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Controllable high-fidelity quantum 
state transfer and entanglement 
generation in circuit QED
Peng Xu1, Xu-Chen Yang2, Feng Mei1 & Zheng-Yuan Xue2

We propose a scheme to realize controllable quantum state transfer and entanglement generation 
among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing 
the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate 
transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits 
also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence 
on our scheme with the current experimental accessible systematical parameters. The result shows 
that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the 
state transfer and entanglement preparation process could be very high. In addition, our scheme is also 
shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths.

In the past two decades, many advances in quantum computation have been achieved on various kinds of quantum 
systems. One of the crucial perquisites for realizing quantum information processing is quantum entanglement. 
Due to its non-locality and non-classical correlations, quantum entanglement has been exploited in many applica-
tions1. To realize large scale quantum networks, one further needs quantum state transfer (QST) among different 
quantum nodes, which is the basic building blocks2–6. It is well-known that quantum information processing can be 
realized through the adiabatic evolution of the ground state of an initial Hamiltonian to that of a target Hamiltonian, 
i.e., the adiabatic passage7–9. It has been demonstrated that such technique is robust to the fluctuation of parameters 
as well as the decoherence due to spontaneous emission. Till now, QST and entanglement preparation have been 
widely explored in literature both theoretically10–25 and experimentally26–28 based on such technique.

The recent rapid developments in circuit QED has enabled this system as one of the leading platforms for 
studying quantum computation and quantum simulation29–33. This system can also be easily scaled up to large 
scale and possesses long coherent time34,35. One of the promising qubits in this context is the superconducting 
transmon qubit36 which is immune to 1/f charge noise. The transmon qubit is a quantum LC oscillator with the 
inductor substituted by the Josephson junction and is designed to suppress the charge noise to negligible values. The 
nonlinearity of the Josephson inductance further allows the oscillator to be weakly anharmonic, which make this 
system also be suitable for studying multi-level quantum operations. Recently, full quantum state tomography of a 
transmon as a three-level qutrit has been demonstrated37. The superconducting qubit control has also been realized 
with a combination of resonant microwave drives for achieving single-qubit rotations on nanosecond timescales. 
Furthermore, the transmon qubits connected to a transmission line resonator also provide a natural platform to 
study quantum optics and quantum computation. Many important experimental advances have been archived 
in this regard, including observation of Jaynes-Cummings ladder38, quantum trajectories39 and Schrödinger cat 
states40, and demonstration of quantum algorithms41, quantum teleportation42, geometric phase gates43, Toffoli 
gate44, multi-qubit entanglement45 and quantum error correction46. Besides, recent experiments46–48 have also 
demonstrated that single- and two-qubit gates with fidelities can approach the fault-tolerant threshold for surface 
code, and thus provide the essential ingredients for realizing large-scale fault-tolerant quantum computation.

In this paper, we propose a scheme based on adiabatic passage to realize QST and quantum entanglement 
generation among three transmon qubits fabricated in a transmission line resonator. This method could also be 
simply generalized to many qubits case to achieve long-distant QST and multipartitie quantum entanglement. In 
our scheme, QST can be performed between arbitrary two qubits through applying approximate driven pulses. 
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Moreover, based on tuning the time delay of the driven pulses, the transferred quantum state can be stabilized in a 
long time range, which is very helpful for further quantum information extraction with quantum non-demolition 
measurement. Furthermore, the degree of the final generated entanglement among the three transmon qubits 
can be tuned by changing the parameters of the driven pulse. In particular, we show the case for generating three 
qubit W state, which has many applications in quantum information processing. Finally, we numerically analyze 
the influence of the decoherence on our scheme, including the cavity decay and qubit relaxation. The result shows 
that our scheme is robust to their influence and the QST and entanglement generation could be achieved with 
very high fidelity. Moreover, our method is also shown to be insensitive to the inhomogeneous qubit-resonator 
coupling strength.

Results
The Building block. We consider three identical transmon qubits placed in a transmission line resonator, and 
the resonator has single relevant mode with the frequency wc involving the qubit-photon interaction, as shown in 
Fig. 1. We label the first three energy levels as the qubit state 0 , an auxiliary state e , and the qubit state 1 , respec-
tively. The transition ↔ ( = , , )e l1 1 2 3l l

 is driven by lth time-dependent Rabi frequency and the transition 
↔ e0 l l

 is coupled to the cavity mode, while the ↔0 1l l
 transition is forbidden. When |w1e −  w0e| is big 

enough, the driving field applied to the transition between 1  and e  has small effect on the transition from 0  to 
e 43. The Hamiltonian of a single transmon qubit is given by ϕ= ( − ) −ˆ ˆH E n n E4 coss C g J

2 , where n̂ and ϕ̂ 
denote the number of Cooper pairs transferred between the islands and gauge-invariant phase difference between 
the superconductors. The effective offset charge ng =  Qr/2e +  CgVg/2e is controlled by a gate electrode capacitively 
coupled to the island, where Cg and Vg represent the gate capacitance and voltage, Qr denotes the environment-in-
duced offset charge. The difference between the transmon and the Cooper pair box (CPB) is a shunting connection 
of the two superconductors via a large capacitance CB. Via the additional capacitance CB, the charging energy 
EC =  e2/(2CΣ) can be made small compared to the Josephson energy, where CΣ =  Cg +  2CJ +  CB, CJ is the capacitance 
of the Josephson tunnel junction. The Josephson energy π= ( Φ /Φ )E E2 cosJ J ext 0  is tuned by means of an external 
magnetic flux Φ ext, with E J being the Josephson energy of a single junction. Compared with the CPB, the transmon 
is operated in the parameter regime EJ ≫  EC. The Hamiltonian of the superconducting transmission line resonator 
is  ( )= ++H w a ac c

1
2

, where = /w L C1c c c  denotes the resonator frequency, and a (a+) represents the annihi-
lation (creation) operator of the transmission line resonator. Under the rotating-wave approximation, the effective 
interaction Hamiltonian of the whole system can be written as

∑= + Ω ( ) + . .,
( )=

H g a e t e h c[ 0 1 ]
1I

l
l l l l

1

3

where we have assumed that  =  1, gl is the coupling constant between the cavity and the transmon, Ω l(t) is the 
Rabi frequency for the transition ↔e 1l l

 of the qubit l. Without loss of generality, we assume that the transmon 
qubit is driven by a time-dependent microwave pulse with Gaussian envelopes49,50

Ω ( ) = Ω , ( )τ−( − ) /t e 2l l
t T

0
l l
2 2

where Ω 0l, τl and Tl are pulse amplitude, time delay and operation duration. In the following, the parameters and 
the shape of the driven Gaussian pulses will be engineered for achieving certain target quantum information 
processing, which is within the current state of the art circuit QED technology. Recently, based on similar engi-
neering on the external driven Gaussian microwave pulses, non-adiabatic51–53 non-abelian geometric phase has 
been observed with transmon qubit43,54.

Figure 1. Schematic of the superconducting system consisting of three transmon qubits in a transmission 
line resonator. The ladder-type energy level configuration for the lth transmon qubit consists of one auxiliary 
state e l

 and the computational basis states, 0 l
 and 1 l

. The transition ↔ e0 l l
 is resonantly coupled to cavity 

field with a coupling constant gl and the transition ↔e 1l l
 is driven by a time-dependent microwave pulse 

with Rabi frequency Ω l(t).
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Quantum state transfer. We now show how to engineer the driven pulses based on adiabatic passage7 to realize 
QST among three transmon qubits. In particular, we separately discuss two situations with the qubit-resonator cou-
pling strengths are homogeneous and inhomogeneous. The result shows that our scheme is robust to the inhomoge-
neous of qubit-resonator coupling strength. The total excitation operator in our system can be written as 
= ∑ ( + ) +=

+N e e a a1 1e l l l1
3 , where Ne commutes with HI so that the excitation number is conserved during 

the dynamical evolution. Here, we assume a single excitation is coherently exchanged between the qubit and resonator. 
The resonator can be the quantum bus that mediates interactions between the qubits, which can realize the QST 
among different qubits. The subspace in our scheme is the single excitation subspace, i.e., Ne =  1.

Assume the initial state of the system is 0 1 0 0c 1 2 3
, where the transmon qubit 1 is prepared in the state 1 , 

transmon qubits 2 and 3 are in the state 0 , and the cavity field is in the vacuum state. In this situation, the system 
evolves within this subspace is spanned by seven basis

φ φ

φ φ

φ φ φ

= , = ,

= , = ,

= , = , = , ( )e e e

0 1 0 0 0 0 1 0
0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 3

c c

c c

c c c

1 1 2 3 2 1 2 3

3 1 2 3 4 1 2 3

5 1 2 3 6 1 2 3 7 1 2 3

where φ φ∼4 7  are the intermediate states. It is easy to verify that the following two states are the eigenstates of 
the effective Hamiltonian with zero eigenvalue

φ φ

φ φ

( ) =

( ) = Ω ( )Ω ( ) + Ω ( )Ω ( )

+ Ω ( )Ω ( ) − Ω ( )Ω ( )Ω ( ) , ( )

D
D t N g t t g t t

g t t t t t

0 0 0 0 0
[

] 4

c3 1 2 3

3 3 1 2 3 1 2 1 3 2

3 1 2 3 1 2 3 4

where N3 is the normalization factor. The states ( )D 0 3
 and ( )D t 3

 are dark states since they have no dynamics 
under the Hamiltonian, and thus the excited level ( = , , )e l 1 2 3l

 is unpopulated. When the system is in the state 
0 0 0 0c 1 2 3

, the dynamical evolution of the system will be frozen.
From the above dark state formalism, it is easy to find that, if one can simultaneously engineer the three driven 

Gaussian pulses so that initially {Ω 3(t), Ω 2(t)} ≫  Ω 1(t) and finally {Ω 3(t), Ω 1(t)} ≫  Ω 2(t), then the population 
transfer could be achieved from φ1  to φ2 . The detailed evolution path and the driven pulses needed in the above 
transfer can be described as the following. First,

φ φ φ→ → . ( )
Ω

5
g

1 5 4
1 1

Then, the photon is further absorbed by the second qubit, the system will further evolve according to

φ φ φ→ → . ( )
Ω

6
g

4 6 2
2 2

Based on this observation, one can realize QST between two transmon qubits. Suppose that the original quantum 
information is encoded in an arbitrary unknown quantum state φ = +a b0 1  carried by the transmon qubit 1, 
where a and b are the normalized coefficients. As shown above, the zero excitation state 0 0 0 0c 1 2 3

 is frozen, the 
one-excitation state can be swapped between the transmon qubit 1 and 2, then the coherent quantum state 
φ = +a b0 1  could be finally transferred from transmon qubit 1 to 2.

Similarly, one can realize the QST from transmon qubit 2 to 3. In this case, based on observing the dark state 
formalism, when the three driven Gaussian pulses are engineered simultaneously so that initially {Ω 3(t), 
Ω 1(t)} ≫  Ω 2(t) and finally {Ω 1(t), Ω 2(t)} ≫  Ω 3(t), the population from the initial state φ2  would be transferred to 
the target state φ3 . The detailed evolution process can be written as first

φ φ φ→ → , ( )
Ω

7
g

2 6 4
2 2

and then the photon is further absorbed by the third qubit

φ φ φ→ → , ( )
Ω

8
g

4 7 3
3 3

which is the coherent QST between the qubit 2 and 3. In the whole process, one can find that the cavity state and 
the qubit state e  are the intermediate states. It is worth to point out that, our method is also can be generalized to 
realize QST between arbitrary two qubits, including one particular qubit to the one that is far away from this qubit, 
which is of great significance to the large scale quantum computation in the future.

In the following, we will show the method to design the driven Gaussian pulse sequence with their parameters 
satisfying the above requirements. For this purpose, we firstly assume the forms of the time-dependent driven 
Gaussian pulses are chosen as

Ω ( ) = Ω + Ω ,

Ω ( ) = Ω + Ω ,

Ω ( ) = Ω + Ω . ( )

τ τ

τ τ

τ τ

−( − ) / −( − ) /
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Through substituting the above forms into the systemic Hamiltonian, we numerically calculate the systemic evo-
lution and go to find the optimal parameters where the fidelity of our scheme is maximal. In Fig. 2(a), the three 
optimal Gaussian pulses Ω 1,2,3(t) for achieving QST from qubit 1 to 2 and then to 3 at a fixed time delay are plotted. 
In Fig. 2(b), the detailed population transfer of the QST process is calculated. One can find that the QST between 
two qubits can be obtained within a time duration tf =  150 ns, which is faster than that of the atomic system55. 
However, the transfer time can be much shorter through optimizing the driven pulses and improving the coupling 
strength between the qubit and resonator. We also numerically find the optimal parameter to make the QST much 
faster at a cost of reducing the fidelity. The good news is that the fidelity can be still higher than 0.9. Besides, during 
the transfer process, the intermediate states emerge in a very short time range compared to the decoherence time, 
which is the reason why our scheme has high fidelity even in the presence of decoherence. Another interesting 
characteristic during the system evolution is that the residence time on the populations of the quantum states is 
controllable through engineering the driven pulses, which provide an extra freedom to manipulate the QST in 
such framework.

In Fig. 2(c), we have plotted the fidelity of the above QST from transmon qubit 1 to 3 through 2. The fidelity is 

formulated as ( )ρ ρ ρ( ) = ( )/ /F t Tr tf f
1 2 1 2

2
, where ρ(t) and ρf are the density matrixes of the evolved state at the 

end of the pulse operation and the ideal final state respectively. One can find that the fidelity can almost approach 
one. Actually, the fidelity for QST from qubits 1 to 3 is much higher. Note that the influence of the inhomogeneous 
qubit-resonator coupling strengths on our scheme caused by the imperfection in the practical fabrication is a very 
important issue needed to be addressed. With a typical choice on the inhomogeneous qubit-resonator coupling 
strengths, we numerically calculate the corresponding fidelity and analyze the performance in this case in Fig. 2(d). 
The result shows that the fidelity of our scheme also can approach one, and thus very robust.

In Fig. 3, we further numerically demonstrate that the present protocol can also be generalized to realize 
QST from transmon qubit 1 to 3 through 2 and and then back to 1, including numerically finding the optimal 
Gaussian pulses, calculating the population transfer process and the fidelities for homogeneous and inhomogeneous 
qubit-resonator coupling strengths. The result shows that our scheme also can work very well even in this case. 
The final achieved fidelity could nearly approach one, even in the presence of an inhomogeneous case. Therefore, 
our scheme for QST using driven pulses is very robust, including working well with resonant and non-resonant, 
homogeneous and inhomogeneous qubit-resonator coupling.

Figure 2. Numerical results for quantum state transfer from qubit 1 to 2 and then to 3. (a) The shape of the 
driven pulses with Ω ij,i=1,2,3; j=1,2/2π =  350 MHz, τ1 =  0.35 us, τ2 =  0.58 us, τ3 =  0.2 us, τ4 =  0.65 us, τ5 =  0.28 us, 
τ6 =  0.5 us, Ti=1,2, ..., 6 =  75 ns. (b) Time evolution of the populations in different states during the population 
transfer from 0100  to 0001 , with gl/2π =  200 MHz. (c) Fidelity F versus the time t, with Δ g/2π =  0. (d) Fidelity 
F versus the time t, with the deviation Δ g/2π =  40 MHz (g1/2π =  180 MHz, g2/2π =  200 MHz, 
g3/2π =  160 MHz).
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Entangled state generation. We next consider using driven pulses to robustly generate quantum entan-
glement among the three transmon qubits placed in the transmission line resonator. There have been some entan-
glement generation schemes in similar circuit QED setups. Firstly, Tsomokos56 has presented a scheme of 
entanglement generation that N charge (flux) qubits are coupled capacitively (inductively). However, due to the 
fact that the coupling between every two qubits is required and each qubit is operated at its degeneracy point, it 
needs more time to achieve the entanglement and more fragile under the decoherence than our scheme. Secondly, 
Galiautdinov and Martinis57 have introduced another scheme that the maximal entanglement is generated in 
tripartite system with pairwise coupling ( + ) + g XX YY gZZ. It is realized in Josephson phase qubits with capac-
itive and inductive couplings. However, the decoherence time of the phase qubit is shorter than transmon qubit 
in our scheme and the interaction can not be realized similarly using transmon qubits. We assume that the initial 
state of the system is φ1 . When the driven pulses and the qubit-resonator couplings are applied, the evolution 
process is described as

φ φ φ

φ φ

φ φ

φ φ

→ →







→ → ,

→ → ,

→ → . ( )

Ω

Ω
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1 1
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3

Firstly, the driven pulse with Rabi frequency Ω 1(t) drives the system from φ1  into the state φ5 , then evolves into 
the state φ4  through the coupling between transmon qubit 1 and the resonator. Note that the state φ4  is just 
one-photon state. So, from now on, all the couplings between the three qubits and the resonator will dominant 
over the evolution, make φ4  evolve into φ , ,5 6 7  with equal weights. After that, three driven pulses with Rabi fre-
quencies Ω 1,2,3(t) would bring φ , ,5 6 7  into φ , ,1 2 3  with equal weights, leaving the cavity in the vacuum state. Then 
we get the entangled state of the three transmon qubits as

= ( + + ),
( )

W 1
3

100 010 001 11123 123 123

which is a W state and can be employed to complete various quantum information processing tasks.

Figure 3. Numerical results for quantum state transfer from qubit 1 to 3 through 2 and and then back to 1.  
(a) The shape of the driven pulses. (b) Time evolution of the corresponding populations for the different 
quantum states, with gl/2π =  200 MHz. (c) The fidelity F versus time t, with Δ g/2π =  0. (d) Fidelity F versus the 
time t, with the deviation Δ g/2π =  40 MHz (g1/2π =  180 MHz, g2/2π =  200 MHz, g3/2π =  160 MHz).
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The detailed performance of the above quantum entanglement generation is further analyzed through numer-
ically designing the driven pulses. For this purpose, the form of three optimal time-dependent driven Rabi fre-
quencies are chosen as

Ω′( ) = Ω′ , Ω′ ( ) = Ω′ , Ω′ ( ) = Ω′ . ( )τ τ τ−( − ) / −( − ) / −( − ) /t e t e t e 12t T t T t T
1 11 2 21 3 31

1
2

1
2

2
2

2
2

3
2

3
2

In Fig. 4(a,b), we have plotted the optimal three driven pulses and the time evolution of the systemic populations. 
In contrast, in Fig. 4(a,b), one can find that there are three states left finally and their coherent superposition leads 
to an W state. The results also show that the interaction time required for generating such entanglement among the 
three transmon qubits is about 85 ns, which is very fast compared to previous schemes for quantum entanglement 
preparation. In Fig. 4(c), we further plot the fidelity of the evolved states as function of the time and find that the 
fidelity of the final entanglement could be higher than 0.99. As shown in 4(d), this conclusion holds even for the 
nonidentical qubit-resonator coupling strengthes.

Furthermore, this method can also be directly employed to generate N-qubit W state. For instance, N-transmon 
qubits are fabricated in a transmission line resonator. All the transmon qubits are resonate with the single-mode 
resonator and driven by the time-dependent pulses. The effective Hamiltonian for the system is 

∑= + Ω ( ) + . .
( )=

H g a e t e h c[ 0 1 ]
13I

l

N

l l l l
1

We verify that the following two states 

∏ ∏ ∑

( ) = ⋅ ⋅ ⋅ ,

( ) =




 Ω ( )

− +
Ω ( )

… …




 ( )= = =

−

D

D t N
g
t

g
t

0 0 0 0 0

1 0 0 0 1 0 0 1 0
14

N N c

N n
l

n

l c
l

n

l c
l

n
l

l
l c n

1 2

1

1
1

2 1 2
1 1

are eigenstates of the Hamiltonian with zero eigenvalue. Here, Nn is a normalization factor. The states ( )D 0 N
 and 

( )D t N
 are dark states since the excited level ( )D 0 l

 is unpopulated. Through optimizing the time-dependent 
driven pulses applied on the transmon qubits, we can achieve the fast quantum state transfer and quantum 

Figure 4. Numerical results for entangled state generation. (a) The shape of of driven pulses with 
πΩ′ / =2 8111  MHz, πΩ′ / =2 2621  MHz, πΩ′ / =2 16531  MHz, τ1 =  τ2 =  τ3 =  0.15 us, T1 =  31 ns, T2 =  26 ns, 

T3 =  24 ns. (b) Time evolution of the populations for the different quantum states, with gl/2π =  200 MHz. (c) The 
fidelity F versus time t, with Δ g/2π =  0. (d) Fidelity F versus the time t, with the deviation Δ g/2π =  40 MHz 
(g1/2π =  180 MHz, g2/2π =  200 MHz, g3/2π =  160 MHz).
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entanglement among different qubits. Actually, one also can find that the degree of the above entanglement also 
can be engineered to a particular value through designed approximate driven pulses. Moreover, different from the 
previous methods, the Bell state and W state could be prepared between arbitrary two and three qubits with such 
method. Such feature is very helpful for achieving large scale quantum computation in a quantum network.

Discussion
At this stage, we take into account the cavity decay and qubit relaxation and analyze their influences on the quan-
tum state transfer and quantum entanglement generation. For this purpose, the master equation is employed to 
described the above decoherence process, which can be written as

  

 

∑ρ ρ κ γ σ γ σ

σ σ

= − , + + +

+ Γ + Γ , ( )
=

, ,
−

, ,
−

, , , ,

d
dt

i H a[ ]
2

[ ] 1
2

{ [ ] [ ]

[ ] [ ]} 15

I
l

l e l e l e l e

l l l e l e

1

3

1 1 0 0

1 1

where κ is the decay rate of the cavity, Γ l,1 (Γ l,e) is the dephasing rate of the qubit l with the level 1  ( )e , γl,1e and 
γl,e0 are the energy relaxation rates for the qubit l with the decay path → e1  and →e 0 , respectively; 
 ρ ρ ρ= − −+ + +A A A A A A A[ ] 2 , σ =,

− j il ij l
, σ =,
+ i jl ij l

, and σ =, k kl k l
 (k =  1, e).

For simplicity, we assume Γ 1 =  γ/2, Γ e =  γ/4, γ1e =  γ and γe0 =  γ/258. Based on numerically solving the master 
equation, in Fig. 5, we calculate the fidelity of the population transfer and the generation of entanglement among 
the three qubits in the presence of the decoherence. The results show that the fidelity decreases with the increase of 
the cavity decay and qubit relaxation rate. As both the life time of the photons in the resonator and the coherence 
time of the transmon qubit can approach 20 us58, it is easy to check that the parameters involved in our numerical 
calculation is within the experimental accessible parameter regime. With a typical choice of gl/2π =  200 MHz, 
κ/2π =  20 kHz, γ1e/2π =  20 kHz, Γ 1/2π =  10 kHz, γe0/2π =  10 kHz, Γ e/2π =  5 kHz, the fidelity of the final state can 
be higher than 0.94. The decoherence has a smaller effect on entanglement generation than on state transfer. The 
reason is that the quantum state transfer need much longer time than the entanglement generation, this is due 
to the fact that we need to insert delay pulses to further modulate the quantum dynamics for fulfilling the whole 
transfer process, while the entanglement generation process is straightforward.

In summary, based on engineering external driven microwave pulses and adiabatical passage, we have proposed 
a controllable method to realize high-fidelity QST and quantum entanglement among three superconducting 

Figure 5. Numerical simulation of the influence of the decoherence. Fidelities versus γ and κ at the end 
of the operation time with respect to the target state based on the master equation (13) for the quantum state 
transfer (a,b) and the three-qubit entanglement generation (c,d) in the homogeneous and inhomogeneous 
qubit-resonator couplings.
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qubits embedded in a transmission line resonator, which can be achieved with fast speed and high fidelity even 
in the presence of decoherence. Moreover, we also demonstrate that our scheme is also very robust to the inho-
mogeneousness of qubit-resonator coupling strength. In addition, our method can be readily scaled up to realize 
long-distance QST and multipartite quantum entangled generation. Finally, our proposal can also be applied to 
other types of superconducting qubits. Therefore, it is expected that our scheme could add a robust means for 
circuit QED to realize large-scale quantum computation and quantum simulation.
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