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Abstract In this paper, the authors investigate the membrane transport of aqueous non-electrolyte
solutions in a single-membrane system with the membrane mounted horizontally. The purpose of
the research is to analyze the influence of volume flows on the process of forming concentration
boundary layers (CBLs). A mathematical model is provided to calculate dependences of a concen-
tration polarization coefficient (ζs) on a volume flux (Jvm), an osmotic force (Δπ) and a hydrostatic
force (ΔP) of different values. Property ζs= f(Jvm) for Jvm>0 and for Jvm≈0 and property
ζs= f(ΔC1) are calculated. Moreover, results of a simultaneous influence ofΔP andΔπ on a value
of coefficient ζs when Jvm=0 and Jvm≠0 are investigated and a graphical representation of the
dependences obtained in the research is provided. Also, mathematical relationships between the
coefficient ζs and a concentration Rayleigh number (RC) were studied providing a relevant graphical
representation. In an experimental test, aqueous solutions of glucose and ethanol were used.
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Concentration Rayleigh number

Symbols
Lp Hydraulic permeability coefficient
Jv Volume flux under homogeneous conditions
Jvs Volume flux under non-homogeneous conditions through the system ll/M/lh
Jvm Volume flux under non-homogeneous conditions through the membrane (M)
σm Reflection coefficient
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ωm Solute permeability coefficient
νl, νh Kinematic viscosity of solutions in layers ll and lh, respectively
ρl, ρh Mass density of solutions in layers ll and lh, respectively
δl, δh Thickness of concentration boundary layers ll and lh, respectively
Δπ Osmotic pressure difference
ΔP Hydrostatic pressure difference (ΔP=Ph – Pl)
Ph Pl, Hydrostatic pressure (h higher and l lower value)
Ch, Cl Concentrations of solutions in compartments of the membrane system
Ci, Ce Concentrations of solutions at boundaries ll/M and M/lh
C Mean solute concentration in the membrane
R Gas constant
RC Concentration Rayleigh number
T Thermodynamic temperature
Dl, Dh Diffusion coefficient in systems A and B
ζp Hydraulic concentration polarization coefficient
ζv Osmotic concentration polarization coefficient
ζs Diffusive concentration polarization coefficient
ζa Advective concentration polarization coefficient

1 Introduction

Cognitive and applicative research inmembrane transport is carried out in different fields of science,
technology, and medicine [1–4]. The possibility of the application of membranes depends on their
structure, physicochemical properties, and transport properties [2, 5]. To interpret membrane
transport, models provided under non-equilibrium thermodynamics [6, 7] and network thermody-
namics [8, 9] are the most frequently used instruments. The Kedem-Katchalsky equations [10] are
the most important research tools for the transport of solutions with different compositions and
physicochemical properties throughout simple and complex membranes; this transport is generated
by thermodynamic forces caused by single or complex physical fields (e.g., concentrations,
pressures, temperatures). For non-electrolyte solutions, the K-K equations describe volume transport
and transport of dissolved substances (solutes) involving the transport parameters of membranes,
i.e., the hydraulic permeability coefficient (Lp), the reflection coefficient (σm) and the diffusive
permeability coefficient (ωm). Usefulness of the classical as well as a modified form of the Kedem–
Katchalsky equations has been confirmed repeatedly [7, 11].

The classical form of K-K equations is applicable in the study of membrane transport in
homogenous solutions. Under particular existent conditions, it is assumed that the homogeneity
of solutions is reached only for the initial state (t=0). For t>0, the homogeneity of solutions
separated by the membrane is disturbed by the formation of diffusive layers, known as
concentration boundary layers (CBLs) near the membrane [12–14]. The layers reduce the
concentration gradient across themembrane, causing a decrease of the volume flows of solution
and solute [15]. The reason for the formation of CBLs is the membrane itself being a natural
barrier by the volume flows and the solute flows. The flows are affected by the type of
membrane (its size and shape of pores that may block the flow of solute particles or may cause
the retention of solute particles inside the membrane) as well as the type of solute. Therefore,
there is a need to characterize the CBL layers that constitute pseudo-membranes and have an
impact on the flows discussed above. To extend the range of application of the K-K
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equations, some modifications are made in the classical form of the K-K equations as well as in
their network form developed by Peusner [15–19].

A detailed study of the phenomenon of concentration polarization is important for technical and
medical issues. In technology, study results may help to develop membrane filtration or water
purification in wastewater treatment plants, however, instead of solid membranes very often liquid
membranes are applied. As far as medicine is concerned, it is crucial to evaluate the amount of
nutrients and medicines flowing into cells throughout the cell membranes as well as the amount of
unneeded substances flowing out of the cells. Membrane cells are organic membranes and therefore
specialists on cellular transport should take into account that some amounts of substance might not
reach inside cells due to the phenomenon of concentration polarization. Similarly, it may happen in
the event of ulcer treatment by applying membranes. Considering barriers in the form of concen-
tration layers, it should be evaluated carefully how much medicine provided to a wound actually
reaches the wound.

One way to evaluate the influence of concentration polarization on membrane transport is to
derive and calculate the coefficients ζp, ζv, ζs and ζa appearing in Eqs. (1) and (2). The numeric value
of the coefficients indicates how strong the influence of the concentration boundary layers on
membrane transport is. In previous research, the problem of the role of volume flows generated by
osmotic forces (Δπ) and hydrostatic forces (ΔP) in forming concentration boundary layers was
mentioned [27]. To develop this issue, we will study how the volume flux (Jv), the osmotic force
(Δπ) and the hydrostatic force (ΔP) influence the value of coefficient ζs. This paper presents two
mathematical models: the former presenting the influence of the volume flux (Jv) on the value of
coefficient ζs and the latter presenting the influence of the osmotic force (Δπ) and the hydrostatic
force (ΔP) on the value of coefficient ζs.

2 Theory

The classical K-K equations for transport generated by osmotic pressure difference (Δπ) and
hydrostatic pressure difference (ΔP) through the membrane describe the volume flux (Jv) and
the solute flux (Js) in the following form:

J v ¼ Lp ΔP−σmð Þ
J s ¼ ωΔπþ C 1−σmð ÞJ v

where Jv and Js are volume and solute fluxes, respectively; Lp, σm and ωm are coefficients of
hydraulic permeability, reflection and solute permeability, respectively; ΔP=Ph−Pl is the differ-
ence of hydrostatic pressure (Ph and Pl denote the higher and lower values of hydrostatic pressure,
respectively);Δπ=RT(Ch−Cl) is the difference of osmotic pressure (RT means the product of the
gas constant and thermodynamic temperature, Ch is the solution concentration in the higher
compartment of themembrane system andCl is the solution concentration in the lower compartment

of the membrane system). C ¼ Ch−Clð Þ ln ChCl
−1� �� �−1≈0; 5 Ch þ Clð Þ ¼ the average mean

solute concentration in the membrane system.
The phenomenological coefficients Lp ,σm, ωm have the following interpretation:

Lp ¼ J v
ΔP

� �
Δπ¼0

; σm ¼ ΔP
Δπ

� �
J v¼0

; ωm ¼ J s
s

Δπ

� �
Jv

¼ 0; w h e r e : [ J v ] = m ⋅ s − 1 ,
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[Js] = mol⋅s−1⋅m−2, [ΔP] = [Δπ] = N⋅m−2 = Pa, [Lp] = m3⋅N−1⋅s−1, [C] = mol⋅ m−3,
[ωm] =mol⋅N−1⋅s−1, σm− the dimensionless coefficient.

It should be pointed out that it is possible to derive numeric values of coefficients Lp, σ and
ω in a series of independent tests [6].

Under conditions of concentration polarization in membrane flows, the K-K equations are
modified [17]1:

J vs ¼ Lps ΔP−σsΔπð Þ
J ss ¼ ωsΔπþ C 1−σsað ÞJ vs

Applying particular coefficients of concentration polarization, namely hydraulic ζp=Lps/Lp,
osmotic ζv=σs/σm, diffusive ζs=ωs/ωm and advective ζa=σsa/σm, the above equations take the
following form:

J vs ¼ ζpLp ΔP−ζvσmΔπð Þ ð1Þ

J ss ¼ ζsωmΔπþ C 1−ζaσmð ÞJ vs ð2Þ
Taking into account Eq. (1), (2) can be written in the form:

J ss ¼ ζsωm−C 1−ζaσmð ÞζpLpζvσm

h i
Δπþ C 1−ζaσmð ÞζpLpΔP ð2aÞ

where C (1 – ζaσm)ζpLp=ωsa is the advective diffusion permeability coefficient under the
concentration polarization conditions. For ζp= ζv= ζs= ζa=1, the K-K equations take the
classical form.

In homogeneous solutions (stirred mechanically), membrane transport does not depend on
the orientation of the membrane in terms of the gravity direction but for non-homogenous
solutions (unstirred mechanically) this dependence is obvious [13, 15, 20–23]. The papers
quoted above prove that there is clear asymmetry between the volume flux and the solution
flux connected with the position of the selective membrane in terms of the gravitation vector

( g!). Also, when the density of the solution placed over the membrane is higher than the
density of the solution placed under the membrane, the convection takes place in the areas of
the concentration boundary layers [21–23]. For Jv=0, the concentration Rayleigh number (RCl
and RCh) for the layers ll and lh may be introduced by the following equations [24]:

RCl ¼ gωmζsRT
∂ρ
∂C

δl
4 Ch−Clð Þ Dl

2ρlνl
� �−1 ð3Þ

RCh ¼ gωmζsRT
∂ρ
∂C

δh
4 Ch−Clð Þ Dh

2ρhνh
� �−1 ð4Þ

where g is acceleration due to gravity, ∂ρ/∂C is the variation of density with concentration, Dl

and Dh are the diffusion coefficients, ρl and ρh are the mass density and νl and νh are the
kinematic viscosity.

1 The m index denotes coefficients relating to the membrane, whereas the s index denotes coefficients relating to
the system: membrane-CBLs.
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In non-selective membranes with the concentration Rayleigh number within the range
1010≤RC≤1011, convection cells with a ‘plum structure’ appear near the solution above the
membrane [25].

Following the reasoning presented in previous papers [17, 26], let us consider the single-
membrane system presented in Fig. 1, in which compartments with aqueous, non-
homogeneous (unstirred mechanically) and not reacting chemically solutions of the same
non-electrolyte substance are separated by the porous, symmetric, selective and electrically
neutral membrane M. In this system, under isothermal conditions, water and solute, diffusing
through the membrane, form the concentration boundary layers denoted by ll and lh at both
sides of the membrane. The CBLs constitute pseudo-membranes with thicknesses of δl and δh
and their transport properties are defined by the reflection coefficient of zero (σl=σh=0) and
the coefficients of non-zero of solution permeability (ωl, ωh). Let us denote solution concen-
trations at the boundaries ll/M and M/lh by Ce and Ci and concentrations beyond the layers ll
and lh respectively by Cl and Ch (Cl<Ce<Ci<Ch). The mechanical pressure will be denoted
by Pl and Ph (Ph>Pl). For the solutions unstirred mechanically, we have Δπm=RT(Ci – Ce).

The transport properties of the membrane are defined by the coefficients of hydraulic
permeability (Lp), reflection (σm) and solute permeability (ωm). The reflection coefficient and
the solution permeability coefficient for the system ll/M/lh are denoted respectively by σs and
ωs. The diffusion coefficients in layers (ll) and (lh) are denoted respectively by Dl and Dh.
Between the coefficients ωl, ωh, ωm and ωs, the relation ωs

−1 =ωm
−1 +ωl

−1 +ωh
−1 appears,

where ωl=Dl(RTδl)
−1, ωh=Dh(RTδh)

−1 and RT is the product of the gas constant and thermo-
dynamic temperature. Definitions of the coefficients Lp, σm, σs, ωl, ωh, ωm and ωs are provided
in the paper [26]. They do not differ from the definitions given above, however, they refer to
the membrane and the layers close to the membrane (upper and lower). According to Fig. 1,
the solution fluxes through layers (ll) and (lh), the membrane (M) and the system ll/M/lh are
denoted by Jsl, Jsm, Jsh and Jss,, respectively. The volume fluxes through the elements

Fig. 1 The membrane system: M −membrane; ll, lh − concentration boundary layers (CBLs); ωs, ωl, ωm,
ωh − solute permeability coefficient; Pl , Ph − hydrostatic pressure outside the layers; Pe, Pi −mechanical pressure
at the boundary ll/M and M/lh; Cl, Ch − solution concentrations outside the layers; Ce, Ci − solution concentrations
at the boundary ll/M and M/lh. Volume fluxes through the layers ll, lh, membrane M and the system ll/M/lh are
denoted by Jvl, Jvh, Jvm and Jv; Jl, Jh, Jm and Js − solute fluxes [17, 26]
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mentioned above are denoted by Jvm and Jvs. The volume flux (Jvs) may be calculated on the
basis of Eq. (1) and the volume flux (Jvm) in the membrane system presented in Fig. 1 can be
calculated on the basis of equation:

J vm ¼ Lp ΔP−σmRT Ci−Ceð Þ½ � ð5Þ

The concentration difference Ci and Ce, appearing in the equation above, can be calculated
for the steady state satisfying the relations:

J vm ¼ J vs ð6Þ

J sh ¼ J sm ¼ J sl ¼ J ss ð7Þ

To calculate the difference Ci–Ce, we use the algorithm presented in previous papers
[26–28]. For the layers ll and lh, (indexes sl and sh), the membrane (index sm) and the system
ll/M/lh (index ss) and using the K-K equations, we may write the equations:

J sl ¼ Dlδl
−1 Ce−Clð Þ þ J vmCl ð8Þ

J sh ¼ Dhδh
−1 Ch−Cið Þ þ J vmCh ð9Þ

J ss ¼ ζsωmRT Ch−Clð Þ þ J vm 1−ζaσmð ÞCs ð10Þ

where Ch = 0.5(Ch+Ci), Cl = 0.5(Ce+Cl), Cs = 0.5(Ch+Cl), 0≤ ζs≤1 and

ζs ¼ DlDh DlDh þ RTωm Dhδl þ Dlδhð Þ½ �−1 ð11Þ

Using Eq. (6) - (10), we obtain:

Ci ¼
DhCh−ζsωmδhΔπþ J vmδh ζaσmCs− 1

2 Cl

� 	
Dh− 1

2 J vmδh
ð12Þ

Ce ¼
DlCl þ ζsωmδlΔπþ J vmδl 1

2 Ch−ζaσmCs

� 	
Dl þ 1

2 J vmδl
ð13Þ

In the paper [29], it was proved that the coefficients ζs and ζa do not differ significantly and
therefore we use only the coefficient ζs. Similarly, for particular solutes the coefficients Lp and
Lps do not differ significantly, therefore we assume that Lp=Lps.
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Including Eq. (12) and (13) in Eq. (5) while assuming that ζs= ζa, and performing simple
algebraic calculations, we obtain:

ζs ¼
J vm3 þ φ0 J vm

2 þ φ1 J vm þ φ2

μ0 J vm−μ1
ð14Þ

where:

φ0 =−2[(Dhδl – Dlδh) + 0.5Lpδlδh(ΔP+σmΔπ)](δlδh)
−1,

φ1 = [2LpΔP(Dhδl – Dlδh) – 4DlDh]δl
−1δh

−1,
φ2 = 4LpDlDh (ΔP – σmΔπ)δl

−1δh
−1,

μ0 =4Lpσm
2RTC(Dlδh+Dhδl)δl

−1δh
−1,

μ1 =4LpσmΔπωmRT(Dlδh+Dhδl) δl
−1δh

−1.

The parameters in Eq. (14) are easy to measure. In a series of independent tests we are able
to derive the parameters of the membrane (Lp, σm and ωm), solutions (Dl, Dh), volume flux
(Jvm) and thicknesses of CBL (δl, δh) [6, 13, 14, 24, 30, 35].

The study of coefficient ζs, described in Eq. 14, is significantly important in membrane
flows. The coefficient not only includes the phenomenon of the concentration polarization but
also facilitates its measuring. This is essential in the event of flows through cell membranes
when estimating amounts of nutrients and medicines reaching inside cells. By ignoring the
concentration polarization phenomenon, we are not provided with the full and clear image of
membrane flows.

We aim to prove that the detailed investigation of coefficient ζs shows its dependence on the
flux Jvm (Fig. 2), the concentration ΔC1 (Fig. 3), the hydrostatic and osmotic pressure ΔP
(Figs. 4, 5 and 6), the volume flux Jvm and the concentration Rayleigh number Rc (Fig. 7).

Let us consider the following models related to Eq. (14):

0 2 4 6

0,00

0,04

0,08

0,12

0,16

s

J
vm
 10

8

 [m s
-1

]

Fig. 2 The dependence ζs = f(Jvm)ΔP=0 calculated according to Eq. (14)
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1. Assuming that δl= δh= δ and Dl=Dh=D, we obtain:

φ0 =−Lp(ΔP+σmΔπ),
φ1 =−4D2δ−2,
φ2 = 4LpD

2 δ−2(ΔP – σmΔπ),

μ0 =8Lpσm
2RTCDδ−1,

μ1 =8LpσmΔπωmRTD δ−1.

-0,18 -0,12 -0,06 0,00 0,06 0,12 0,18

0,00

0,15

0,30

0,45

0,60

s

C
1
 [mol l

-1

]

 experimental results

 calculation results

Fig. 3 Dependence of the concentration polarization coefficient on the concentration ζs = f(ΔC1) for an aqueous
glucose solution and Nephrophan membrane. The calculations were made according to Eq. (14). Experimental
results were taken from the paper [17]

Fig. 4 The dependence ζs = f(ΔP,
Δπ)Jvm=0 for the aqueous ethanol
solution
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2. For Jvm=0, Eq. (14) will be simplified to the following form:

ζs ¼
DlDh

ωmRT Dlδh þ Dhδlð Þ 1−
ΔP

σmΔπ

� �
ð15Þ

In order to eliminate the volume flux (Jvm) from Eq. (14), we use the following equation:

J vm ¼ J vs ¼ Lp ΔP−σmζsΔπð Þ ð16Þ

Including Eq. (16) in Eq. (14), we obtain:

Ζ1ζs
3 þ Ζ2ζs

2 þ Ζ3ζs þ Ζ4 ¼ 0 ð17Þ

Fig. 5 The dependence ζs = (ΔP,
Δπ)Jvm=0 for the aqueous glucose
solution

Fig. 6 The dependence ζs = (ΔP,
Δπ) dla Jvm ≠ 0 for the aqueous
ethanol solutions
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where:

Z1 =Lp
3σm

3(Δπ)3,

Z2 =Lp
2σm

2[Lpδlδh (Δπ)2[σmΔπ – 2ΔP] + 2(Δπ)2 (Dhδl – Dlδh) – 4RTCs(Dhδl +
Dlδh)σmΔπ ]δl

−1δh
−1

Z3 = [Lp
3σm δlδhΔπ(ΔP)2 – 2(Dhδl – Dlδh)Lp

2σmΔπΔP – 2Lp
3σm

2δlδhΔP(Δπ)2 –

4DlDh LpσmΔπ+4Lp
2σm

2RTCs(Dhδl+Dlδh)ΔP –
4LpσmωmRT(Dhδl+Dlδh)Δπ]δl

−1δh
−1

Z4 = [4LpDlDhσmΔπ+Lp
3 δlδh(ΔP)2σmΔπ ]δl

−1δh
−1

Fig. 7 Graphical representation of
dependence ζs = f(RCl, Jvm) for the
aqueous ethanol solution (in two
projections)
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3 Calculation results and discussion

Calculations were made for the Nephrophan membrane, aqueous glucose solutions (lower
index 1) and aqueous ethanol solutions (lower index 2). The coefficient of hydraulic perme-
ability of the Nephrophan membrane for water is Lp=5×10

−12 m3N−1s−1. The values of the
reflection coefficient and diffusive permeability coefficient of the membrane for the glucose
and ethanol are respectively σm1 = 0.068, ωm1 = 8 × 10

−10 mol N−1s−1, σm2 = 0.025 and
ωm2 = 14.3×10

−10 mol N−1s−1. The diffusion of each individual component in the solution is
characterized by the following coefficients:D1 =0.69×10

−9 m2s−1 andD2 = 1.57×10
−9 m2s−1.

The volumes of the compartments (l, h) were the same and equal to 200 cm3. For the low
glucose and ethanol concentration, we have ρh=ρl(1+α1C1h+α2C2h), νh= νl(1 +γ1C1h+
γ2C2h) with the coefficients α1 = ρl

−1∂ρ/∂C1 = 6.01 × 10−5 m3 mol−1, γ1 = νl
−1∂ν/

∂C1 = 3.95 × 10
−4 m3 mol−1, α2 = ρl

−1∂ρ/∂C2 = −9.02 × 10−6 m3 mol−1and γ2 = ρl
−1∂ν/

∂C2 = 1.82×10
−5 m3 mol−1 (ρl=998 kg m−3, νl=1.012×10

−6 m2 s−1) [30]. The values δl
and δh were taken from the previous paper [17]. In order to verify Eq. (14) and (17), the
dependence ζs= f(Jvm)ΔP=0 and ζs= f(ΔC1)ΔP=0 for aqueous glucose solutions was calculated.
The calculation results are presented in Figs. 2, 3, and 4.

Figure 2 presents the property ζs= f(Jvm)ΔP=0, i.e., the dependence of coefficient ζs on the
volume flux (Jvm) under the conditions ΔP=0 (the hydrostatic fragment of the volume flux is
eliminated). The property ζs= f(ΔC1)ΔP=0, calculated on the basis of Eq. (14), for the aqueous
glucose solutions presented in Fig. 3, has got a reverse course, i.e., it shows the monotonic
change of coefficient ζs depending on the concentration ΔC1. The course of dependence
shows that the value ζs in the calculations is a little bit lower than the value ζs in the test results
presented in the previous paper [17], however for ΔC1 >0, they fall into a 7% margin of
measurement error.

On the basis of Eq. (17), it is possible to define the simultaneous influence of parameters
Δπ and ΔP on the value of concentration polarization ζs. When Jvm=0, Eq. (16) proves that
ΔP=σmζsΔπ. The value ζs is, therefore, the function of two variables ΔP and Δπ (for
σm= const.). The function ζs =σmΔπΔP−1 is presented in the form of surface sheets in Fig. 4
(for aqueous ethanol solution) and in Fig. 5 (for aqueous glucose solution). The surface sheets
are the fragments of a hyperbolic paraboloid. In the first case, Δπ and ΔP have satisfied the
condition, respectively: −100 kPa≤Δπ≤100 kPa and −2 kPa≤ΔP≤2 kPa. In the second
case, Δπ and ΔP have satisfied the condition: −100 kPa ≤Δπ ≤ 100 kPa and
−5 hPa≤ΔP≤5 hPa.

If Jvm≠ 0, then considering the dependence (16), the shape of surface ζs = (ΔP, Δπ)
described by Eq. (14) is more complex. In the case of aqueous ethanol solution, the concen-
tration polarization coefficient ζs is defined exclusively for the non-negative pressure Δπ and
the non-positive pressure ΔP. To show the dependences ζs = (ΔP, Δπ), the following con-
centration ranges have been adopted: −150 kPa≤ΔP≤0 kPa, 0 kPa≤Δπ≤100 kPa. The
relevant surface fragment is presented in Fig. 6. The figure and the numerical study made in
Mathematica software proved that the value of hydrostatic pressure ΔP has a major influence
on the value of coefficient ζs. The change (variation) of the osmotic pressure value in the
adopted range causes the slight change of ζs.

In order to present the relation of dimensionless number ζs (the concentration polarization
coefficient) with the concentration Rayleigh number (RC) used for describing diffusive and

The mathematical model of concentration polarization 41



convective transport, for the conditions Jvm≠ 0, we make some considerations using the
formulas for δl and δh [31]:

δl ¼ RClDlρlνl g
∂ρ
∂C

Ce−Clð Þ

 �−1( )1

3

ð18Þ

δh ¼ RChDhρhνh g
∂ρ
∂C

Ch−Cið Þ

 �−1( )1

3

ð19Þ

Taking into account Eq. (12) and (13) in Eq. (18) and (19), after simple calculations we
obtain:

α1δl
4 þ α2δl þ α3 ¼ 0 ð20Þ

β1δh
4 þ β2δh þ β3 ¼ 0 ð21Þ

where:

α1 =g(∂ρ/∂C){ζsωmΔπ+ Jvm[0.5 (Ch – Cl) – ζsσm(Ch+Cl)]}
α2 =−0,5JvmRClDlνlρl
α3 =−RClDl

2νlρl
β1 =g(∂ρ/∂C){ζsωmΔπ – Jvm[0.5 (Ch – Cl) + ζsσm(Ch+Cl)]}
β2 =0.5JvmRChDhνhρh
β3 =−RChDh

2νhρh.

Let us analyze Eq. (20). Since the volume flux for ΔP=0 is Jvm=−LpσmζsDΔπ, conse-
quently Δπ = −Jvm(LpσmζsD)

−1. Assuming that Cl = 0, we have Ch–Cl = Ch +
Cl = Ch = −Jvm(LpσmζsDRT)

−1. Moreover, assuming that the CBL thickness is
δl =Dl(2RTωm)

−1(ζs
−1 – 1) and ρl=ρh=ρ0, then Eq. (20) can be presented in the following

form:

J vmφ1 ξs
−1−1

� �4
1þ J vm ξs

−1−2σm
� �
2RTωm

Jvm

" #
þ RClφ2 1þ 1þ J vm ξs

−1−1
� �

4RTωm

" #
¼ 0 ð22Þ

where: φ1 ¼ g ∂ρ
∂C D2

l Lpσm
� �−1

2RTð Þ−4ω−3
m , φ2 =νlρo.

The above equation presents the implicit function ζs of the variables RCl and Jvm, with the
fixed values of the remaining parameters, i.e., ζs= f(RCl, Jvm). The spatial graph of this function
presents the dependence of concentration polarization coefficient ζs on the Rayleigh number
(RCl) and the volume flux (Jvm). It is not essential to present Eq. (21) in the form of a
polynomial equation of the variable ζs, because we are obtaining the implicit function ζs of
the variable RCh and Jvm anyway.

A graph of dependence ζs= f(RCl, Jvm) was made for the Nephrophan membrane and
aqueous ethanol solution (Fig. 7). The shape of the surface in Eq. (22) proves that the
concentration polarization coefficient ζs is increasing together with the decrease of the
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concentration Rayleigh number (RC) and the volume flux (Jvm). The graph also shows the
significant influence of the two parameters mentioned earlier on the value of the concentration
polarization coefficient.

4 Conclusions

Equations (14) and (17), derived in this paper, are useful tools for research on membrane
transport under conditions of concentration polarization. Their application allows to calculate
the expressions ζs= f(Jvm), ζs= f(ΔC), ζs= f(ΔP,Δπ) and it is possible to evaluate the influence
of osmotic flux (Jvm) and/or the simultaneous operation of osmotic forces (Δπ) and hydrostatic
forces ((ΔP) on the value of the concentration polarization coefficient (ζs). Equations (20)-(22)
and particularly (22), are very useful, too. On the basis of Eq. (22), it is easy to calculate the
spatial formula ζs= f(RC, Jvm), allowing the evaluation of the numerical relations between the
concentration polarization coefficient (ζs), the osmotic flux (Jvm) and the concentration Ray-
leigh number (RC). The results of the research carried out confirmed the significant role of
concentration boundary layers in osmotic and diffusive transport, in particular their applicative
aspect in technology and medicine, as mentioned in the Introduction [5, 32–34]. The obtained
results of the test are also significant for micro-gravitation conditions under which membrane
transport and transport in areas near the membrane are of non-linear diffusive character. Under
such conditions, by suppressing natural convection and/or by suppressing sedimentation, the
character of the transport of oxygen and nutrients may change, thereby causing metabolism
disorders [5, 31, 33].

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and repro-
duction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were made.
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