proteins are not segregated, is that secreted proteins show 
no preference for one pathway over another. In such a passive 
situation, the amount entering each pathway is proportional 
to the bulk-flow into each pathway. A second possibility is 
that sorting does exist but that the preference for one pathway 
over another is not absolute. Sorting in this case might be 
carrier-mediated and involve sorting domains of the type 
suggested by Blobel (1). 

If protein secretion is passive in AtT-20 cells, all proteins 
should partition equally between the two pathways. In this 
report we present data that are difficult to reconcile with such 
a passive-flow model. A quantitative comparison of the secre- 
tion of two proteins revealed that partition into the two 
pathways can be different. Using an approach used to study 
proinsulin processing in AtT-20 cells (19), we have transfected 
AtT-20 cells with DNA sequences encoding a secreted form 
of the vesicular stomatitis virus (VSV) membrane G protein, 
from which the transmembrane and the cytoplasmic domains 
have been deleted (24). We found that the secreted G protein, 
unlike ACTH, is transported preferentially to the constitutive 
pathway, a result not readily explained if transport of  secreted 
proteins occurs by bulk-flow. In contrast, human growth 
hormone (hGH) transfected into these cells is sorted into the 
regulated pathway at least as efficiently as is the endogenous 
hormone, ACTH. We conclude that transport of proteins 
from the Golgi apparatus cannot be passive in these cells, but 
most likely involves a cartier-mediated sorting mechanism 
that shows at least a 30-fold selectivity for different proteins. 

MATERIALS AND METHODS 

Antisera, Peptide Hormones, 
and Radioimmunoassays 

Rabbit serum against inactivated VSV (Indiana strain) was a generous gift 
of  Dr. J. Rose. Goat ant i -hGH antiserum used for immunoprecipitation was 
obtained from Antibodies Inc. (Davis, CA). Affinity-purified rabbit anti-ACTH 
antibodies were generated and purified as described previously (18). hGH 
purified from E. coli was a gift of Dr. Peter Seeburg. Synthetic ACTH peptide 
(1---~24) was from Organon Diagnostics (West Orange, N J). Radioimmunoassay 
(RIA) of ACTH was performed as described ( i 1). hGH RIA kits were purchased 
from Hybritech Inc. (La Jolla, CA). 

Recombinant Vectors 
The mammalian expression vector, pSV2-TG, carrying a truncated VSV O 

coding sequence downstream from the SV40 early promoter was a generous 
gift of  Dr. Jack Rose. To construct a vector suitable for expression in AtT-20 
cells. 5 gg of  this plasmid was digested with the restriction endonucleases PvulI 
and HindIlI (New England Biolabs, Beverly, MA), followed by treatment with 
calf intestinal phosphatase (Boehringer Mannheim Biochemicals, Indianapolis, 
IN) to remove the 5' phosphates (16). The enzymes were then removed from 
the reaction mixture by phenol-chloroform extraction, and the DNA was 
recovered by ethanol precipitation. 100 ng of the digested vector was then 
ligated to 100 ng of a 398-bp NruI-HindIlI restriction fragment, which has been 
excised from the plasmid pRSV-CAT (9) and purified on a 1% agarose gel. The 
ligated mixture was used to transform E. coli strain BHl01,  and the plasmids 
from resulting ampicillin-resistant colonies were screened for the correct insert. 

The plasmid pKl3  carrying the hGH gene was obtained from Dr. Peter 
Kushner and Dr. Howard Goodman. Chloramphenicol acetyltransferase (CAT) 
constructs used for the comparison of  promoter activities were from Dr. Don 
DeFranco (mouse mammary tumor virus), Dr. Thomas Edlund (herpes thy- 
midine kinase), and Dr. Cori Gorman (Rous sarcoma virus and Simian virus 
40 [SV40]). 
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DNA Transfection and Isolation of 
Stable Transformants 

AtT-20 cells were transfected with plasmid DNAs by the calcium phosphate 
procedure as described previously (19). For transient expression, 100 ~g of 
uncut plasmid was used per 10-cm dish of cells. For stable transformants each 
dish received 120 ~g of nonselectable DNAs and 24 ~g of the selectable DNA, 
pSV2-neo. The antibiotic G418 (Geneticin) used for selection was from Gibeo 
Laboratories (Grand Island, NY). Clones were screened by RIA (for hGH) or 
by immunoprecipitation (for truncated G [TG]). CAT activity was assayed 
according to the procedure described by Walker et al. (32), except that acetyl- 
CoA was added at a ten times higher concentration and the reaction was carried 
out longer (16 h). Spots from the thin layer plates were cut out and counted in 
a liquid scintillation counter, or alternatively, the autoradiogram was scanned 
to yield the numbers shown in Table I. 

Metabolic Labeling and Immunoprecipitation 
Cells grown on polylysine-coated dishes were first incubated in medium 

lacking methionine for 30 min before labeling. 0.5 mCi [~Slmethionine in 
medium containing 1/20th of the normal amount of methionine and 2.5% 
fetal calf serum was then added to each 10-cm dish for lengths of time indicated 
in the figure legends. Chase was carried out in medium containing normal 
amounts of unlabeled methionine plus 2.5% fetal calf serum. Ceils were 
harvested and prepared for immunoprecipitation according to the procedure 
of Rose and Bergmann (24). Medium samples were lyophilized and dissolved 
in NDETS buffer ( t% Nonidet P-40, 0.4% deoxycholate, 66 mM EDTA, 10 
mM Tris, pH 7.4, and 0.3% SDS). For immunoprecipitation, samples were 
preadsorbed with fixed Staphylococcus aureus cells (Pansorbin, Behring Diag- 
nostics, San Diego, CA) for 10 rain. The supernatant was then recovered and 
reacted to an excess of antiserum specific of VSV, hGH, or ACTH (see next 
paragraph). After 2-3 h at room temperature, S. aureus cells were added for 5 
min, and the suspension was layered on a 1 M sucrose cushion in NDETS 
buffer. The cells were recovered by centrifugation, washed twice with NDETS 
buffer, rinsed once with distilled water, and boiled in SDS polyacrylamide gel 
sample buffer before electrophoresis. Endoglycosidase H (Endo H) digestion of 
immunoprecipitated materials was performed as described (24). 

Excess antisera were added to the antigen solutions to ensure the completion 
of the immunoprecipitation reactions. The amount of ant i-hGH antiserum to 
be added was determined as follows. Each sample to be immunoprecipitated 
(cell lysate or medium) was first assayed by an RIA (Hybritech Inc.) specific 
for hGH to determine the amount of antigen present. The titer of the antiserum 
is then determined by adding increasing amounts of the serum to a known 
concentration of the labeled antigen, followed by precipitation with S. aureus 
cells and PAGE gel analysis. We found 1 /A of the antiserum is sufficient to 
precipitate 10 ng of hGH. To ensure large excess we have used 5 ul of the 
antiserum to precipitate 10 ng of the antigen in these experiments. Anti-VSV 
antiserum was titrated similarly. That the immunoprecipitation reaction was 
indeed complete was further verified by keeping the antiserum constant at the 
excess level, while doubling the amount of VSV TG present. A 1.85-fold 
increase in radioactivity was specifically precipitated. 

Calculation of Rate Constants and Sorting Index 
RATE CONSTANTS FOR E N D O P L A S M I C  RET1CULUM (ER)  A N D  

GOLGI EXPORT: TO determine if the slow secretion of the TG protein is 
due to a slow transfer from ER to Golgi apparatus or from Golgi apparatus to 
cell surface, we compared its rate constants to those obtained for a constitutively 
secreted marker, POMC. To calculate rate constants of protein export from the 
ER (kE) and the Golgi apparatus (kc), we measured the steady-state pool sizes 
of these compartments. Since at steady-state there is a constant flux through 
all compartments, the rate of secretion equals the rate of ER export (kEIE]), 
which equals the rate of Golgi export (kG[G]). [E] and [G] are the concentrations 
in the ER and the Golgi apparatus, respectively. The rate constants can therefore 
be calculated as 

kE = rate of secretion/[E] (Eq. 1) 

kG = rate of secretion/[G]. 

SORTING INDEX: The peptide hormones do not all enter the regulated 
pathway, presumably because sorting is not perfect in these cells. It is more 
appropriate to think of the partitioning between the two pathways in terms of 
a sorting ratio. From the simple model presented in Fig. 6, the fractional sorting 
ratio of peptide hormones into regulated secretory vesicles would be k,t/(kr~ + 
k¢0. This cannot be measured directly. What we have used instead is a sorting 



index that is the ratio of the increment in the release rate when the cells are 
stimulated with 8-Br-cAMP (D) to the total rate of release in the absence of 
stimulation (X). 

The sorting index D/X can be shown to be proportional to the fractional 
sorting ratio. The fractional sorting ratio is the fraction of the flux out of the 
Golgi apparatus that enters regulated secretory vesicles k,,[G]/(kr~ + k~0[G]. In 
the steady-state the denominator is the same as X, the measurable total flow 
out of the cell, and the numerator is equal to ka[R], since the flux out of the 
secretory vesicles must be equal to the flux in. [R] cannot always be measured 
directly, but the magnitude of [R] should affect the increment in the release 
rate on stimulation D. If stimulation causes k,2 to increase by k,2*, then D = 
kr2*[g]. The fractional sorting ratio is therefore (kr2/kr2*)D/X. Since k,2/k,2* 
should be a constant, the fractional sorting ratio is linearly related to the 
measurable ratio D/X. We have therefore used the ratio D /X  in our measure- 
ments. It should be greater than the true sorting ratio. 

The increased rate of release D is in turn obtained by subtracting the rate of 
release in the absence of stimulation (PO from the stimulated total. The amount 
released in the absence of stimulation (X) is k,:~[R] + k~[q (Fig. 6), which 
equals at steady-state (k,~ + kc0[G]. D is k,2*[R]. The stimulated to unstimulated 
ratio is therefore [ka*[R]/(k,~ + k~)[G]] + 1. To enhance this ratio we can take 
advantage of the different time constants of the Golgi pool and the regulated 
secretory vesicle pool. By labeling and then chasing for a period equal to several 
times the Golgi pool half-life, the increment on stimulation can then be 
measured with much higher accuracy. If the time constant of the regulated 
pool is r, then the measured release D '  = D.e  -t/" and the fractional sorting 
ratio becomes 

(k,2/k,2*. e-t/')D'/X. (Eq. 2) 

Thus, the measured sorting index must be corrected for time. 

RESULTS 

Expression of a Secreted VSV G Protein and hGH 
in AtT-20 Cells by DNA Transfection 

To examine if different secreted proteins can take different 
routes to the cell surface, we chose to transfect AtT-20 cells 
with two cloned DNAs, each coding for a secreted protein 
from a distinct origin. One, hGH, is normally secreted in a 
regulated manner by somatotrophs in the anterior pituitary. 
The other protein, in contrast, is not a product of endocrine 
cells but is of viral origin. It has been engineered in vitro by 
Rose and Bergmann (24) by deleting the membrane-anchor 
domain from the VSV membrane G protein. The altered 
protein, containing an intact luminal region of the G protein 
(432 amino acids from the NH2-terminus) but lacking the 
entire membrane-spanning and the cytoplasmic domains (79 
amino acids from the COOH-terminus), has been shown to 
be secreted from transfected COS cells and the mouse cell 
C127 (8, 24). 

Fig. 1 A illustrates the construction of the plasmid vector 
used for expression of VSV TG protein in AtT-20 cells. We 
found that the vector pSV2-TG, originally constructed by 
Rose and colleagues (24), failed to yield positive stable trans- 
formants at a reasonable frequency when co-transfected with 
the selectable DNA pSV2-neo (28). This plasmid carries the 
VSV TG sequences downstream from the SV40 early pro- 
moter. To improve the number of clones expressing detectable 
levels of the VSV TG protein, we surveyed a number of 
cloned promoters for their ability to produce high levels of 
protein expression in AtT-20 cells. Table I compares CAT 
activities expressed transiently from various promoter ele- 
ments. The highest level of expression was obtained with the 
Rous sarcoma virus long terminal repeat (RSV-LTR), which 
is two orders of magnitude more efficient in supporting CAT 
expression in these cells than is the SV40 early promoter. 
Mouse mammary tumor virus and the herpes thymidine 
kinase promoters yielded intermediate levels. We therefore 
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FIGURE 1 (A) Cons t ruc t ion  of an RSV-LTR-containing vec to r  for 
the  expres s ion  of  t runca ted  VSV (3 protein .  The vector ,  pSV2-TG, 
was  ob ta ined  f rom I. Rose and  conta ins  the  t runca ted  VSV G cDNA 
( 1 )  d o w n s t r e a m  from the  SV40 early p r o m o t e r  (Ira). The G cod ing  
s e q u e n c e s  are  fol lowed by the  SV40 t-ant igen splice junct ion  and  
the early region polyadenylation site (~), which also supply a stop 
codon near the end of the TG sequence (25). The pBR322 sequence 
contains the origin of replication and the ampicillin resistance gene 
( ). To replace the SV40 promoter region with sequences from 
the RSV-LTR, pSV2-TG was digested with the restriction endonu- 
cleases Pvull and Hindlll. The phosphatase-treated vector was then 
ligated to a gel-purified NruI-Hindlll fragment (~.z~) containing the 
RSV promoter activity. The latter was excised from an RSV-LTR- 
containing plasmid driving the CAT gene (r~) (pRSV-CAT, 9). The 
resulting plasmid, pRSV-TG, carries a TG sequence joined to the 
RSV-LTR. All the other elements essential for expression remain the 
same as the parent vector, pSV2-TG. (B) Plasmid vector used for 
the expression of hGH. pK13 contains the 2.6-kb hGH gene (4) 
inserted at the unique EcoRI site of the vector, pSV2-gpt (20; 
Kushner, P., unpublished observations). ( I )  hGH sequences; (r-n) 
Ecogpt (E. coi l  gene encoding the enzyme xanthine-guanine phos- 
phoribosyl transferase) sequences. All the other sequences are the 
same as denoted in A. Also indicated is the structure of the hGH 
gene as reported in reference 4 showing the position of the four 
introns (A, B, C, and D), exons (n),and an alternative splice site 
(B'). (5' ~za) and (~  3') are the 5' and 3' untranslated regions, 
respectively. 

replaced the SV40 promoter region of the pSV2-TG (PvulI- 
HindIII fragment) with a fragment of the RSV-LTR contain- 
ing the promoter activity (NruI-HindIII; reference 15) (see 
Fig. 1 A). After co-transfecting AtT-20 cells with this plasmid 
and the selectable DNA pSV2-neo (28), positive transform- 
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TABLE I. Comparison of Protein Expression in ART-20 Cells 

Promotor driving non- 
selectable DNAs 

Frequency of stable 
co-transmants ex- 

CAT activities pressing detectable 
transiently ex- levels of nonselect- 

pressed* able markers 

% 

SV40 early 1 0.5 
TK 56 - -  
MMTV 51 - -  
RSV-LTR 244 66-75 

AtT-20 cells were transfected with plasmid vectors containing various pro- 
motor elements fused to the CAT gene. Indicated are the levels of CAT 
activities expressed in the cells at 65 h after transfection. Numbers are 
normalized to the activity from the SV40 early promoter. Right column: 
cells were co-transfected with the selectable gene neo driven from the 
SV40 early promoter (pSV2-neo, 28) and a nonselectable DNA (VSV TG or 
human proinsulin) fused to the promoter indicated. The ratio of selectable 
DNA to nonselectable DNA was 1:5. After selection with the antibiotic 
G418, the survival clones were scored and compared to the number of 
isolates expressing detectable levels of the nonselectable markers. TK, 
thymidine kinase. MMTV, mouse mammary tumor virus. 

* Arbitrary units. 

ants were detected at a frequency that is at least 10-20-fold 
higher than the SV40-derived vectors (Table I). 

To generate stable cell lines expressing hGH, we obtained 
a plasmid, pK13, carrying the hGH gene from Dr. Peter 
Kushner and Dr. Howard Goodman. This plasmid (Fig. 1 B) 
contains a complete hGH gene and its 5' flanking sequences 
on a 2.6-kb EcoRI fragment (4), which is inserted at the 
EcoRI site of pSV2-gpt (20). Preliminary experiments deter- 
mined that there is a secondary toxic effect of the selection 
medium on AtT-20 cells (Burgess, T., unpublished observa- 
tions), therefore we did not use the Ecogpt gene on this 
plasmid as a selectable marker. Instead, it was co-transfected 
with pSV2-neo (28), and selection was carried out with the 
antibiotic G418. Approximately 25 % of the surviving clones 
expressed detectable levels of hGH as determined by RIA. 

VSV TG Protein and hGH Are Secreted into the 
Extracellular Medium by Transformed ArT- 
20 Cells 

Two stable transformants, AtT-20-TG17 and AtT-20- 
GH 13/5/4, expressing the VSV TG protein and hGH, respec- 
tively, were analyzed in detail. Synthesis of TG protein in 
TG17 cells was demonstrated by immunoprecipitation of 
metabolically labeled cells with an antiserum raised against 
inactivated VSV. In cells infected with VSV, the G protein is 
normally synthesized as a single polypeptide with two N- 
linked oligosaccharide chains (5, 22, 25) and one or two 
molecules of esterified fatty acids (26). In the TG, the acyla- 
tion site has been eliminated but the glycosylation sites remain 
intact (24). TG 17 cells synthesize two differently glycosylated 
forms of the TG protein (Fig. 2 A, lane 1) which are absent 
from untransformed cells (Fig. 2A, lane 3). The predominant 
band has a mobility that corresponds to TG bearing high- 
mannose type carbohydrates. A minor, slower migrating band 
was also visible in the cell extract which corresonds to TG 
with complex type sugars. The identity of these immunopre- 
cipitated bands was further confirmed by Endo H digestion, 
which cleaves only N-linked oligosaccharides of the high 
mannose type (23). Treatment with Endo H increases the 
mobility of the faster migrating band, while the mobility of 

FIGURE 2 Synthesis and secretion of (A) TG protein and (B) hGH 
by transformed AtT-20 cells. (A) TG17 or untransformed AtT-20 
cells were radiolabeled with [3SS]methionine for 6 h and chased for 
3 h in unlabeled medium. Cell extract and medium samples were 
immunoprecipitated separately with an anti-VSV antiserum, and 
half of the immunoprecipitates were subjected to digestion with 
the Endo H. The labeled proteins were then analyzed on a 15% 
SDS polyacrylamide gel and visualized by autoradiography. Lanes 
1, 2, and 3, cell extract samples harvested at the end of the labeling 
period. Lanes 4, 5, and 6, medium samples collected during the 
chase. Lanes 1, 2, 4, and 5 are immunoprecipitated from the 
transformed TG17 cells, and lanes 3 and 6 are from control AtT-20 
cells. Endo H digestion was only performed on samples shown in 
lanes 2 and 5. Arrows indicate where the native VSV G protein 
would migrate on these gels. R and S, Endo H-resistant and sensitive 
forms of the TG protein, respectively. (B) GH13/5/4 and control 
AtT-20 cells were labeled and chased as in A. Extract (lanes 1, 2, 
and 3) or medium (lanes 4, 5, and 6) samples were immunoprecip- 
itated with a goat ant i-hGH antiserum either in the absence (lanes 
1, 3, 4, and 6) or presence (lanes 2 and 5) of excess unlabeled hGH. 
Immunoprecipitates were analyzed on a 10-18% gradient SDS 
polyacrylamide gel. Lanes 1, 2, 4, and 5, samples from GH13/5/4 
cells, and lanes 3 and 6 from control cells. Arrows indicate the 
electrophoretic position of hGH purified from E. coli harboring 
hGH cDNA. The faint band immediately above the 25-kD band is 
a contaminant in the immunoprecipitates. 

the slower migrating band remains the same (Fig. 2 A, lane 
2). The majority of TG in the transfected cells is thus Endo 
H sensitive. 

TG17 cells also secrete the TG into the tissue culture 
medium (Fig. 2 A, lane 4). The secreted form contains the 
complex type carbohydrates, as evidenced by its resistance to 
Endo H digestion (Fig. 2 A, lane 5). A similar glycosylation 
pattern has been shown to occur with the endogenous hor- 
mone ACTH (12; data not shown). The majority of the 
precursor ACTH in the cell extract exists in the high mannose 
form, indicative of its ER and early Golgi localization. The 
secreted form, on the other hand, has acquired complex type 
sugars. Thus the secreted TG protein appears to traverse the 
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normal secretory pathway through functional Golgi compart- 
ments before reaching the cell surface. Similar observations 
have been made with C127 cells (24). 

The clone, GH 13/5/4, synthesizes three growth hormone- 
related polypeptides that can be immunoprecipitated from 
the cell extract with an antiserum against hGH (Fig. 2 B, lane 
1). All three species were specifically precipitated as judged 
by two criteria. First, they were detected only in cells that 
were transformed with the hGH gene (compare Fig. 2 B, 
lanes 1 and 3). Second, the reaction with the antiserum is 
abolished by the presence of excess unlabeled growth hormone 
(Fig. 2 B, lane 2). The major species has a mobility on SDS 
polyacrylamide gels of 22 kD and co-migrates with authentic 
hGH. The two minor species have apparent molecular weights 
of 25 and 20 kD. The 20-kD protein has been reported 
previously to be synthesized from an alternatively spliced 
mRNA (4; see Fig. 1 B, legend), and has been found in 
normal pituitary (13). It is synthesized in a variety of cell lines 
including GH3 and L-cells transfected with the 2.6-kb EcoRI 
hGH gene (Garcia, P., unpublished observations). The origin 
of the 25-kD species, however, is unclear. It is only found in 
this cell line but not in other lines (GH3 or L-cells) similarly 
transfected with the hGH gene, and may be due to an aberrant 
splicing or rearrangement event in this isolate. Unlike the TG 
and POMC, growth hormone does not undergo posttransla- 
tional glycosylation or proteolytic processing. Upon secretion, 
the same three polypeptide species were found in the medium 
(Fig. 2 B, lanes 4, 5, and 6). 

Secretagogues Accelerate the Release of hGH- 
Related Peptides but Do Not Affect the Apparent 
Rate of Secretion of the TG Protein 

The above data demonstrate that growth hormone and TG 
protein can be secreted from the transformed cell lines, but 
do not identify the secretory pathways by which they are 
externalized. Previously work has shown that the two secre- 
tory pathways can be distinguished by secretagogues, which 
enhance secretion from only the regulated pathway (12, 18). 
We therefore determined the effect of 8-Br-cAMP on the 
secretion of hGH and the TG protein. 

TG17 and GH13/5/4 cells were metabolically labeled with 
[35S]methionine for 6 h and chased for 3 h either in the 
presence or absence of 5 mM 8-Br-cAMP. Medium samples 
and cell extracts were collected separately, immunoprecipi- 
tated with specific antisera, and analyzed on SDS polyacryt- 
amide gels (Fig. 3). Inclusion of 8-Br-cAMP in the chase 
period caused a 3-4-fold increase in the accumulation of 
labeled hGH in the medium of GH13/5/4 cells (Fig. 3 B, 
lanes 1 and 3). This is accompanied by a corresponding 
decrease of labeled hormone remaining in the cell extracts 
(Fig. 3 B, lanes 5 and 7). In marked contrast, secretion of 
labeled TG protein from TG17 is not detectably affected by 
the same secretagogue (Fig. 3 A). The same amount of Endo 
H-resistant form of the TG protein was recovered in the 
medium regardless of whether 8-Br-cAMP was present (Fig. 
3 A, lanes 1-4). Furthermore, cells that have been treated 
with 8-Br-cAMP are not depleted of their intracellular pool 
of TG. Essentially the same levels of Endo H-resistant and 
sensitive forms of the TG protein were recovered in the 
stimulated or unstimulated cells (Fig. 3 A, lanes 5-8). Note 
that even after a chase period, the majority of the intracellular 

FIGURE 3 Effect of secretagogues on the secretion of (A) the TG 
protein and (B) hGH. (A) TG17 cells were labeled with [35S]methi- 
onine for 6 h and then chased for 3 h either in the presence or 
absence of 5 mM 8-Br-cAMP. Labeled materials released into the 
chase medium and those remaining in the cells were recovered 
and immunoprecipitated with anti-VSV antibodies. Half of the 
immunoprecipitates were digested with Endo H and analyzed on 
SDS polyacrylamide gels along with the undigested materials. Lanes 
1 and 2, medium samples from unstimulated cells, and lanes 3 and 
4, from 8-Br-cAMP treated cells. Lanes 5 and 6, labeled molecules 
remaining in cells that have not been stimulated, and lanes 7 and 
8, in cells that have been stimulated. Samples in lanes 2, 4, 6, and 
8 were digested with Endo H, whereas those in lanes 1, 3, 5, and 7 
were not. (B) GH13/5/4 cells were labeled and chased as in A and 
processed with anti-hGH antibodies. Lanes I and 2, 3 and 4, 5 and 
6, and 7 and 8 are media of unstimulated cells, media of stimulated 
cells, extracts of unstimulated cells, and extracts of stimulated cells, 
respectively. Samples in lanes 2, 4, 6, and 8 were immunoprecipi- 
tared in the presence of excess of unlabeled hGH. Note that lanes 
4 and 5 of Fig. 2 B and lanes 1 and 2 of Fig. 3 B represent the 
same gel. 

TG is Endo H sensitive. 
The apparent lack of stimulation of secretion of TG 17 cells 

is not due to their inability to respond to secretagogues. 
Aliquots of the medium and cell extract samples used for the 
above analysis were subjected to RIAs for the endogenous 
hormone, ACTH. TG17 cells responded to 8-Br-cAMP by 
secreting threefold more immunoreactive ACTH into the 
medium than unstimulated cells. This degree of stimulation 
is comparable to those from the untransformed AtT-20 popu- 
lation (3.5-fold) and also from the growth hormone-produc- 
ing GH 13/5/4 cells (3.4-fold). Interestingly, secretion of all 
three hGH-related peptides were stimulated to about the same 
extent (Fig. 3 B, lanes 1, 3, 5, and 7). We conclude that hGH 
and its related peptides are targeted, at least in part, to the 
regulated secretory pathway in this heterologous system in a 
way similar to the endogenous hormone ACTH. By contrast, 
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little or no VSV TG protein is detected exiting the cell via the 
regulated pathway. 

hGH and TG Protein Are Externalized at 
Distinct Rates 

A second diagnostic tool for distinguishing the two path- 
ways is the kinetics of release. Proteins taking the constitutive 
route are transported directly to the cell exterior (t,/~ ~ 30-40 
min, 12), whereas those secreted by the regulated pathway are 
stored inside secretory granules before release (t,j~ - 7 h, data 
not shown). If hGH and TG protein indeed exit the cell by 
the regulated and the constitutive routes, respectively, then 
their release should follow these characteristic kinetics. 

To measure the kinetics of secretion, TG 17 and GH 13/5/4 
cells were labeled with [35S]methionine for 15 h and then 
chased for various lengths of time. At a given time point, 
labeled materials in the medium and in the cells were re- 
covered and analyzed (Fig. 4). We found that the majority of 
hGH was secreted by GH 13/5/4 cells with a half-time (6.3 h) 
similar to that measured for mature ACTH (7 h, data not 
shown). In comparison, TG protein existed from TG17 cells 
with much faster kinetics (t,/~ ~ 1.5 h), indicative of its consti- 
tutive mode of secretion. 

Although the majority of the hGH was stored intracellularly 
and secreted slowly, a portion of the hGH synthesized by 
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FIGURE 4 Kinetics of secretion of the TG protein and hGH. TG] 7 
or GH13/5/4 cells were labeled with [3SS]methionine for 16 h and 
chased for increasing lengths of time. At the t ime indicated, medium 
samples were collected and the cells were extracted with detergent. 
TG protein and hGH were recovered by immunoprecipitat ion, 
electrophoresed on SDS polyacrylamide gels, and quantitated by 
scanning the autoradiograms. The percentage of total labeled pro- 
teins remaining inside the cells at each time point is calculated and 
plotted as a function of the length of chase. (A) hGH; (O) TG. 
Secretion of the TG protein showed a single exponential decay 
with a rate constant of 0.46 h -1 (or t,/2 = 1.5 h). The majority of hGH 
was secreted with a rate constant of 0.11 h -1 (or t,/, = 6.3 h). 
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GH13/5/4 cells was secreted more rapidly into the medium. 
The kinetic measurements in Fig. 4 revealed two components 
of secretion. About 80% of the labeled intracellular pool exited 
the cells at a slow rate (t,/2 ~ 6.3 h) characteristic of regulated 
secretion. The remaining 20%, however, was secreted at a rate 
approaching constitutive secretion. This apparent leakage into 
the constitutive pathway is reminiscent of the secretion of 
POMC and proinsulin. Previously we have also observed 
rapid secretion of a portion of the newly synthesized hor- 
mones (12, 19), except in these cases they are in the form of 
the unprocessed precursors (see Discussion). 

The TC Protein Is Transported out of the 
ER Slowly 

In the above studies we noted that although the kinetics of 
release for TG protein (t,/~ - 1.5 h) was much faster than what 
would be expected from the regulated pathway, it was consid- 
erably slower than the externalization of other constitutive 
proteins such as gp70 and POMC (t,j, ~ 30 min). The differ- 
ence was not due to storage in secretory vesicles but to a 
relatively slow rate of export of TG protein from the rough 
ER. To show this the rates of export from the ER and the 
Golgi apparatus were calculated from the relative size of the 
ER and the Golgi pools. To measure the ER and Golgi pool 
sizes, the intracellular amounts of Endo H-sensitive and 
resistant forms of the TG proteins were determined by im- 
munoprecipitation of steady-state labeled cells and compared 
to the steady-state rate of secretion (Table II). The rates of 
export from the ER and the Golgi apparatus were calculated 
according to Eq. 1 (see Materials and Methods) and compared 
with those obtained for another constitutive marker, POMC. 
TG 17 cells exhibited a large steady-state ER pool size (Endo 
H-sensitive form) for the TG protein relative to POMC, and 
thus a correspondingly ~3-4-fold slower exit rate from the 
ER. Transfer of TG protein out of the Golgi apparatus, 
however, appeared to be as efficient as POMC, since TG17 
cells exhibited a normal relative pool size for the Golgi form 
(Endo H-resistant) of the TG protein (Table II). Thus, except 

TABLE II. Rate of Export of the TG Protein from the ER and the 
Golgi Apparatus 

ER pool Golgi Rate con- Rate con- 
Mole-  size pool size stant o f  stant of  

cules se- (Endo H-  (Endo H-  export  export  
Pro- creted sensitive resistant f rom the from the 
rein per hour form) form) ER Golgi 

[E] [G] kE, h -1 kc, h -1 

TG 100 257 28 0.38 3.5 
POMC 100 74 46 1.35 2.2 

TG17 cells were labeled with [3SS]methionine for 15 h to reach steady-state 
labeling of intracellular ER and Golgi pools. To measure steady-state rate of 
secretion, the medium was removed from the cells and replaced with a fresh 
aliquot of the identical media containing [3SS]methionine. Labeled materials 
secreted into the medium during the next hour were collected, and the cells 
were extracted with buffers containing detergents to determine the intracel- 
lular pool sizes. Samples were immunoprecipitated with antisera against 
either VSV or ACTH, digested with Endo H, electrophoresed on SDS poly- 
acrytamide gels, and quantitated by scanning the autoradiograms. Numbers 
were normalized to the total amount secreted into the medium per hour. 
The amounts of Endo H-sensitive forms of TG or POMC residing intracellu- 
lady are taken to be a measure of the ER pool, and those resistant to Endo H 
digestion as the Golgi pool. The rate constant of ER export is calculated by 
dividing the rate of secretion by the size of the ER pool. The rate constant of 
Golgi export is calculated by dividing the rate of secretion by the size of the 
Golgi pool (see Eq. 1, Materials and Methods). 



for the slow rate of  exiting the ER, TG behaved exactly as 
POMC, which is secreted constitutively (12). Similar results 
have been previously obtained with transfected C127 or COS 
cells (8, 24). 

Quantification of Sorting 
The slow ER exit rate of  the TG protein made us wonder 

if the lack of  detectable stimulation of its secretion by 8-Br- 
cAMP (Fig. 3) could be due to the background of a high 
constitutive secretion that is chased out slowly. To compare 
sorting independent of  the ER pool size, we devised a labeling- 
chase protocol which is explained in the Materials and Meth- 
ods section. In essence, the rate of  secretion from the regulated 
pool in comparison with the total rate of  secretion at steady- 
state provides a measure of the efficiency for entering the 
regulated pathway that is independent of  the kinetics of 
constitutive release. 

To measure the total rate of  secretion, TGI7 and G H l 3 /  
5/4 cells were labeled with [3SS]methionine for 16 h to ap- 
proach steady-state labeling of all intracellular pools. Mate- 
rials secreted into this medium during the last hour of labeling 
were collected and analyzed. Since [35S]methionine was pres- 
ent throughout this time, the amount of  labeled materials 
secreted into the medium is a measure of the steady-state rate 
of  secretion rather than the ER pool size. Secretion from the 
regulated secretory granule pool was then measured as follows. 
The labeled cells were first chased with unlabeled medium for 
two 3-h periods to lower the background secretion contributed 
by the constitutive pathway (t,/2 - 30 min- l .5  h). They were 
then stimulated during a third 3-h interval with 5 mM 8-Br- 
cAMP. The difference between secretion from stimulated cells 
and from unstimulated cells during this time was measured 
and compared with the steady-state rate of  secretion. Fig. 5 
shows the comparison of secretion ofhGH and the TG protein 
using this protocol. Even with this long chase protocol, which 

maximizes the detectability of  regulated secretion, we could 
not detect any effect of  8-Br-cAMP on the secretion of  the 
TG protein (Fig. 5 A). In contrast, stimulation of growth 
hormone under identical conditions was evident (Fig. 5 B). 
Quantitation of these data is shown in Table IlI, where sorting 
indices are calculated by taking the ratio of the stimulated 
response to the steady-state rate of  secretion (see Eq. 2, 
Materials and Methods). All peptide hormones examined thus 
far, POMC (endogenous), hGH (exogenous) (Table III), and 
proinsulin (19), show a similar partition coefficient into the 
regulated secretory granules. In contrast, transport of  TG 

TAaLE III. Quantitative Comparison of Transport of Secreted 
Proteins to the Regulated Pathway in AtT-20 Cells 

Amount 
Total Increment depleted 

amount of the from in- 
secreted/ amount tracellular 
h in ab- secreted/ pool/h 
sence of h in re- upon 
stimula- sponse to stimula- Sorting 

Protein tion* stimulation* tion ~ index N 

X D'  D '  D' /X 
Endogenous 600 _+ 50 83 + 7 84 _ 8 0.14 +_ 0.02 

mouse 
ACTH 

Truncated 31 _+ 6 ~<0.16 ~<0.~3 ~<0.005 
VSV G 

hGH 690 ___ 60 270 _+ 30 220 _+ 30 0.35 ___ 0.06 

The data in Fig. 5 were quantitated by scanning the autoradiogram. 
* Amount secreted during the 1-h labeling period (Fig. 5, lanes 1 and 2). 
* Differences in the amounts secreted from stimulated and unstimulated cells 

during the third chase period (Fig. 5, lane 7 minus lane 8). 
s Differences in the amounts inside stimulated and unstimulated ceils at the 

end of the chase (Fig. 5A, lanes 13 and 14 minus lanes 11 and 12, or Fig. 
5B, lane 11 minus lane 10). 

I The ratio of column 2 to column 1, or column 3 to column 1, according to 
Eq. 2 in Materials and Methods. 

FIGURE 5 Quantification of transport by the two 
pathways. TG 17 or GH 13/5/4 cells were labeled 
with [3SS]methionine for 15 h. Medium was re- 
moved, and a fresh aliquot of the labeling medium 
was added for an additional hour. At time zero 
indicated in the top axis, cells were chased for two 
consecutive 3-h periods followed by stimulation 
with 5 mM 8-Br-cAMP during the third. (A) Secre- 
tion of the TG protein. Lanes 1 and 2, medium 
samples collected during the 1-h (t = -1  to 0 h) 
labeling period. Lanes 3 and 4, from the first chase 
period (t -- 0 to 3 h). Lanes 5 and 6, from the 
second chase period (t = 3 to 6 h). Lanes 7 and 8, 
from third chase period (t = 6 to 9 h) in the 
presence and absence of 5 mM 8-Br-cAMP, re- 
spectively. Lanes 9 and 10, intracellular proteins 
extracted at the end of the labeling (t = 0). Lanes 
11 and 12, intracellular proteins remaining in cells 
that have been stimulated at the end of the chase 
(t = 9 h) and lanes 13 and 14, in cells that have not 
been stimulated. Samples in lanes 10, 12, and 14 
were digested with Endo H. (B) Secretion of hGH. 
Lanes 1-8 are the corresponding medium samples 
as described in A. Lanes 9-11, cell extracts pre- 
pared at the beginning of chase, at the end of 
chase from stimulated cells, and at the end of 
chase from unstimulated cells, respectively. Lane 
12, control ART-20 cells extracted at the end of the 
labeling period. 
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protein to the regulated pathway, if it occurs at all, was at 
least 30-fold less efficient (Table III). We conclude that peptide 
hormones are transported to the regulatory secretory pathway 
in preference to other secreted proteins, such as the TG 
protein. 

DISCUSSION 

At least three classes of proteins, i.e., plasma membrane, 
lysosomal, and secretory proteins, use a common site, the 
rough ER, for their membrane translocation. Presumably, 
mechanisms exist that sort these proteins from one another 
and target them to their final destinations. This is known to 
be true at least for lysosomal enzymes, which can be selectively 
segregated by mannose-6-phosphate receptors and trans- 
ported to the lysosomes in fibroblasts (for review, see reference 
27). Evidence for active sorting of the other two classes of 
proteins, however, is scant. In hepatocytes, it has been docu- 
mented that the secreted albumin, transferrin, and the mem- 
brane VSV G protein are localized to the same secretory 
vesicle, suggesting that proteins may not be segregated from 
each other before reaching the cell surface (30). Similarly, 
temperature-sensitive yeast mutants that are defective in in- 
vertase secretion also cannot externalize some of their plasma 
membrane proteins (21). A simple model to explain these 
observations is that secretory proteins and plasma membrane 
proteins are the only proteins that are neither actively segre- 
gated away from the Golgi lumen (like lysosomal enzymes) 
nor selectively retained (like Golgi enzymes). As a result they 
are automatically transported to the cell exterior without 
active sorting. 

In cells such as endocrine cells that have more than one 
type of secretory vesicle, transport to each pathway could also 
be governed by passive flow. Previous work with ART-20 cells 
has established that plasma membrane proteins such as the 
viral glycoprotein gp70 preferentially use the constitutive type 
vesicles for export (12). The percentage of gp70 taking the 
regulated route is at most one-tenth of that for ACTH. This 
difference in the routes of transport, however, is not an 
incontrovertible argument for active sorting. The sizes of the 
two types of vesicles can differ, thus carrying different 
amounts of membrane proteins relative to secretory proteins 
to the cell surface. For instance, if the constitutive vesicles 
have a tenth of the diameter of the regulated vesicles, their 
surface to volume ratio would be ten times higher than for 
the regulated vesicles. This could result in the apparent 10- 
fold segregation of membrane and secretory proteins. Shape 
differences in the transport vehicles have also been proposed 
to explain the segregation of ligand and receptors during 
endocytosis (Helenius, A., and I. Mellman, personal com- 
munication). 

The need to examine a passive-flow model was reinforced 
by our DNA transfection experiments. Despite their species 
difference and the lack of apparent sequence homology, hu- 
man proinsulin (19), hGH (this report), and rat trypsinogen 
(3) are all transported into the regulated secretory vesicles by 
ART-20 cells. This lack of specificity for species or sequence 
could be readily explained if transport were by a nonselective 
bulk-flow process. 

The data presented in this report, however, are difficult to 
reconcile with the passive flow segregation model. Using a 
secreted form rather than the membrane form of the VSV G 
protein, such that the surface to volume ratio is not a concern, 
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we found that selective transport can still occur. A similar 
conclusion can also be drawn from analyzing the VSV TG 
protein transfected into HIT (an insulin-producing pancreatic 
cell line) cells (unpublished observations). Now for the first 
time we can say unequivocally that two known soluble pro- 
teins introduced by DNA transfection partition differently 
between two pathways. Recently, using a labeling protocol 
identical to that described here, Burgess et al. (3) have shown 
that laminin, a naturally occurring secretory protein of the 
AtT-20 cells, is secreted constitutively. Thus, in this cell type 
proteins are actively sorted from one another and targeted to 
specific secretory pathways. 

One hypothesis to explain our data is that both regulated 
and constitutively secreted proteins contain active sorting 
signals and are recognized by individual receptors (1). Alter- 
natively, segregation can be mediated by only one type of 
receptor that specifically recognizes proteins entering either 
the regulated pathway such as ACTH, hGH, and human 
insulin, or the constitutive route such as VSV TG. The other 
class of proteins would then be transported to the cell surface 
by simple noncarrier-mediated bulk-flow. Several indirect 
lines of evidence led us to suggest that only entry into the 
regulated pathway may be carrier mediated. First, in cells 
treated with /3-D-xyloside to inhibit proteoglycan synthesis, 
the majority of the glycosaminoglycan chains are efficiently 
exported via the constitutive pathway (2). Since the TG 
protein also preferentially takes this route but does not share 
common chemical structures, either they both enter this 
pathway by bulk-flow, or they have to be segregated by 
different receptors, a possible but less likely situation. Second, 
when targeting to regulated pathway is perturbed by chloro- 
quine, those ACTH molecules that would normally enter the 
regulated secretory granules are diverted to the constitutive 
pathway. Either entry to the latter pathway does not require 
signal(s) or much less likely, the constitutive signal is added 
to the diverted ACTH molecules in the presence of chloro- 
quine. Finally, the VSV TG protein might not be expected to 
contain a natural sorting signal as a secretory protein. None- 
theless, it is secreted constitutively. Direct proof, however, 
that sorting signals are contained within the regulated and not 
the constitutive proteins awaits further experimentation. 

Although all peptide hormones that we have examined thus 
far were found to be transported and packaged in the regulated 
secretory granules by AtT-20 cells, some newly synthesized 
hormones always escape this packaging and are secreted con- 
stitutively. Since sorting is not all-or-none, it must be analyzed 
quantitatively. Since proteins are known to exit ER at differ- 
ent rates (14, 24, 29, and this report), quantitation of sorting 
had to be independent of export rates from the ER. By 
measuring the ratio of the release rate from the regulated 
pathway to total release rate, we can measure sorting inde- 
pendent of the ER exit rate (in Eq. 2, Materials and Methods, 
D'/X is independent of kE). Secondly, since only a vestige of 
the regulated pathway remains in this tumor cell line, the 
protocols had to be optimized to be very sensitive to small 
amounts of regulated release. The accuracy of the measure- 
ments for regulated release was maximized by chasing out 
background constitutive release that had to be subtracted from 
the total. Using this procedure, we are able to detect at least 
a 30-fold discrimination between TG and hGH by the sorting 
apparatus (Table III). It should be emphasized that this is a 
limit measurement and the true partition ratio could be even 



FIGURE 6 A simple scheme
of partitioning between the
two secretory pathways . kr ,,
k, and kr2, and K,2 are rate
constants, and [G], [R], and
[C] are the concentrations in
the Golgi apparatus, regulated
secretory vesicles, and consti-
tutive secretory vesicles, re-
spectively . When the cell is
stimulated to secrete, the rate
constant kr2 increases to kr2 +
kr2'.

higher . The quantitative measurements also indicate that the
sorting apparatus does not prefer the endogenous ACTH to
the foreign hGH. The preference of the sorting apparatus for
growth hormone may be significant (Table III) .
While the sorting index provides a convenient measure to

compare sorting between different proteins, it is not the true
partition ofGolgi molecules between the two pathways . If the
simple model outlined in Fig. 6 is correct, the true sorting
ratio is related to the sorting index by a proportionality
constant that is a function of the various rate constants (see
Eq . 2) . Ifthese are estimated the true sorting ratio is between
0.15 and 0.30, or only 1 in 3-6 newly synthesized hormone
molecules enters the regulated pathway . Either AtT-20 cells
sort proteins very inefficiently into the regulated pathway, or
a considerable amount ofwhat is sorted is lost before it arrives
in mature secretory vesicles . Loss could be induced by crino-
phagy (6) or by rapid release of the contents of immature
vesicles . An alternative way of interpreting the inefficient
sorting is that AtT-20 cells are rapidly growing, unlike con-
ventional cells, and the doubling of membrane area every 25
h requires considerable addition of membrane proteins and
so unusually high constitutive release . Despite the inefficiency
in sorting, the quantitative procedure described here provides
sufficient sensitivity to allow future mapping of sorting se-
quences by in vitro mutagenesis.

If targeting to the regulated secretory granules indeed is
mediated by specific receptors and ifonly one type of receptor
exists, then our observations that several endocrine peptides
enter this pathway at similar efficiencies suggest that these
proteins share a common structural feature . Direct examina-
tion of their primary amino acid sequences revealed no con-
served homology between these proteins . However, the signal
peptides of known proteins, though recognized by the same
signal recognition particle, also lack direct amino acid se-
quence homology . The protein moieties of those lysosomal
enzymes that are selectively recognized by the same enzyme,
N-acetylglucosamine phosphotransferase, also fail to exhibit
consensus amino acid sequence (Kornfeld, S ., unpublished
observations) . Presumably, targeting is mediated by recogni-
tion of a common higher order structure.
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