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ABSTRACT: Protein engineering has made significant contributions to industries such as agriculture, food, and pharmaceuticals. In
recent years, directed evolution combined with artificial intelligence has emerged as a cutting-edge R&D approach. However, the
application of machine learning techniques can be challenging for those without relevant experience and coding skills. To address
this issue, we have developed a web-based protein sequence recommendation system: STAR (Sequence recommendaTion via
ARtificial intelligence). Our system utilizes Bayesian optimization as its backbone and includes a filtering step using a regression
model to enhance the success rate of recommended sequences. Additionally, we have incorporated an in silico-directed evolution
approach to expand the exploration of the protein space. The Web site can be accessed at https://www.FindProteinStar.com/.

■ INTRODUCTION
Protein engineering is the process of designing and creating
new variants with improved properties by manipulating their
amino acid sequences. This technique has already yielded
significant results in the fields of nanotechnology, agriculture,
and medicine.1,2 Protein-directed evolution is one of the most
commonly used techniques in protein engineering;3 it mimics
natural evolution by iteratively introducing mutations and
selecting for beneficial variations until the desired level of
improvement is achieved. However, the vastness of the protein
space and the scarcity of functional proteins pose significant
challenges to directed evolution, resulting in potentially
suboptimal outcomes.2

Machine learning integrated into directed evolution is a new
paradigm for protein engineering.1,2,4 This technique has
shown great success in various applications. For instance,
Romero et al.5 successfully designed thermostable chimeric
cytochrome P450 enzymes. In another study, Greenhalgh et
al.6 improved in vivo fatty alcohol production by engineering
acyl-acyl carrier protein reductase. Wu et al.4 utilized machine
learning-guided directed evolution to identify higher fitness
variants. It also should be mentioned the success of protein
generative models, such as UniRep,7 TAPE,8 ProGen,9

ProGPT2,10 and ESM2.11

Bayesian optimization (BO) is a primary method used to
address black-box function optimization problems. It has been
shown to be a powerful tool in synthetic biology, including
applications such as protein engineering12−14 and biosynthetic
pathway optimization.15,16

In this paper, we propose a web-based machine learning-
assisted directed evolution platform: STAR (Sequence
recommendaTion via ARtificial intelligence), which can be
accessed at https://www.FindProteinStar.com/. There are
some open-source frameworks, such as PyPEF,17 BO-EVO,14

and ftMLDE,18 that aim to assist researchers in using machine
learning for directed evolution. However, using such frame-
works requires researchers to have certain coding skills, which
can be a barrier to the widespread adoption of machine
learning in the field. STAR aims to make the process more
accessible to a wider range of researchers. Specifically, our
work makes two contributions:
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(1) A web-based machine learning-assisted protein-directed
evolution platform, which allows researchers to use
machine learning in protein engineering without any
coding.

(2) Integrating in silico-directed evolution (iDE) into BO
enables researchers to mutate more sites and explore a
larger protein space.

■ METHODS
Bayesian Optimization. Bayesian optimization is an

iterative technique widely used for optimizing expensive
black-box objective functions.19,20 Formally, it can be
formulated as a maximization problem with an objective
function f defined on a search space A:

f xmax ( )
x A

In the first iteration, a surrogate function f* is constructed
by using initial observations to approximate f. Then, the next
querying point(s) are selected using an acquisition function,
and one iteration of Bayesian optimization is completed by
updating the surrogate function f* with the newly queried data.
This process continues until predetermined criteria are met. In
the context of machine learning-assisted protein engineering,
the objective function f represents the relationship between
sequence and fitness, which is measured through wet
experiments. The surrogate function f* is a probabilistic
model trained on experimental data.

Workflow. As shown in Figure 1A, after uploading
experimental data, we cleaned them to meet the machine
learning standards. We then train two regression models: the
first for initial filtering [from Lasso, Ridge, Support Vector
Regression (SVR), and Random Forest (RF)] and the second,

Gaussian process (GP), as a surrogate function for BO. To
reduce search space, we create a “focused library” based on the
number of mutation sites n: for n ≤ 4 sites, a combinatorial
library is constructed; for n > 4 sites, iDE is employed. We
acquire recommended sequences using Greedy, Upper
Confidence Bound (UCB), or Probability of Improvement
(PI) acquisition strategies. The details of the process are
explained in the following sections of this paper.

Data Cleaning. Data cleaning is a crucial step in the
machine learning process as it addresses the presence of
duplicates, missing data, and outliers, which can have a
negative impact on the model’s performance. To handle
missing data, we remove it from the data set. For
deduplication, the user can choose one of five strategies:
select the first/last sequence, the sequence with the maximum/
minimum value, or take the average value of duplications as the
training value. We have decided not to handle outliers and
leave this decision to the user’s discretion, considering that
outlier detection methods can present challenges when applied
to protein-fitness data.
In the model training step, we employed Lasso, Ridge, SVR,

and RF regression models as candidate models to predict
protein fitness. To optimize the performance of each model,
we utilized a grid search method to tune the hyperparameters
and conducted 5-fold cross-validation to evaluate their
performance. To obtain the uncertainty of the predictions
for subsequent acquisition strategies, we selected the GP as the
surrogate model for BO. We also applied hyperparameter
tuning to the GP model to enhance its performance. Table 1
provides a summary of the parameter grid used for tuning the
models.
In this study, we have implemented three different types of

sequence representations, namely, one-hot encoding, phys-

Figure 1. (A) Workflow of STAR, where the dashed line indicates that the user can directly use the sequences in the focused library. (B) Main
interface of the web.
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icochemical encoding, and learned encodings. We use learned
encodings as the default value and allow users to select from
any of the three as the encoding method.
One-hot encoding is a straightforward approach for

encoding categorical data and represents a protein sequence
as a vector of binary values, where each element of the vector
represents the presence or absence of a specific amino acid.
Additionally, protein sequences can also be represented by

their physicochemical properties, such as hydrophobicity,
mutability, and charge. Furthermore, higher-level properties,
such as secondary and tertiary structures can also be
incorporated into the embedding.21 In this work, we have
chosen the Georgiev22 encoding technique, which is a
physicochemical representation derived from the amino acid
index database.23 Wittmann et al.18 have demonstrated that
Georgiev encoding achieved similar performances as learned
encoding on the protein G domain B1 (GB1) data set.
In recent years, transformer-based natural language

pretrained models, such as BERT and GPT, have achieved
remarkable success in natural language processing tasks.24

These models have demonstrated the ability to capture
complex and abstract features of text data, leading to improved
performance on various natural language processing tasks.
Inspired by the success of natural language pretrained models,
researchers have begun to explore the application of similar
pretraining techniques to protein sequences. For this study, we
selected ESM-1v24 and ESM211 as the encoding strategies for
protein sequences as they have demonstrated superior
performance in predicting protein-related tasks.
Functional proteins are rare within the large space of

possible sequences; thus, most variants in the sample space
exhibit low or near-zero property values. To increase the
efficiency of BO, a common approach is to first filter out less
promising sequences using techniques such as classification,6

outlier detection,12 and zero-shot.18 We employed regression
models to create a reduced search space, termed a “focused
library”. Users can choose a certain threshold of predicted
values to construct this focused library.
However, creating such a focused library poses a significant

computational challenge as the number of possible sequences
increases exponentially with the number of mutation sites. For
example, when there are 5 mutation sites, the number of
possible sequences can reach up to 3,200,000 (205). Therefore,
we incorporated in silico-directed evolution into BO.
When the number of mutation sites is less than or equal to 4,

we construct a combinatorial library by performing a full
permutation of 20 amino acids at the mutation sites. When the
number of mutation sites exceeds 4, we will use iDE methods
to sample sequences. The iDE is essentially a Metropolis−

Hastings Markov chain Monte Carlo algorithm, which is
described and presented in these 2 papers.17,25 After the initial
variant is randomly selected and accepted, subsequent
substitutions are determined by the Metropolis−Hastings
criterion. The acceptance probability p is defined as follows:

p
y

T
min 1,

exp( )
=

i
k
jjjj

y
{
zzzz

where Δy is the difference between the predicted fitness of the
newly generated sequence and the last accepted one and T is
the temperature, which controls the balance between
exploration and exploitation of the searching space. After the
acceptance probability p is determined, a random number
between 0 and 1 is generated. If this number is less than or
equal to the acceptance probability, the proposed mutation is
accepted. Otherwise, it is rejected, and the previous variant is
used as the starting point for the next iteration.
In addition, we have also implemented two additional

features: (1) allowing users to provide a list of mutation
positions and/or permitted amino acids for mutations, with all
mutations being selected from this list and (2) restricting the
number of mutations compared to the wild-type, also known as
the trust radius.25 This is done by setting the predicted fitness
of the sequence that has more mutations than the input trust
radius to negative infinity, thus forcing rejection of the
proposal.
In this work, we implemented three different acquisition

strategies, including Greedy, UCB, and PI.

x x x

x x

x

z x

x x

x x

UCB( ) ( ) ( )

Greedy( ) ( )

PI( )

( ), ( ) 0

1, ( ) 0 and ( ) 0

0, ( ) 0 and ( ) 0

= +

=

=
>

= >

=

l
m
oooooo

n
oooooo

where μ(x) and σ(x) are the surrogate model-predicted mean
and uncertainty at point x and β is a constant number. γ(x) =
μ(x) − f* + δ; z x( ) x

x
( )
( )

= ; Θ is the cumulative distribution

function; f* is the current maximum objective function value;
and δ is a constant number.26

Web Usage and Implementation. The Web site offers a
user-friendly interface (Figure 1B) and ease of use. Users can
simply upload their training data, wild-type sequence, and
intended mutation sites when using default parameters.
Additionally, we provide a wide range of flexibility for users
to adjust the output by modifying parameters.
Summary of adjustable parameters:
(1) Trust radius�a limit on the number of mutations

compared to the wild-type sequence, with a default value
of 12.

(2) Allowed mutation sites�the user can specify specific
positions of the sequence that can be mutated;
otherwise, the whole sequence is allowed by default.

(3) Allowed mutation amino acids�the user can specify a
subset of the 20 standard amino acids that can be used
for mutations; otherwise, all are allowed by default.

(4) Temperature (T)�controls the balance of exploration
and exploitation in the Metropolis−Hastings algorithm,
with a default value of 0.01.

Table 1. Different Regression Models and Their Respective
Hyperparameter Search Spaces, with Five-Fold Cross-
Validation Utilized to Identify the Optimum Value

regression
method parameter grid

Lasso alpha: [0.01, 0.1, 1, 10, 100, 500, 1000, 5000, 10,000]
Ridge alpha: [0.01, 0.1, 1, 10, 100, 500, 1000, 5000, 10,000]
SVR C: [0.01, 0.1, 1, 10, 100, 500, 1000, 5000, 10,000]; gamma: [10,

100, 1000, 500, 1, 0.1, 0.01, 0.001, 0.0001]
RF n_estimators: [100, 200, 300, 400, 500]; max_depth: [2, 3, 4, 5,

6, 7, 8, 9, 10]; max_features: [sqrt, log 2]
GP alpha: [1 × 10−10, 1 × 10−8, 1 × 10−6, 1 × 10−4, 1 × 10−3, 0.01,

0.1, 1, 10], kernel: [RBF, Matern, DotProduct]
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(5) Number of evolutionary trajectories�determines the
number of independent evolutionary trajectories, with a
default value of 150.

(6) Number of evolutionary steps per trajectory�deter-
mines the number of iterations within each trajectory,
with a default value of 100.

(7) Threshold for generating the focused library�the user
can specify a threshold for selecting sequences to form
the focused library, with the default value being the top
10%.

(8) Acquisition strategy�the user can choose one from
Greedy, UCB, and PI, with UCB as the default value.

(9) Encoding method�the user can choose one from one-
hot, Georgiev, ESM-1v, and ESM2 as the encoding
method for sequences, with ESM2 as the default value.

The frontend of the Web site was built using Streamlit, and
the backend was written in Python language. For machine
learning modeling, we utilized the Sklearn library.

■ RESULTS AND DISCUSSION
GB1 Example. The GB1 data set consists of 149,361

experimentally determined fitness measurements for 160,000
(i.e., 204) possible variants of the B1 domain of protein G. The
fitness is determined by the protein’s ability to bind to the
fragment crystallizable domain of immunoglobulins. The data

set was generated by Wu et al.27 through saturation
mutagenesis at four carefully chosen residue sites (V39, D40,
G41, and V54). This data set has been used by many to
demonstrate the feasibility of their machine learning approach
in the protein design process.4,12,14,18

Our process was evaluated by using the GB1 database.
Initially, 77 samples from the database were selected by
performing single-residue single-site saturation mutagenesis at
four positions based on the wild-type sequence. This approach
ensures that all 20 amino acids occur at least once in the
selected sites. The selection of the initial batch of samples can
be random in principle, but we recommend a strategy that
maximizes the amount of information obtained within the
limited experimental budget. Subsequently, we selected SVR as
the first-step filtering regression model. The acquisition
strategies employed include UCB with a beta value of 2.0,
PI, and Greedy, and for completeness, random sampling was
also tested. We selected a relatively small batch size of 50 for a
total of 5 rounds of iteration. It should be noted that the batch
size and number of iterations can affect the final results, and
users should make their selections based on their specific
circumstances. Four independent tests were conducted, and
the results are shown in Figure 2D. It can be observed that
after a total of 327 (327/160,000 = 0.020%) experimental
points were selected, using the UCB sampling strategy, we

Figure 2. (A,B) Performance of the regression models on the initial batch of 77 samples. (A) SVR performance on the data set using ESM2 protein
sequence encoding. The model achieved an R-squared value of 0.20 and a Pearson’s r of 0.65 on a test set of 16 samples. The model’s performance
will be displayed on our Web site after training to assist users in selecting appropriate models for their specific needs. (B) Performance comparison
of different machine learning models on the data set. GP achieved the highest scores (R2 = 0.493, Pearson’s r = 0.752), followed by RF (R2 = 0.359,
Pearson’s r = 0.664). SVR, Ridge, and Lasso performed relatively poorly, with R2 values ranging from 0.2 to 0.074 and Pearson’s r values ranging
from 0.47 to 0.68. (C) Example of iDE on the GB1 data set using a restricted set of mutation sites (V39, D40, G41, and V54). A total of 200
evolutionary paths were simulated with 100 trial mutations per path, using the trained SVR model (the same as in Figure 2A) as the energy
function. This result serves as an illustrative example to demonstrate the efficacy of iDE, and it has led to higher predicted values. (D) Results of
conducting BO on the GB1 data set. The x-axis shows the accumulated number of experimental points with a total of six rounds of evolution
performed. In each round, an additional 50 samples were added to the batch size of 77 in the initial round. The y-axis displays the average
maximum experimental value obtained over four simulations for each set of accumulated samples.
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identified sequences with a mean fitness value of 7.23. It
should be noted that the maximum value in the entire data set
is 8.76 and that the fitness values of the majority of sequences
are close to 0. For additional experimental details, we refer
readers to the Jupyter notebook available in our GitHub
repository.

PhoQ Example. We further assessed the general
applicability of STAR using the PhoQ28 fitness landscapes.
The PhoQ data set consists of 140,517 experimentally
determined fitness measurements for 160,000 (i.e., 204)
possible variants. The empirical fitness landscape reflects the
interaction between PhoQ mutants and their substrate PhoP.
Using the UCB sampling strategy, we conducted 5 rounds of
iterations with a batch size of 300. In addition to the initial 70
samples, a total of 1570 samples were selected. In all 5
experiments, the optimal variant was successfully identified.
Despite the promising results demonstrated by our STAR

system, we acknowledge that a comparative analysis of our
model with existing models could bring additional validation.
Such comparison, however, is challenging due to factors like
initial values, batch size, and iteration rounds inherent to
Bayesian optimization methodologies. We also note that
similar comparisons are often not provided in the literature
introducing Bayesian optimization.12−14

■ CONCLUSIONS
We have developed a web-based protein sequence recom-
mendation platform, named “STAR”, that assists users in
protein design through the use of machine learning. With a
user-friendly interface, the platform offers ease of use to its
users. Additionally, it is the first web-based platform to
integrate Bayesian optimization and in silico-directed evolution
for protein sequence recommendation, and it can contribute to
the advancement of the protein design community.
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Data Availability Statement
Users can access the STAR application free of charge at
https://www.findproteinStar.com/. The testing GB1 data set
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github.com/likun1212/findproteinStar. Additionally, to aid in
the reproducibility of the results detailed in this paper, we have
provided examples of the data used in this study on the Web
site.
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