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Abstract

The spindle checkpoint delays anaphase onset in the presence of defective kinetochore-microtubule
attachments. Such delays can last for just a few minutes or several hours, but very shortly after all
chromosomes achieve bi-orientation, a remarkably synchronous anaphase ensues. We are beginning
to understand the pathways involved in silencing spindle checkpoint signals and subsequent activation
of the anaphase-promoting complex. Here, we review recent advances made in our understanding of
the molecular mechanisms regulating this critical cell cycle transition.

Introduction and context
Mis-segregation of chromosomes in the germline leads to
aneuploidy and spontaneous abortion or birth defects
and, in the soma, is associated with several diseases,
including cancer [1]. Despite the complexities of mitosis,
such segregation defects are in fact extremely rare. The high
fidelity of this process is due, in large part, to the action of
checkpoints (surveillance systems) that coordinate the
successful completion of cell biological processes (DNA
replication and spindle assembly) with cell cycle progres-
sion. During mitosis, the spindle checkpoint monitors
kinetochore-microtubule interactions and delays ana-
phase onset until all sister-chromatid pairs are attached
and bi-oriented on the mitotic spindle [2]. Its compo-
nents, such as the Mad (mitotic arrest defective) and Bub
(budding uninhibited by benomyl) proteins, do this by
inhibiting Cdc20, which is an activator of the mitotic E3
ubiquitin ligase known as the anaphase-promoting
complex or cyclosome (APC/C). By inhibiting the APC/
C, securin and cyclin B are stabilized, thereby maintaining
sister-chromatid cohesion and high levels of mitotic CDK
(cyclin-dependent kinase) activity [3,4].

Checkpoint signals (e.g., Mad2-Cdc20 and mitotic
checkpoint complexes, or MCCs) are generated at

unattached kinetochores and then must be amplified
throughout the cytoplasm to ensure global inhibition of
the APC/C (Figure 1). Kinetochores often bind laterally
to microtubules at first, but then these microtubule
interactions will mature to form the more appropriate
stable, end-on, bipolar attachments that ‘satisfy’ the
spindle checkpoint. These attachments are under tension
and it is thought that this spatially separates and
constrains kinase and phosphatase activities within
distinct centromeric and kinetochore regions: such
subtleties may be key to determining the overall balance
of checkpoint signal production versus silencing.

Once such attachments are achieved, several kineto-
chore-based factors act coordinately to stop kinetochore-
mediated Mad2-Cdc20 complex generation (see below
and Figure 2). However, preventing Mad2-Cdc20 pro-
duction at kinetochores is not sufficient and the existing
inhibitors in the cytoplasm and any cytoplasmic
amplification mechanisms must be rapidly quenched
to ensure a timely and synchronous anaphase [4,5].

Do kinetochore and cytoplasmic silencing mechanisms
act cooperatively or in distinct pathways? Here, it is
important to note that some model systems may be
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more reliant on cytoplasmic (or nucleoplasmic in the
closed mitosis of yeast) versus kinetochore-based gen-
eration of inhibitory signals. How does silencing differ in
these varied systems? In this report, we outline some of
the recent advances in our mechanistic understanding of
spindle checkpoint silencing.

Major recent advances
Major recent advances have been made in areas of
kinase (Aurora and monopolar spindle 1 [Mps1]) and
phosphatase (protein phosphatase 1 [PP1]) signaling,
dynein-mediated stripping of checkpoint proteins from
kinetochores, and proteolytic turnover of checkpoint com-
ponents. Other silencing pathways (such as p31comet) exist,
but little has been learned of late with regard to their
modes of action.

Balancing kinases/phosphatase activity
Aurora B and protein phosphatase 1
In fission yeast, Aurora kinase 1 (Ark1) activity is required
tomaintain spindle checkpoint arrest, and when its kinase
activity is inhibited (using ark1-as, an ATP analog-sensitive
allele), kinetochore localized PP1 activity (Dis2 in
Schizosaccharomyces pombe) is also required to silence the
checkpoint and reactivate the APC/C [5]. Budding yeast
also uses a PP1 homolog (Glc7 in Saccharomyces cerevisae)
in silencing the spindle checkpoint [6] in concert with a
localization factor, Fin1 [7]. Most recently, it was demon-
strated in vertebrates that the gamma isoform of PP1 is
recruited via KNL1 (kinetochore-null 1) binding to kine-
tochores, where it opposes Aurora B activity to stabilize
microtubule attachments [8]. This creates a bi-stability,
with either Aurora B or PP1 activity dominating in the
outer kinetochore, thereby revealing an important switch
to a stabilized kinetochore-microtubule attachment that
may initiate kinetochore-mediated spindle checkpoint
silencing. Ndc80, MCAK (mitotic centromere-associated
kinesin), and KNL1 are all Aurora and PP1 substrates that
influencemicrotubule stabilization, but the substrates that
are most important for checkpoint silencing remain to
be identified, although KNL1, Ndc80, and dynein are
candidates [8-11].

Monopolar spindle 1 kinase (and opposing PPases)
Mps1 inhibition is a powerful suppressorof the checkpoint
in mammalian cells. RNA interference (RNAi) of Mps1
shortens mitosis [12-14] much like the depletion of Mad2
and BubR1 first demonstrated by Meraldi, Draviam, and
Sorger [15]. Mps1 inhibition within mitosis, through the
use of small-molecule inhibitors, is equally potent [16-18].
This supports models in which Mps1 kinase carries out
functions in ‘wait’ signal generation at the kinetochore,
such as promoting localizationofMad1/Mad2, and also in

Figure 1. APC/C inhibition is regulated by signalling within the
cytoplasm (a) and at the kinetochore (b)

(a) The inhibition of the anaphase-promoting complex/cyclosome (APC/C)
occurs primarily in the cytoplasm through the generation and amplification
of kinetochore-generated signals that are balanced by the dissociation of
inhibitory complexes. Checkpoint kinases (e.g., Mps1 and AurB) are thought
to act on this dissociation pathway to stabilize the inhibited form of the
APC/C. (b) These same kinases act at the kinetochore to activate and
maintain the checkpoint through the regulation of the local generation of
the wait signal. This activity keeps checkpoint generators such as the Mad1/
Mad2 and the Spindly/RZZ/dynein complexes localized to kinetochores
through the action of kinases on scaffolds such as kinetochore-null 1 (KNL1)
and checkpoint activators such as dynein. AurB, Aurora B kinase; Mad,
mitotic arrest defective; MCC, mitotic checkpoint complex; Mps1,
monopolar spindle 1; RZZ, rough deal, zeste white 10, zwilch.

Figure 2. Silencing of the checkpoint acts both in the cytoplasm
(a) and locally at each kinetochore (b) uponmicrotubule attachment

At a single kinetochore, the binding of the microtubule and subsequent
recruitment and activation of protein phosphatase 1 (PP1) locally reduce
checkpoint kinase activity and release checkpoint complexes via dissociation
of Mad1/Mad2 or translocation along microtubules via dynein. Loss of the
single generators culminates in the total loss of generation when all
chromosomes become attached. The remaining cytoplasmic inhibitory
complexes (MCC-APC/C) are dissociated in part by the natural decay in the
absence of generation and also by the activation of pathways that enhance
dissociation to produce the synchronous onset of anaphase. The
dissociation activity results in the activation of the APC/C by Cdc20, the
ubiquitination and degradation of cyclin B and securin, and the onset of
anaphase. APC/C, anaphase-promoting complex/cyclosome; AurB, Aurora
B kinase; KNL1, kinetochore-null 1; Mad, mitotic arrest defective; MCC,
mitotic checkpoint complex; Mps1, monopolar spindle 1; RZZ, rough deal,
zeste white 10, zwilch.
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‘wait’ signal stabilization in the cytoplasm via a mechan-
ism that has yet to be described.

Given the complex phenotypes associated with the loss
of these checkpoint kinases, we propose that Aurora and
Mps1 kinases are tri-functional (Figure 1) and can (a)
regulate microtubule attachments, (b) regulate ‘wait’
signals at the kinetochore, and (c) stabilize ‘wait’ signals
in the cytoplasm. As chromosomes attach, the reduced
local activity of these kinases results in kinetochore
composition changes that stabilize the microtubule
attachment and reduce wait signal generation (Figure 2).

Loss of kinetochore-localized spindle checkpoint
components
Dynein/Spindly/RZZ
Spindly and the RZZ (rough deal, zeste white 10, zwilch)
complex are required for dynein recruitment to kineto-
chores. Upon microtubule attachment, several outer
kinetochore components, includingMad1-Mad2, are trans-
ported to spindle poles in a dynein-dependent fashion
[19,20]. This motor-mediated removal of the Mad1-Mad2
scaffold has been proposed to eliminate wait signal gene-
ration by splitting the essential catalytic platform into an
inactive form [21]. It was recently shown that dynein-
dependent removal of Spindly from microtubule-attached
kinetochores is required for checkpoint silencing. Spindly
‘motif’ mutants that cannot bind dynein prevent dynein
recruitment to kinetochores and result in persistent
checkpoint signaling with persistent localization of the
Mad1/Mad2 to the attached kinetochore [22]. However,
in the complete absence of Spindly, after RNAi-mediated
depletion, there exists a mechanism to delocalize Mad1/
Mad2 complexes fromattachedkinetochores, perhaps reve-
aling a conserved silencing pathway present in lower eukar-
yotes without obvious Spindly/RZZ homologs.

The removal of the wait signal generator from the
attached kinetochore occurs through at least two path-
ways: dissociation and physical translocation along the
attaching microtubules themselves. This disruption of
signal generation occurs at each chromosome. After the
total number of unattached chromosomes is reduced to
zero, the loss of the signal generation is followed by the
release of inhibition that is already acting on the APC/C.

Relieving inhibition on the anaphase-promoting
complex/cyclosome
Ubiquitination activity
During mitosis, unattached kinetochores generate inhi-
bitory complexes (e.g., MCC) that result in the signi-
ficant accumulation of inhibitory APC/C complexes
(MCC-APC/C) [23-25]. Dissociation of these complexes
is required to permit APC/C activation. Work by Reddy

and colleagues [26] identified a role for ubiquitination
in the dissociation of this complex via the direct ubiquit-
ination of Cdc20. Their work established that the E2
enzyme UbcH10, in concert with p31comet, could act to
ubiquitinate Cdc20 in the context of the MCC-APC/C
complex, providing the first direct mechanism for relief
of APC/C inhibition. However, Cdc20 turnover is also
critical for checkpoint arrest [27-29], and a full under-
standing of the complex regulation of Cdc20 remains to
be realized.

More recently, another E2 ubiquitin enzyme, Ube2S, has
been shown to be critical for rapid anaphase onset after
release from extended drug-induced checkpoint activa-
tion. Surprisingly, loss of the enzyme during a normal,
unperturbed mitosis has, at best, a modest delay on
anaphase onset, indicating a specific role during extended
checkpoint activation. Perhaps more importantly, the
loss of Ube2S in an extended checkpoint arrest reveals a
decoupling between kinetochore-mediated silencing and
cytoplasmic APC/C activation [30-32].

A key feature of a synchronous anaphase onset is the
coupling of MCC-APC/C complex dissociation (i.e.,
APC/C activation) to kinetochore attachment, which is
proposed here to occur via inhibition of the checkpoint
kinases Mps1 and Aurora B kinase (AurB) and activation
of PP1. This coupling would speed anaphase onset after
final kinetochore attachment, a commonly made and
enigmatic observation [4].

Future directions
Whereas mechanistic details of silencing pathways are
being clarified on a monthly basis, the overall control
and any coordination of these pathways are far from
clear. Inter-module coordination could occur via AurB-
mediated recruitment of PP1 to KNL1. These activities
can feed into regulation of Spindly-dynein transport as
kinetochore targeting of dynein is under PP1 regulation
[11]. However, non-stripping pathways of Mad1-Mad2
release must also be regulated, and identification of
other AurB/Mps1/PP1 targets both at kinetochores and
in the cytoplasm will be required. Finally, the wealth of
quantitative timelapse and biochemical measurements
provide a robust substrate for computational modeling
that will have a major role in testing the many molecular
hypotheses.

Abbreviations
APC/C, anaphase-promoting complex/cyclosome; Ark1,
Aurora kinase 1; AurB, Aurora B kinase; Bub, budding
uninhibited by benomyl; KNL1, kinetochore-null 1;
Mad, mitotic arrest defective; MCC, mitotic checkpoint
complex; Mps1, monopolar spindle 1; PP1, protein
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phosphatase 1; RNAi, RNA interference; RZZ, rough deal,
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