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Abstract: Proteins, these evolutionarily-edited biological polymers, are able to undergo intramolecular
and intermolecular phase transitions. Spontaneous intramolecular phase transitions define the folding
of globular proteins, whereas binding-induced, intra- and inter- molecular phase transitions play
a crucial role in the functionality of many intrinsically-disordered proteins. On the other hand,
intermolecular phase transitions are the behind-the-scenes players in a diverse set of macrosystemic
phenomena taking place in protein solutions, such as new phase nucleation in bulk, on the interface,
and on the impurities, protein crystallization, protein aggregation, the formation of amyloid fibrils,
and intermolecular liquid–liquid or liquid–gel phase transitions associated with the biogenesis of
membraneless organelles in the cells. This review is dedicated to the systematic analysis of the phase
behavior of protein molecules and their ensembles, and provides a description of the major physical
principles governing intramolecular and intermolecular phase transitions in protein solutions.

Keywords: protein folding; protein structure; intrinsically-disordered protein; molten globule;
secondary structure; coil; phase transition; liquid–liquid phase separation; membraneless organelle;
amyloid fibril; crystal

1. Introduction

Protein structures depend on the interplay of chain conformational entropy and the sum of multiple
weak interactions of different physico-chemical natures, which can be considered as “conformational
forces” defining the free energy change between the folded and unfolded states that are related to
protein stability. In this review, we will focus on proteins that exist mainly in the aqueous environment.

Among the weak, noncovalent interactions stabilizing protein structures are hydrogen bonds
(having up to 25–40 kJ/mol in vacuum or nonpolar medium, but only 8–10 kJ/mol in aqueous
environment), salt bridges (having up to 100 kJ/mol in the absence of water, but only about 5–10 kJ/mol
in aqueous environment), long-range electrostatic interactions (which are weaker but more numerous
than salt-bridges, and whose free energy depends on the distance between the charges and on
their environment), van der Waals interactions (of about 3 kJ/mol for interaction of two methyl
groups), and hydrophobic interactions (free energy of which scales with the size of the solute
surface as ≈10 kJ/mol/nm2, which, for a methyl group with a surface area of about 1 nm2, would
amount to ≈10 kJ/mol) [1]. Since these interactions are extremely condition dependent, the presence
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(or absence) of a structure in a query protein is condition-dependent too. Furthermore, due to their
different physico-chemical natures, various conformational forces can differently react to changes
in environmental conditions. In fact, although high concentrations of strong denaturants, such as
guanidinium chloride (GdmCl), guanidinium thiocyanate (GTC), or urea can efficiently suppress all
(or almost all) intramolecular conformational interactions leading to an almost complete unfolding of a
globular protein into a highly-disordered, random, coil-like conformation [2–5], often, environmental
alterations can decrease (or even completely eliminate) part of the conformational interactions, whereas
the remaining interactions remain unchanged or even strengthen.

Therefore, although it is commonly believed that all the necessary information for a given protein
to correctly fold to the specific, unique, and biologically-active conformation is included in its amino
acid sequence [1,6–8], this, actually, only concerns distinct proteins in their physiological environment,
while, in general, the crucial effect of environment should not be excluded. In fact, changes in the
environment of a globular protein can cause a wide spectrum of structural changes, ranging from
an almost complete unfolding in the concentrated solutions of a strong denaturant to a more subtle
denaturation (which is typically is associated with the loss of both the unique 3D structure and the
unique biological activity) under some “mild denaturing conditions”. In other words, the complete
unfolding of a protein does not necessarily represent the only consequence of denaturation. Instead,
some partially-folded conformations can possess properties that are in-between the properties of
the folded and the completely unfolded states. As a result, depending on the peculiarities of their
environments, the chains of globular proteins may exist in at least four different states in aqueous media,
i.e., their own native (ordered) conformation, molten globule, premolten globule, and unfolded [1,9–21]
(Figure 1), not to mention other forms that can be induced by nonaqueous environments, such as
alcohols, membranes, or other proteins, as well as by post-translational modifications of their chains.
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Figure 1. Four main possible stable states of protein molecule: noncompact unfolded chain with,
maybe, some traces of secondary structures; swollen “premolten” globule with partly formed secondary
structures; compact “molten globule” with almost formed secondary structures and folding pattern,
but having no close packing of its mobile side chains; and solid native protein structure [22].

One should keep in mind that although many globular proteins possess clearly defined and
unique 3D structures, these structures are rather heterogeneous, with the ordering degrees being
greatly diversified in the different parts of a given protein. Such structural heterogeneity is seen in
X-ray data as the variability of the values of the B-factor characterizing the mobility of separate atoms
in a protein [23,24], with the atoms of the active center of an enzyme being typically characterized by
the lowest B-factor. Additionally, some globular proteins have highly dynamic or even completely
unstructured regions (e.g., loops and terminal fragments) that correspond to the regions of missing
electron density, being therefore undetectable by X-ray analysis [25–29].

In addition to the “traditional” ordered proteins that “obey” classical function-structure paradigm,
where a specific function of a protein is determined by its unique and rigid 3D structure encoded in
a unique amino acid sequence encrypted in a corresponding gene, recently, we have witnessed an
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increased appreciation of intrinsically-disordered proteins, i.e., biologically-active proteins having
no unique structures, at least before interactions with other molecules. In fact, it is recognized
now that all organisms from all kingdoms of life (bacteria, archaea, and eukaryotes) and all viruses
contain discernible levels of intrinsically-disordered proteins (IDPs) or hybrid proteins containing
ordered domains and intrinsically-disordered protein regions (IDPRs) [30–36]. Furthermore, based
on computational analyses, it has been concluded that IDPs/IDPRs universally exist in all living
organisms [30–32,35,37–51], with the penetrance of disorder in different species increasing with the
rise of the organism complexity [30–32,35,52]. Here, the expected fractions of sequences predicted
to have long IDPRs (30 residues or longer) are arranged in the following order: Bacteria ~ Archaea
<< Eukaryotes [30,32,36,38,53]. This increase in the amount of disorder in eukaryotes was attributed
to the expansion of the significance of cellular signaling that often relies on IDPs/IDPRs [33,54–60].
Furthermore, only a very small fraction of proteins with known crystal structures in the Protein Data
Bank (PDB) is completely devoid of disorder [25,61].

The biological functions of many IDPs/IDPRs are strongly disorder-dependent, and can be
described in terms of the entropic chain activities, where an extended random-coil conformation
maintaining flexibility while carrying out its function is needed [34,62]. Stochastic machines can serve
as illustrative examples of such dynamic signaling complexes with “entropic” chain activities [63].
Structured domains in these stochastic machines are connected by long flexible linkers [63–66]. As a
result, the action of such machines does not depend on coordinated conformational changes. Instead,
they operate via uncoordinated and stochastic movements of their flexible arms (long, disordered
linkers), which, despite being engaged in constant and chaotic movements, can eventually enable
productive functionality [63]. However, there is a large set of IDPs/IDPRs that can fold at binding to their
partners [55,56,67]. Since various systems may have different degrees of such binding-induced folding,
the resulting complexes are characterized by wide structural and functional heterogeneities [68,69].
The existence of such foldable IDPs was used to argue that “a partly disordered polypeptide may be
capable of specific recognition through a conformer selection mechanism, but then it is the ordered
population that reacts, and the disorder is neither intrinsic nor functional”, and that, therefore, such
structureless proteins should be considered as “proteins waiting for a partner” (PWPs), which serve as
parts of multi-component complexes that do not fold correctly in the absence of other components [70].
Although based on these arguments it was concluded that molecular disorder is not compatible
with protein function [70], and although protein functionality seems to commonly originate from
disorder-to-order transitions, the existence of the opposite scenario was emphasized, where the local
or even global functional unfolding of ordered proteins represents an important prerequisite for
their functionality [71]. This regulated unfolding [72], or dormant or conditional disorder, shows
induced [73] and transient character [74]. It can be awoken by a broad range of environmental factors,
such as the release of autoinhibition, light exposure, changes in redox potential, mechanical force,
various posttranslational modifications, or changes in pH or temperature, or by specific interactions
with ligands, membranes, nucleic acids, or other proteins [71]. It was pointed out that the existence
of such dormant disorder phenomenon signifies the global importance of intrinsic disorder for
protein functionality.

Since flexible protein regions are known to serve as the primary targets for the proteolytic
attacks of various proteases [75–80], the fact that many IDPs and IDPRs are not cleaved by cellular
proteases represents a very interesting conundrum pertaining to the peculiarities of the cellular life of
intrinsically-disordered proteins and hybrid proteins with ordered domains and disordered regions.
In fact, it used to be commonly believed that only folding can protect polypeptide chains against
proteolysis. In line with this conjecture, it is known that IDPs are exceptionally sensitive to proteolysis
in vitro [81–83], with this high proteolytic sensitivity being considered one of the characteristic features
of IDPs/IDPRs [33,34,55,56,84–86]. Furthermore, for signaling IDPs, it was postulated that fast cellular
degradation represents one of the mechanisms of their functional regulation [34,56,57,62,87–89].
However, not all IDPs/IDPRs are degraded rapidly inside the cells, and analyses of the available data on
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intracellular protein half-lives suggest that the presence of intrinsic disorder in a protein does not imply a
significantly shorter half-life of its carrier [90,91]. One of the potential explanations for this phenomenon
is based on the hypothesis that in the cellular milieu, many IDPs/IDPRs exist largely in a bound state,
thereby possessing context-dependent resistance to proteolysis [91]. Several different mechanisms were
proposed for such binding-induced protection against cellular degradation by default. In fact, some
IDPs/IDPRs can always be bound to their specific biological partners. In such cases, binding-induced
structural stabilization of IDPs might represent a “by-product” of their functional interactions. For other
IDPs/IDPRs, such cellular degradation by default is prevented by interactions with specific binding
partners (e.g., proteasome gate keepers and nanny proteins) that interact with IDPs solely or principally
to prevent their degradation [91]. Still other IDPs/IDPRs are protected from degradation via interactions
with “decoy” DNA binding sites or via intramolecular interactions that minimize the number of
relatively unconstrained long IDPRs capable of accessing 20S core proteasome [91]. Importantly,
despite the obvious hypothesis that chaperones may offer direct protection from cellular degradation
by default by preferential binding IDPs/IDPRs in the cell, comprehensive bioinformatics analysis
of chaperone-binding and nonchaperone-binding proteins in three taxonomic groups revealed that
there is, in fact, a negative correlation between the intrinsic disorder propensity in proteins and their
tendency to be binding partners of chaperones [81]. In other words, the preferential cellular partners
of chaperones are ordered proteins, which requires more assistance for folding and protection from
misfolding and aggregation than IDPs/IDPRs [81]. Among the other molecular mechanisms used to
explain the protection of IDPs/IDPRs from cellular proteases are specific amino acid compositions
of disordered proteins and regions and tight regulation of intracellular proteases [81]. Furthermore,
the stability of proteins can be regulated by various post-translational modifications (PTMs), and it was
shown that IDPs/IDPRs can serve as substrates of twice as many kinases as ordered proteins [92,93].
Since in addition to the conformational stability of proteins, PTMs can affect their activity, folding,
interactions, turnover, and localization, and since IDPs/IDPRs are often serve as primary targets for
the modifying enzymes [33,56,60,88,94–99], it is likely that PTMs have other roles in protecting IDPs
against cellular degradation by default, e.g., by ensuring preferential localization of IDPs and hybrid
proteins to the cellular compartments that do not contain proteases. An illustrative example of such
compartmentalization is given by some proteinaceous membraneless organelles (PMLOs), where
IDPs/IDPRs can be protected from the proteolytic degradation by the preferential protease exclusion
from these organelles [100]. In conclusion, although several potential explanations for the remarkable
IDP/IDPR protection against cellular degradation by default were given, it seems that there is no
universal mechanism for such protection, indicating that protein degradation is not determined by
a single characteristic, such as intrinsic disorder propensity, representing a complex, multifactorial
process with prominent protein-to-protein variations.

An important feature of a polypeptide chain is its ability to undergo intramolecular and
intermolecular phase transitions. The discovery that denaturation of the globular, native, rigid,
one-domain protein structure can occur as an “all-or-none” transition [101,102], i.e., a transition
without accumulation of visible intermediates, is one of the cornerstones of protein physics. In this
article, we consider several aspects of such phase transitions, paying special attention to the spontaneous
intramolecular phase transitions in the solutions of ordered proteins undergoing either equilibrium
“native state—molten globule—unfolded chain” conformational transitions or kinetic “native state↔
unfolded chain” structural transitions, induced intramolecular phase transitions in the solutions of IDPs
promoted by their interactions with binding partners, transitions associated with the nucleation in bulk,
on the interface, and on the impurities, as well as macrosystemic phenomena of protein aggregation,
the formation of amyloid fibrils, and protein crystallization, and intermolecular liquid–liquid or
liquid–gel phase transitions that are associated with the biogenesis of membraneless organelles in
the cells.
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2. Intramolecular Phase Transitions of Ordered Proteins

2.1. Brief Description of Major Partially-Folded States of Globular Proteins

2.1.1. Molten Globule

The structural properties of a protein molecule in the molten globule are well known, and have
been outlined in a number of reviews (e.g., [12,13,79,103–117]). Although the molten globular protein
completely lacks a rigid, cooperatively-melting, tertiary structure, or has only a trace of such a structure,
i.e., is denatured, it preserves high levels of a native-like, secondary structure [12,13,79,103–118]. Molten
globules are compact (in comparison with the native state, their hydrodynamic radii are increased
by less than 15%, which translates into a ~50% increase in volume) [12,13,18,21,79,103–117,119] and,
as evidenced by small-angle X-ray scattering, have a globular structure, which is usually similar to
that of native globular proteins [120–124]. The analysis of the molten globules of several proteins by
solution NMR spectroscopy revealed that a protein molecule in this intermediate state does not only
have a native-like secondary structure, but that it also shows a native-like folding pattern [114,125–135].
This is not surprising, because what is good for the molten globule is probably good for a well-folded
protein structure as well. However, there are interesting exceptions; the best known one concerns
the molten globule of β-lactoglobulin [136]. Although the native protein is a β-structural molecule,
its folding intermediate contains nonnative α-helices, according to the CD spectra.

Despite their secondary-structure-enriched, relatively compact, and globular conformations,
molten globules are characterized by the considerable increase in the accessibility of a protein molecule
to proteases [75–80]. Finally, one of the most characteristic features of the molten globule is its high
affinity to the hydrophobic fluorescence probes (such as 8-anilinonaphthalene-1-sulfonate, ANS or
1,1′-bis(4-anilino-5-naphthalenesulfonic acid), bis-ANS) [137–140].

2.1.2. Premolten Globule

Similar to molten globules, the premolten, globular, partially-folded intermediate represents a
denatured conformation with no rigid tertiary structure. Premolten globules are markedly less compact
than the molten globular or native states of a protein with a given molecular mass, although these
intermediates are still noticeably more compact than random coils. In fact, compared to the native state,
the hydrodynamic volumes of the molten globule, premolten globule, and unfolded states are increased
1.5-, ~3-, and ~12-fold, respectively. However, there is no globular structure in a premolten globular
protein [15,124], suggesting that this conformation is likely a partially-ordered form of a “squeezed”
coil. In line with this hypothesis, premolten globular protein is characterized by the preservation of
considerable levels of secondary structure. However, this residual ordering (protein molecule in the
premolten globule state usually has ~50% or even less of native secondary structure) is much less
pronounced than that of the molten globule, which typically shows a native-like secondary structure.
Finally, at least part of the solvent-accessible hydrophobic clusters is already formed in the premolten
globule, as evidenced by the ability of this intermediate to interact with the hydrophobic fluorescent
probe ANS [11,13–15,17,116].

Finally, it has been shown that the premolten globule (with a relatively large secondary structure
content), as well as the unfolded state (with a low content of residual secondary structure), is separated
from the molten globule by a sharp transition, which, in some proteins, represents an “all-or-none”
transition, i.e., an intramolecular analog of the first order phase transition [11,13–15,17,116,141].
This means that in these cases, the molten and premolten globules represent different thermodynamic
(phase) states of a polypeptide chain [10,141]. It seems that the aforementioned all-or-none transition
is due to the formation of a secondary structure within a swollen premolten globule [142], especially
since it is known that a β-sheet formation is of an “all-or-none” kind [143–145]. No sharp transition
from the premolten state to the random coil has been reported as of yet.
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2.2. Thermodynamics of the Protein Denaturation. “Wet” and “Dry” Molten Globules

Before the molten globule state was discovered, protein denaturation was typically thought of as
the complete decay of the unique protein structure, i.e., a transition to the coil. After the theoretical
prediction [22], and then the experimental discovery of the molten globule [146,147], it became clear
that the denatured protein can be rather dense, nearly as much as that of the native protein, as well as
loose, like the coil, depending on the solvent’s strength and the hydrophobicity of the protein chain.

To understand the molecular basis of protein denaturation, one has to explain why two two
equally stable phase states of the protein chain can exist, and why they are separated by a free energy
barrier (which is required for an “all-or-none” transition). In other words, one has to explain why
the protein globule cannot decay by gradual (barrierless [148] or overcoming a very low free-energy
barrier [149]) swelling, as typical polymers do due to the persistent connectivity of their chains [150].

In so doing [151–153], one has to consider the major characteristics of proteins defining their
difference from “normal” polymers: (i) each globular protein possesses the only chain fold with a
peculiar stability; (ii) flexible side groups are linked to a much more rigid protein-chain backbone;
and (iii) the packing of a native globular protein is as tight as the packing of a molecular crystal
(although with no crystal lattice), where the van der Waals volumes of atoms occupy 70–80% of the
volume, whereas only 60–65% of the volume in liquids (melts) is occupied by the van der Waals
volumes of atoms [154].

The side chains of the protein can undergo a rotational isomerization. This is done by jumps
between the allowed conformations of the side chains. Each jump necessitates some vacant volume
near the side chain that jumps. However, since the native protein structure has a tight packing of
the chain (which contributes to the enhanced stability of this fold), each jump needs some extra free
volume for landing (see inset in Figure 2).Biomolecules 2019, 9, x 7 of 42 

 
Figure 2. At the top of the picture: The main possible stable states of the protein molecule and the 
unstable barrier state providing the all-or-none transition between the native structure (N) and the 
molten globule (MG), and all of the unfolded forms. Blue dots indicate water molecules. Inset: A 
sketch of a small piece of the close side chain packing. The yellow side chain “head” corresponds to 
an alternative rotamer of the central side chain, which is forbidden by close packing. At the bottom of 
the picture: Enthalpy H, entropy S, and free energy G of the protein molecule, depending on its 
uniform density. T is the temperature of the MG ↔ N equilibrium in a “bad” solvent. The dashed 
lines correspond to a “better” solvent. As is customary in the literature on protein folding theory, the 
“entropy” S does not include the solvent entropy; correspondingly, “enthalpy” H means, actually, the 
“free energy of interactions” (also called the “mean force potential”), since, e.g., the hydrophobic, 
electrostatic and other solvent-mediated forces, with all their solvent entropy, are included in this 
“enthalpy”. Adapted from [1,153]. 

Analysis of the properties of a protein globule at different levels of its uniform expansion [151–
153] shows that an expanded state of the protein globule can be as stable as its native (solid) state, 
but only after the density barrier has been passed. (It should be noted here that this analysis of a 
uniform globule’s expansion, illustrated by Figure 2, does not aim to model the protein unfolding 
kinetics, which occurs via intramolecular separation of the native and denatured phases, as shown in 
Figure 3a below). 

Thus, a small expansion of the compact native protein globule is always unfavorable [151–153], 
because it already increases the globule’s energy (whose parts already lose their close packing), but 
does not yet increase the globule’s entropy (since it does not yet liberate the rotational isomerization 
of the side groups) or allow entry of water into the protein core. That is, the globule’s free energy 
always increases with a small expansion. In contrast, a large globule’s expansion liberates the 
rotational isomerization of the side groups and leads (at high enough temperature) to a decrease of 
the free energy. As a result, protein denaturation occurs not gradually, but as a jump over the free 
energy barrier, leading to the “all-or-none” kind of transition (Figure 2). 

The aforementioned mechanism is related to the transition of a native globular state to any 
denatured form: molten globule, premolten globule, or coil [141,152]. Therefore, the protein structure 
tolerates, without significant change, a change of ambient conditions up to a certain limit, and then 
melts as a whole, like a macroscopic crystal. This provides the reliability of its biological functioning. 
Put differently, a sudden jump in entropy (mainly entropy of the side chains), which may happen 

Figure 2. At the top of the picture: The main possible stable states of the protein molecule and the
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small piece of the close side chain packing. The yellow side chain “head” corresponds to an alternative
rotamer of the central side chain, which is forbidden by close packing. At the bottom of the picture:
Enthalpy H, entropy S, and free energy G of the protein molecule, depending on its uniform density. T is
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the temperature of the MG↔N equilibrium in a “bad” solvent. The dashed lines correspond to a “better”
solvent. As is customary in the literature on protein folding theory, the “entropy” S does not include the
solvent entropy; correspondingly, “enthalpy” H means, actually, the “free energy of interactions” (also called
the “mean force potential”), since, e.g., the hydrophobic, electrostatic and other solvent-mediated forces,
with all their solvent entropy, are included in this “enthalpy”. Adapted from [1,153].

Note that the flexible side groups sit at the rigid backbone. The backbone is especially rigid
inside the globule, where the α- and β-structures hide H-bonds of their polar peptide groups from
the dense hydrophobic environment, and these α- and β-structures are stable, at least until water
molecules penetrate into the globule (which requires about the same free volume as the side chain
jumps). Therefore, the free volume can be hardly made for a separate jumping side chain, and each of
the rigid secondary structure elements, with the entire forest of flexible side chains attached, moves
as a whole (at least at the very beginning of the globule’s expansion). Therefore, the expansion of
the closely-packed globule, carried out by the moving apart of the rigid α- and β-structures, creates
about the same amount of free space near each side group; these spaces are either insufficient for
the isomerization of each of the side groups (when the globule expansion is still too small), or are
already sufficient for the isomerization of many of them. This means that liberation of the side groups
(as well as water penetration) can occur only when the globule expansion crosses a particular threshold,
i.e., the “barrier”.

Analysis of the properties of a protein globule at different levels of its uniform expansion [151–153]
shows that an expanded state of the protein globule can be as stable as its native (solid) state, but
only after the density barrier has been passed. (It should be noted here that this analysis of a uniform
globule’s expansion, illustrated by Figure 2, does not aim to model the protein unfolding kinetics, which
occurs via intramolecular separation of the native and denatured phases, as shown in Figure 3a below).

Thus, a small expansion of the compact native protein globule is always unfavorable [151–153],
because it already increases the globule’s energy (whose parts already lose their close packing), but does
not yet increase the globule’s entropy (since it does not yet liberate the rotational isomerization of the
side groups) or allow entry of water into the protein core. That is, the globule’s free energy always
increases with a small expansion. In contrast, a large globule’s expansion liberates the rotational
isomerization of the side groups and leads (at high enough temperature) to a decrease of the free
energy. As a result, protein denaturation occurs not gradually, but as a jump over the free energy
barrier, leading to the “all-or-none” kind of transition (Figure 2).

The aforementioned mechanism is related to the transition of a native globular state to any
denatured form: molten globule, premolten globule, or coil [141,152]. Therefore, the protein structure
tolerates, without significant change, a change of ambient conditions up to a certain limit, and then
melts as a whole, like a macroscopic crystal. This provides the reliability of its biological functioning.
Put differently, a sudden jump in entropy (mainly entropy of the side chains), which may happen only
after the expansion of the globule crosses a particular threshold, explains the origin of the “all-or-none”
transition separating the native and denatured state. Such a global entropy jump happens because of
the fact that the side chains cannot be liberated one-by-one, since they are held by rigid backbone that
coordinates their positions.

The pores in the molten globule are usually “wet,” that is, they are occupied by the solvent,
because a water molecule inside the protein is still better than a vacuum [151–153]. Experimentally,
the “wetness” of the molten globule is proven by the absence of a visible decrease in the protein floating
density [155] after denaturation of any kind.

When the solvent sticks to the protein core (consisting mainly of hydrophobic groups) not too
strongly, it only occupies the pores that have been already formed in the molten globule core to ensure
side-chain movements, but it does not expand the globule (just as water does not expand a sponge,
although it occupies its pores), and does not make new pores. Then, the denatured protein remains the
wet molten globule [152,155].
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Like the “wet” molten globule, a “dry” molten globule (having no water in its pores) was predicted
theoretically [152]; an analysis showed that the dry molten globule should be less stable than the wet
one, and therefore, that it is hardly suited to playing the role of a stable, accumulating intermediate
in protein melting. However, it has been found [156] that the dry molten globule emerges during
fluctuations preceding protein melting.

The molten globule compactness is maintained by the residual hydrophobic interactions of its
side groups. They were found to be not very strong. Even in the apomyoglobin, the molten globule
(which has a well-developed secondary structure and almost native chain topology of packing of the
most of its chain [157]), the residual interactions between the hydrophobic residues appear to be three or
four times weaker than those in the native protein [158]; these residual interactions are entirely missing
for some hydrophobic residues (which accentuates the heterogeneity of the molten globule; see [13]).

If the residual hydrophobic interactions are weak, i.e., if either the hydrophobicity of the chain is
low or the protein chain strongly attract the solvent, the solvent starts to expand the pores, and the
globule swells. The greater the attraction between the solvent and the protein chain, and the smaller
the attraction within the protein chain, the greater the chain swelling, leading to the transition to the
premolten globule and then to the random coil.

2.3. Kinetics of the “Unfolded Chain↔ Native State” Transitions

The ability of polypeptide chains of globular proteins to spontaneously form their spatial structures
is a long-standing puzzle in molecular biology. Numerous pieces of evidence (such as the independence
of the protein structures folded both in vivo and in vitro on the initial states and configurations of the
chains) show that the native protein structure is the most stable of all structures of the chain under
physiological conditions [6–8]. Here, it is worth noting that experiments have shown that there is no
fundamental difference between the in vivo (cotranslational) folding [159–161] and in vitro folding of
truncated and complete chains [162], at least for small proteins; in both cases, native-like structures
emerge only after the entire sequence is available.

The experimentally-measured folding times range from microseconds for small to hours for large
single-domain globular proteins; the difference (about 10 orders of magnitude) is the same as that
between the life span of a mosquito and the age of the Universe. But these microseconds or even
hours are negligible compared to the time necessary to iterate over all possible structures of the protein
chain and to find the most stable of them; this requires something like 3L or even 10L picoseconds
(where L, usually ~100, is the number of amino acid residues in the protein chain), i.e., billions of
years [163,164]. Consideration of this “Levinthal’s paradox” led to the idea that the energy landscapes
of protein chains must be somehow inclined, like funnels, towards the native protein structures; this
would facilitate a sequential protein folding [165–167]. Landscapes of this kind can drastically decrease
the time required for the protein chain folding by reducing, for these chains, the free-energy barrier,
which, ensuring an “all-or-none” transition, separates their unfolded (U) and natively-folded (N) states.
It is noteworthy that the energy landscape is, on average, automatically inclined towards the most
stable protein structure, because the interactions present in this structure are, on average, stronger
than the other ones. As a result, native-like folding intermediates (possessing a part of these native
interactions) are, on average, more stable than the “nonnative-like” folds that do not possess them.
In line with earlier analytical estimates [168], computer experiments have shown that a model polymer
whose random sequence was slightly “edited” to make the free energy of its most stable fold lower
than that of any other fold by at least by a few kcal/mol [169,170] finds this most stable fold in a time,
which is many orders of magnitude smaller than the time necessary to iterate over all the possible
chain structures.

A physical theory that not only solved the Levinthal’s paradox, but also estimated the dependence
of the protein folding time on protein size and shape, was first presented in the second half of
1990s [171–173]. This theory considers overcoming the free-energy barrier separating the natively-folded
(N) and unfolded (U) states of protein chains. This barrier occurs in both the uniform (Figure 2) and
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nonuniform (Figure 3a) expansions of the globule, but the height of the former barrier is proportional
to the protein size, while the height of the latter (occurring via intramolecular separation of the native
and denatured phases) is much lower, being proportional to the size of the globule cross-section,
i.e., the protein chain length to the power of 2/3. Therefore, the main pathway of the N↔ U transition
goes via just this lower barrier, the essence of which is an intramolecular phase separation.

The developed theory is applicable to protein and “protein-like” sequences, i.e., those having a
distinguished chain fold, the free energy of which is lower than that of any other fold by at least a few
kBTmelt [169,170,174,175] (where Tmelt is its melting temperature). In this theory, a special role is played
by the point of thermodynamic (and thus kinetic) equilibrium between the N and U states.

Biomolecules 2019, 9, x 9 of 42 

inclined towards the most stable protein structure, because the interactions present in this structure 
are, on average, stronger than the other ones. As a result, native-like folding intermediates 
(possessing a part of these native interactions) are, on average, more stable than the “nonnative-like” 
folds that do not possess them. In line with earlier analytical estimates [168], computer experiments 
have shown that a model polymer whose random sequence was slightly “edited” to make the free 
energy of its most stable fold lower than that of any other fold by at least by a few kcal/mol [169,170] 
finds this most stable fold in a time, which is many orders of magnitude smaller than the time 
necessary to iterate over all the possible chain structures. 

A physical theory that not only solved the Levinthal’s paradox, but also estimated the 
dependence of the protein folding time on protein size and shape, was first presented in the second 
half of 1990s [171–173]. This theory considers overcoming the free-energy barrier separating the 
natively-folded (N) and unfolded (U) states of protein chains. This barrier occurs in both the uniform 
(Figure 2) and nonuniform (Figure 3a) expansions of the globule, but the height of the former barrier 
is proportional to the protein size, while the height of the latter (occurring via intramolecular 
separation of the native and denatured phases) is much lower, being proportional to the size of the 
globule cross-section, i.e., the protein chain length to the power of 2/3. Therefore, the main pathway 
of the N ↔ U transition goes via just this lower barrier, the essence of which is an intramolecular 
phase separation. 

The developed theory is applicable to protein and “protein-like” sequences, i.e., those having a 
distinguished chain fold, the free energy of which is lower than that of any other fold by at least a 
few kBTmelt [169,170,174,175] (where Tmelt is its melting temperature). In this theory, a special role is 
played by the point of thermodynamic (and thus kinetic) equilibrium between the N and U states.  

 
Figure 3. (a) A scheme of the reversible “all-or-none” transition from the unfolded chain to the native 
globular structure; # marks the rate-determining transition state whose free energy is proportional to 
the size of the maximal interface of the native and unfolded phases, which scales with the chain length 
L as L2/3. (b) Experimentally-measured in vitro folding times at N ↔ U equilibrium for 107 single-
domain proteins (or separate domains) without SS bonds and covalently bound ligands (although the 
folding rates for proteins with and without SS bonds are principally the same [163]). Triangle: the 
region allowed by physics; its golden part corresponds to biologically-reasonable folding times (≤10 
min) under “biological” ambient conditions; the larger folding times (in the white zone) are observed 
(for some proteins) only under the equilibrium, i.e., nonbiological conditions. Adapted from [1,176]. 

Here, the theory obtains the simplest form, because both halves (the native-like and unfolded) 
of a semi-folded protein have equal free energies, so that the free energy of semi-folded protein is 
only determined by the interface between these two halves (that is, mainly by the surface free energy 
of the “native phase”). The maximal unavoidable interface between the N and U states occurring in 
the course on U ↔ N transition includes ≈L2/3 amino acid residues (L being the number of residues in 
a protein chain). Therefore, the barrier heights also scale with the protein size as ≈L2/3, and, therefore, 
the corresponding protein folding time scales as ~exp (≈L2/3), rather than as ~exp (≈L), appearing in 
the Levinthal’s paradox. This scaling, ~exp (≈L2/3), means that the protein folding time is many orders 

Figure 3. (a) A scheme of the reversible “all-or-none” transition from the unfolded chain to the native
globular structure; # marks the rate-determining transition state whose free energy is proportional to
the size of the maximal interface of the native and unfolded phases, which scales with the chain length L
as L2/3. (b) Experimentally-measured in vitro folding times at N↔U equilibrium for 107 single-domain
proteins (or separate domains) without SS bonds and covalently bound ligands (although the folding
rates for proteins with and without SS bonds are principally the same [163]). Triangle: the region
allowed by physics; its golden part corresponds to biologically-reasonable folding times (≤10 min)
under “biological” ambient conditions; the larger folding times (in the white zone) are observed
(for some proteins) only under the equilibrium, i.e., nonbiological conditions. Adapted from [1,176].

Here, the theory obtains the simplest form, because both halves (the native-like and unfolded) of
a semi-folded protein have equal free energies, so that the free energy of semi-folded protein is only
determined by the interface between these two halves (that is, mainly by the surface free energy of
the “native phase”). The maximal unavoidable interface between the N and U states occurring in the
course on U↔N transition includes ≈L2/3 amino acid residues (L being the number of residues in a
protein chain). Therefore, the barrier heights also scale with the protein size as ≈L2/3, and, therefore,
the corresponding protein folding time scales as ~exp (≈L2/3), rather than as ~exp (≈L), appearing in the
Levinthal’s paradox. This scaling, ~exp (≈L2/3), means that the protein folding time is many orders of
magnitude less than the time ~exp (≈L), which is necessary to iterate over all possible chain structures.

A theoretical estimate of the folding time is based on the conventional transition state theory [177–179].
For the N↔U equilibrium, an accurate estimate of the folding (and unfolding) time for a protein chain of
L amino acid residues gives

TIME ∼ τ × exp[(0.5 ÷ 1.5)L2/3], (1)

where τ ≈ 10 ns is the time of the conformational rearrangement of one residue (measured for the helix
↔ coli transition) [180].

The lower estimate (TIME ∼ τ × exp[0.5L2/3]) corresponds to the proteins with “simple” chain
folds, which have a transition state (“folding nucleus”) structure where the N–U interface is not covered
by the closed unfolded loops; the energy loss for one residue of the phase surface, ≈0.5 kBTmelt, is taken
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as ε/4, where ε ≈ 1.3 kcal/mol ≈ 2kBTmelt is the average heat of native protein melting per residue [102]
(this is the first empirical parameter used by the theory, while τ ≈ 10 ns is the second and the last used
empirical parameter).

The upper estimate (TIME ∼ τ × exp[1.5L2/3]) corresponds to the proteins with “complicated”
chain folds, which have a transition state (“folding nucleus”) structure where the N–U interface is
maximally covered by the closed unfolded loops. Strictly speaking, this upper estimate is TIME
∼ τ× exp[(0.5 + 5/12ln(3L1/3))L2/3], where the logarithmic term follows [171,181] from averaging the Flory’s
estimate for the entropy of closed loops, but for protein chains of a normal size, ~50 ÷ 200 residues, this
5/12ln(3L1/3) is so close to 1 that there is no need to overcomplicate the simple result given by Equation (1).

Theories developed for the prediction of protein folding nuclei, experimentally studied by Alan
Fersht [182] and others that one can find in [183–193], and a more detailed theoretical consideration of
folding times for proteins of different sizes, chain folds, and stabilities, are given in [176,181,194–197].
A limited-influence chain knotting and the SS-bonds in the single-domain proteins on the folding rate
were estimated in [173,187], and the influence of the native structure stability on the folding rate was
estimated in [176] (see also [198]).

The aforementioned estimate (1) of protein folding rates, obtained in 1997, was confirmed by the
subsequently obtained experimental data [176,194]; see Figure 3b.

However, one can see that the derived theory of protein folding rates explains Levinthal’s paradox
“in non-Levinthal’s terms”, i.e., it deals with phase separation and free energy barriers, but gives no
estimate as to the number of structures to be iterated over in a search for the most stable chain fold,
and offers no explanation as to why such an iteration is feasible, at least for small globular proteins
(or domains) of ~100 amino acid residues.

Our answer is that the Levinthal’s paradox assumed that the search should be done among all
conformations of the protein chain (which is indeed impossible), while the search among low-energy
folds only (i.e., only among compact and well-structured globules), which is done at the level of protein
secondary structure assembly (Figure 4), is by many orders of magnitude less voluminous, and is
therefore, feasible. A rough estimate [181,199,200] leads to the conclusion that at the level of secondary
structure assemblies (or, in other words, at the level of potential molten globules), the search volume
does not exceed

~LN ~ exp[1/4ln(L) L2/3] (2)

for a protein chain of L amino acid residues and N secondary structure elements, which, in the main
term, scales approximately as the exponent in the aforementioned upper estimate (τ × exp[(0.5 +
5/12ln(3L1/3)) L2/3] ≈ τ × exp[1.5L2/3]) of the protein folding time.Biomolecules 2019, 9, x 11 of 42 
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3. Intramolecular Phase Transitions in Disordered Proteins Induced by Interactions with Binding
Partners

The interplay between the amino acid sequence of a protein and environment defines the ability
of a polypeptide chain to fold, misfold, or be intrinsically disordered. Although one can induce
different degrees of disorder in a molecule of a globular protein by changes in its environment
(to generate molten globule, premolten globule, and coil-like states [11–14,16,17,201]), IDPs/IDPRs
can be differently disordered under the same physiological conditions and exist as highly-dynamic,
conformational ensembles of collapsed (native molten globules) or extended disordered species (native
premolten globules and native coils) [17,33,202]. In other words, contrarily to globular proteins
that have unique 3D structures under physiological conditions, IDPs/IDPRs exist under the same
conditions as dynamic, conformational ensembles with quite different structures that interconvert on
a number of timescales. Accumulated data on the structural heterogeneity of IDPs suggest that the
representation of these proteins as members of three well-defined structural classes (native molten
globules, native premolten globules, and native coils) is an oversimplification. In fact, IDPs/IDPRs
might contain foldons (i.e., independently foldable protein units, which should not be mixed with
domains, since single-domain proteins might have several foldons [203–207], as was shown for
cytochrome c [208], apo-cytochrome b562, ribonuclease H, dimeric triosephophate isomerase, the OspA
protein of Borrelia [203], and staphylococcal nuclease [209]), inducible foldons (which are IDPRs
capable of at least partial folding, promoted by their interactions with binding partners), morphing
inducible foldons (IDPRs with the potential to fold differently due to binding to different partners),
semi-foldons (regions that are always in a semi-folded form), and nonfoldons (IDPRs that never fold).
On the other hand, the functionality of many ordered proteins depends on the presence of ‘unfoldons’,
i.e., regions of ordered proteins that undergo order-to-disorder transitions to make proteins active [210].
Therefore, based on currently available data, one can conclude that intrinsic disorder can have multiple
faces, and can affect different levels of protein structural organization, where either whole protein
or various regions are disordered to a different degree. Based on these considerations, it has been
proposed that functional proteins represent a continuous spectrum of differently-structured/disordered
conformations that ranges from fully ordered to completely structureless species and everything in
between [210]. It was also pointed out that no boundary is present between the ordered proteins and
IDPs. Instead, the structure–disorder space of a protein represents a continuum [210] that defines
the protein structure-function continuum [211–214], where instead of the classical “one gene—one
protein—one structure—one function” model, any protein represents a dynamic conformational
ensemble containing multiple conformational/basic, inducible/modified, and functioning proteoforms.
Proteoforms represent a set of distinct protein molecules encoded by a single gene. They originate
from allelic variations and various pretranslational mechanisms affecting genes, such as the production
of multiple mRNA variants by alternative splicing and mRNA editing. They can also be generated
by numerous changes induced in the chemical structures of proteins by various post-translational
modifications (PTMs) [215]. Also, some of them can be linked to the presence of IDPRs, or can
originate from the functionality [211]. Therefore, the protein structure–function continuum suggests
that any protein can be characterized by a broad spectrum of structural features, and can possess
various functional potentials [211,212,216]. As a result, IDPs/IDPRs are not homogeneous, but
represent a very complex mixture of potentially foldable, partially foldable, differently foldable, or not
foldable segments [210,217]. In other words, IDPs/IDPRs behave as highly frustrated systems with
no single folded state. This is reflected in their free energy landscapes, which are relatively flat and
simple, and do not have a deep energy minimum seen in the free energy landscape of the ordered
globular protein, representing instead a kind of ‘hilly plateau’, where hills correspond to forbidden
conformations [16,218,219]. Such a simplified and flattened energy landscape is extremely sensitive to
different environmental changes that can modify the landscape in a number of different ways, making
some energy minima deeper and some energy barriers higher. This explains the conformational
plasticity of IDPs/IDPRs, their extreme sensitivity to changes in the environment, and their ability to



Biomolecules 2019, 9, 842 12 of 40

specifically interact with many partners of different natures and to fold differently as a result of these
interactions [210].

The lack of rigid structures in the IDPs/IDPRs is encoded in the specific features of their amino
acid sequences, such as, for proteins/regions with extended disorder, the presence of numerous
uncompensated charged groups (often negative) giving rise to their high net charges at neutral pH
and extreme pI values [220–222], and a low content of hydrophobic residues [220,221]. On a more
global level, amino acid sequences of IDPs/IDPRs have several common features [223,224], such as
depletion in the order-promoting residues that would normally form the hydrophobic core of a folded
globular protein (e.g., bulky hydrophobic (Ile, Leu, and Val) and aromatic (Trp, Tyr, and Phe) amino
acids) and Cys residues. On the other hand, IDPs/IDPRs are noticeably enriched in disorder-promoting
amino acids, such as polar residues Arg, Gln, Ser, Glu, and Lys, as well as Gly, Ala, and a hydrophobic
structure-breaker Pro [33,225–228]. However, one should keep in mind that although being generally
depleted in hydrophobic residues, IDPs/IDPRs still contain some strategically-placed hydrophobic
residues, which could be of crucial functional importance. In fact, similar to ordered proteins containing
characteristic patterns of hydrophobic and hydrophilic residues which are important for protein folding
and function, amino acid sequences of IDPs/IDPRs are also patterned, and these proteins are known to
contain so-called molecular recognition features, i.e., regions which are disordered in the unbound form
but which can at least partially fold upon interacting with specific partners [55,56,67]. Importantly, since
the degree of such binding-induced folding is different for different proteins, the resulting complexes are
characterized by broad structural and functional heterogeneity [68,69]. Due to their ability to fill the gaps
and cracks between the structural elements of a binding partner [229], IDPs/IDPRs can act as molecular
glue or mortar [56]. Since interaction with partners can initiate at least partial conjoint binding-induced
folding, IDPs/IDPRs can also serve as molecular epoxy [230–232]. The dynamic ‘on–off’ switch-type
interactions commonly found in signaling networks are dependent on intrinsic disorder, since the
ability to bind partners with high specificity and low affinity represents one of the specific features of
disorder-based interactions [34,233,234]. Many IDPs/IDPRs serve as morphing shape-changers that are
able to differently fold as a result of binding to different partners [17,67,87,235–237], with the binding
regions of such morphing IDPs/IDPRs being able to adopt completely different structures upon binding
to the divergent partners [58,65,238–240].

Under physiological conditions, the capability of a globular protein to gain ordered structure
is encoded in its amino acid sequence that contains, so to say, a “blueprint” of a final structure.
This “blueprint” can be complete; then, the proteins are foldable, and they fold spontaneously
without help from external factors [241–243]. The facts that IDPs/IDPRs cannot spontaneously fold
into unique 3D structures and that interactions with specific partners can resolve their foldability
problem indicate that some parts of their “blueprints” are missing, and that these missed parts are
provided by the binding partners. Although not quite literally, this binding-induced folding of
IDPs/IDPRs can be approximated by the interaction-promoted folding and assembly of a globular
protein from its polypeptide fragments, as was shown for Trp repressor [244], SH2 domain [245],
maltose binding protein [246], oxyanion-translocating ATPase [247], barnase [248], rhodopsin [249,250],
B1 domain of streptococcal protein G [251], pig heart CoA transferase [252], E. coli thioredoxin [253],
bacteriorhodopsin [254], G protein-coupled receptors [255], ubiquitin [256], and E. coli aspartate
transcarbamoylase (ATCase) [257], to name a few. Curiously, this high efficiency of the functional
structure restoration from the peptide fragments prompted Johnsson and Varshavsky to design a
ubiquitin split protein sensor (USPS) in order to detect protein–protein interactions in vivo [258].
Here, N- and C-terminal domains of ubiquitin are fused into two proteins, the interactions of
which trigger the folding of rationally designed fragments to a functional ubiquitin. This approach
was further enhanced by the development of various split reporter proteins which are commonly
utilized nowadays in studies of protein–protein interactions, protein localization, intracellular protein
dynamics, and protein activity in living cells and animals [259]. Among the split reporter systems
used in protein-fragment complementation assays are constructs based on split dihydrofolate
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reductase (DHFR) [260], β-galactosidase [261], green fluorescent protein (GFP) [262], firefly and
renilla luciferase [263], and β-lactamase [264]. We give these examples here to illustrate the idea of
the “blueprint” complementation, where a functional protein with unique structure is produced from
inactive fragments as a result of conjoint folding–binding events.

4. Nucleation in Bulk, on the Interface and on the Impurities

In the first order phase transitions like melting or crystallization, as well as in their microscopic
analogs, intramolecular “all-or-none” transitions, a key role is played by the nucleation of the new
phase [265,266]. Nucleation can be 3-dimensional (that is, in bulk) or 2-dimensional (on the surface or
interface).

The free energy of an emerging piece of a new phase consisting of n > 1 particles can be estimated as

G3(n) ≈ n∆µ+ n
2
3 B3 (3)

for the 3-dimensional case, and
G2(n) ≈ n∆µ+ n

1
2 B2 (4)

for the 2-dimensional case [266–268] (Figure 5). Here, ∆µ < 0 is the chemical potential decrease for the
molecule of the “new” phase as compared to the “old” one; B3 > 0 and B2 > 0 stand for the additional
free energy of a molecule at the 3- and 2-dimensional phase interfaces.
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Figure 5. Free energy of a growing piece of a “new” phase at different ∆µ values. The symbol # shows
the transition state of the process. Three short green lines correspond to “all-or-none” transitions within
a protein-like body formed by an L-residue chain (which can be in two phase states) at the equilibrium
point (∆µ = ∆µL, see the text), as well as and somewhat above and below of this point.

The free energy of the nucleus (the unavoidable highest-free-energy structure at the pathway of
growth of a piece of the emerging new phase) is obtained from equation dG(n)/dn = 0, and, in the
3-dimensional case, is

G#
3 =

4B3

27

[
B3

−∆µ

]2
. (5)

G#
3 is achieved at

n#
3 =

8
27

[
B3

−∆µ

]3
, (6)

while the “seed”, i.e., the smallest stable piece of the emerging new phase (satisfying the equation
G3(n) = 0 at n > 1), includes

n0
3 =

[
B3

−∆µ

]3
=

27
8

n#
3 (7)

particles. Similar relationships can be obtained for the 2-dimensional case.
A few interesting consequences follow from the above (cf. Figure 5) relationships:
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(1) At −∆µ→ 0 , G#
3 → +∞ and G#

2 → +∞ , which, according to conventional transition state theory,
means that the time of the first order phase transition (exponentially dependent on the G# value) is
infinitely high near the point of thermodynamic equilibrium of the “new” and “old” macroscopic
phases. This is a kinetic origin of hysteresis, overcooled liquids, etc., and, by the way, of the
enormous time required for the formation of β-sheets in long polypeptides [144,145]. It is worth
mentioning that extremely slow nucleation leads to the formation of single and extremely large
compact pieces of the erasing phase.

(2) There is a kind of competition between in bulk and on-surface nucleation of the new phase.

At −∆µ→ 0 , G#
3 turns to infinity in proportion to

[ B3
−∆µ

]2
, while G#

2 turns to infinity in proportion

to only
[ B2
−∆µ

]
, i.e., much more slowly. This means that close to the conditions of phase equilibrium,

3-dimensional (“in bulk”) nucleation becomes kinetically impossible due to the very large[ B3
−∆µ

]2
value, while the 2-dimensional (“on surface”) nucleation can still avoid kinetic problems,

and occurs until
[ B2
−∆µ

]
also becomes too large.

(3) In contrast, when the phases are far from the equilibrium, that is −∆µ increases and starts to
approach B3 and B2 (or B3 and B2 are small and approach −∆µ), the nucleation in bulk should
become fast and overcome the on-surface nucleation, because the surface layer is several orders
of magnitude smaller than the bulk. It is worth mentioning that fast nucleation leads to the
formation of many pieces of the erasing phase that can glue together, forming noncompact,
amorphous, or branched aggregates.

(4) If an all-or-none transition occurs in a microscopic body that includes L particles only, the “new”

phase can be stable only if the seed of the arising phase is smaller than L, i.e., n0
3 =
[ B3
−∆µ

]3
≤ L.

This means that the new phase can arise only when its stability exceeds some threshold,
i.e., −∆µ ≥ −∆µL ≡

B3
L1/3 . At the mid-transition point, where both phases have equal stability,

and thus −∆µ = B3
L1/3 , the transition state free energy is G#

3 = 4
27 B3L2/3, and it includes n#

3 = 8
27 L

particles. This means that the time of transition to the new phase (which is as stable as that of
old one) scales with L in the way given by Equation (1) for formation of the “native phase” of a
protein (a microscopic body!), and that the folding nucleus of the new phase includes nearly 1/3
of the body, i.e., it is not small.

(5) If the new phase is a little more stable than the old one, that is −∆µ = −∆µ0(1 + δ), where
0 < δ � 1, the free energy of the completely formed new phase is ∆G3(L, δ) = −δ·B3L2/3 < 0,
and the transition state free energy G#

3 of nucleation of this stable phase by ≈ 8
27 ∆G3(L, δ) is lower

than the transition state free energy at the mid-transition point. Such an estimate has been used
in [176] to describe the decrease in the protein folding time with the increase in protein stability.

(6) If the new phase is formed around some local “impurity” and interacts with it with the free

energy G0 < 0, the free energy of the emerging phase obtains the form G3(n) ≈ G0 + n∆µ+ n
2
3 B3

(and G2(n) ≈ G0 +n∆µ+n
1
2 B2), instead of that given by Equations (3) and (4). This correspondingly

(by G0 < 0) decreases the nucleation free energy G#
3 (as well as G#

2) of the new phase as compared
to that given by Equation (5), and does not change the size n#

3 (as well as n#
2) of the critical nucleus

given by Equation (6), but decreases the size n0
3 (as well as n0

2) of the “seed” relatively to that
given by Equation (7).

5. Protein Crystallization, Amorphous Aggregation, and Fibrillation as Intermolecular Phase
Transitions

In addition to the spontaneous and binding-induced intramolecular phase transitions described
in the previous sections, proteins are able to undergo macrosystemic assembly processes of amorphous
aggregation, fibrillation, gelation, crystallization, and liquid–liquid phase separation (see Figure 6).
In these cases, insoluble protein ensembles with different degrees of packing orders are formed in
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protein solutions as a result of proteins undergoing “soluble–insoluble” changes accompanied by
intermolecular phase transitions.

Biomolecules 2019, 9, x 15 of 42 

than the transition state free energy at the mid-transition point. Such an estimate has been used 
in [176] to describe the decrease in the protein folding time with the increase in protein stability. 

(6) If the new phase is formed around some local “impurity” and interacts with it with the free 

energy 𝐺 < 0, the free energy of the emerging phase obtains the form 𝐺 (𝑛) ≈ 𝐺 + 𝑛∆𝜇 + 𝑛 𝐵  

(and 𝐺 (𝑛) ≈ 𝐺 + 𝑛∆𝜇 + 𝑛 𝐵 ), instead of that given by Equations (3) and (4). This 
correspondingly (by 𝐺 < 0) decreases the nucleation free energy 𝐺# (as well as 𝐺#) of the new 
phase as compared to that given by Equation (5), and does not change the size 𝑛# (as well as 𝑛#) of the critical nucleus given by Equation (6), but decreases the size 𝑛  (as well as 𝑛 ) of the 
“seed” relatively to that given by Equation (7). 

5. Protein Crystallization, Amorphous Aggregation, and Fibrillation as Intermolecular Phase 
Transitions 

In addition to the spontaneous and binding-induced intramolecular phase transitions described 
in the previous sections, proteins are able to undergo macrosystemic assembly processes of 
amorphous aggregation, fibrillation, gelation, crystallization, and liquid–liquid phase separation (see 
Figure 6). In these cases, insoluble protein ensembles with different degrees of packing orders are 
formed in protein solutions as a result of proteins undergoing “soluble–insoluble” changes 
accompanied by intermolecular phase transitions. 

 
Figure 6. Illustrative examples of phases formed in protein solutions as a result of intermolecular 
phase transitions: A. Oligomeric species; B. Amorphous aggregate; C. Amyloid fibrils; D. Protein gel 
(atomic force microscopy (AFM) image of lysozyme fiber gel); E. Protein crystal (crystals of slingshot 
phosphatase 2 in a hanging drop at 20 °C); F. Liquid droplets (liquid droplets formed by the C-
terminal domain of TDP-43 in the presence of RNA as a result of LLPT. Here, 20 μM TDP-43CTD in 
presence of 40 μg/mL RNA forms liquid droplets that coalesce over time. Scale bar represents 20 μm). 
Images in plots A–C showing different aggregated forms of α-synuclein are AFM images from a 
personal collection of V.N.U. Image in plot D is modified with permission from [269]. Image in plot 
E is a courtesy of Dr. Eric M. Lewandowski and Prof. Yu Chen, University of South Florida. Image 
shown in plot F is a courtesy of Mr. Anukool A. Bhopatkar and Prof. Vijayaraghavan Rangachari, 
University of Southern Mississippi. 

Figure 6. Illustrative examples of phases formed in protein solutions as a result of intermolecular
phase transitions: (A). Oligomeric species; (B). Amorphous aggregate; (C). Amyloid fibrils; (D). Protein
gel (atomic force microscopy (AFM) image of lysozyme fiber gel); (E). Protein crystal (crystals of
slingshot phosphatase 2 in a hanging drop at 20 ◦C); (F). Liquid droplets (liquid droplets formed by the
C-terminal domain of TDP-43 in the presence of RNA as a result of LLPT. Here, 20 µM TDP-43CTD
in presence of 40 µg/mL RNA forms liquid droplets that coalesce over time. Scale bar represents 20
µm). Images in plots (A–C) showing different aggregated forms of α-synuclein are AFM images from a
personal collection of V.N.U. Image in plot (D) is modified with permission from [269]. Image in plot
(E) is a courtesy of Dr. Eric M. Lewandowski and Prof. Yu Chen, University of South Florida. Image
shown in plot (F) is a courtesy of Mr. Anukool A. Bhopatkar and Prof. Vijayaraghavan Rangachari,
University of Southern Mississippi.

These processes are also different in terms of the degree of structural distortions induced by
the environment in a protein molecule that triggers the corresponding transitions. They range from
minimal structural changes in crystallization to moderate structural perturbations (denaturation) in
amorphous aggregates, and to the large-scale conformational alterations that are typically required
for fibrillation.

5.1. Protein Crystallization as a Peculiar Case of Phase Separation of Supersaturated Protein Solutions

An interesting peculiarity of the polypeptide chain of any well-structured globular protein is
that its amino acid sequence guarantees the existence of the free energy barrier between the native
and denatured (unfolded or partially folded) states [1,102]. This is of great importance for proper
protein functioning, as the presence of such a barrier assures the structural identity of native proteins.
The ability of native globular proteins to form crystals (known from Hoppe-Zeiler’s works of the 1860s,
in which the author describes the method by which crystals of hemoglobin were obtained [270]) is one
of the major pieces of evidence supporting this hypothesis. Protein crystallization is a consequence
of protein association governed by the details of the protein structure and the peculiarities of its
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environment. It represents a phase transition leading to the separation of a solid phase (protein crystal)
from a supersaturated protein solution. However, protein crystals are not “dry” (they, in fact, have
high solvent contents, i.e., ranging from 27% to 65%, with an average of 43% [271,272]).

A supersaturated protein solution is a metastable system that, by subtle changes in the
environment, can be triggered to also undergo liquid–liquid phase separation, gelation, crystallization,
or aggregation [273,274]. An important note here is that the aforementioned phenomena of liquid–liquid
phase separation, gelation, crystallization, or aggregation occur in the supersaturated solutions of
normally-folded proteins with (almost) unperturbed 3D structures. However, since gelation and
aggregation commonly come about during protein crystallization, the resulting gels and aggregates
are typically considered as disordered phases [274].

Crystallization takes place in supersaturated protein solutions within a rather narrow set of
conditions known as a crystallization slot, where the protein solution is characterized by specific
molecular interactions involving both solvent and solute molecules, and where protein self-interactions
are defined by a specific range of the osmotic second virial coefficient, B22 [275–277]. Liquid–liquid
phase transition is believed to be driven by the short-range nature of protein interactions [274]. This
process can serve as an illustrative example of a spinodal demixing, which represents a transition from
one totally unstable thermodynamic phase (supersaturated protein solution) to two coexisting stable
or metastable phases (in this case, a liquid relatively depleted in protein and a liquid rich in protein),
both containing significant levels of solvent. Furthermore, because of the presence of the high protein
concentration phase (when it is metastable in relation to crystallization), crystallization occurs much
more rapidly in the concentrated phase-separated state than in the initial solution [273].

It has been pointed out that the aggregation and crystallization in the supersaturated solutions of
globular protein can be associated with the universal behavior of the concentration fluctuations taking
place in the vicinity of the “spinodal line” in the (T, c) plane (where T is the temperature of the system and
c is the protein concentration) [278,279]. This spinodal line represents a boundary showing the limits of
the thermodynamic stability of a homogeneous fluid, or, in other words, the line separating a region of
instability of the solution against spontaneous, nonnucleated demixing [280], where (unlike nucleation)
the interface free energy plays no role. In the proximity of the spinodal line, the critical divergence of
amplitudes and the lifetimes of the spontaneous fluctuations of solute concentrations within the stability
region occur, and can be viewed as transient demixing [280]. These divergences follow the universal
scaling law describing the temperature dependence of parameter ε, that “measures the normalized
distance of the representative point of the solution from the spinodal line in a form ε= (T − Ts)/Ts, where
T is the actual temperature of the system and Ts is the spinodal temperature” [278–280]. It has also
been pointed out that light-scattering experiments in slow temperature scans can provide important
information on the existence of anomalous fluctuations, temperature range, where their divergences
follow the universal law, and spinodal temperature values [281]. Importantly, since the parameter ε
reflects the global effects of all system parameters (such as additives, buffer, concentrations, pH, salts,
temperature, etc.) on the solution stability, very different combinations of system parameters can give
the same ε value.

A careful analysis of the crystal nucleation of several proteins under a variety of conditions
reveals that for all the systems studied, dependencies of the nucleation rates on the ε parameter follow
the same universal curve (or “master curve”) that covers a span of several orders of magnitude of
nucleation rates [278,279]. The existence of such a master curve represents a direct consequence of
the existence of the related critical concentration fluctuations and the universal divergence properties
of such fluctuations. It has also been pointed out that the shape of this master curve suggests the
existence of a region of thermodynamic instability of the solution against spontaneous demixing,
suggesting the applicability of a simple, two-stage model of crystal nucleation. Here, at the first stage,
concentration fluctuations generate abundant and relatively long-lived liquid regions where proteins
cluster, and then, at the second stage, the rearrangement of clustered proteins into a crystalline form
takes place within a characteristic time [278,279]. Importantly, the boundaries of the region with the
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universal features of critical fluctuations and crystal nucleation are defined by the presence of minor
structural changes in a protein molecule, with such a link between conformation details and universal
behavior being triggered by solvent-mediated interactions, and with abrupt changes in the values of
solution spinodal temperatures TS being ascribed to a stepwise change in protein hydration and the
related solution thermodynamics [279]. It has also been hypothesized that the correlation between the
solution instability and structural changes in a protein undergoing crystallization can be explained by
the inability of solvent-induced interactions to distinguish between residues belonging to the same
or different proteins if they are located at comparable distances. As a result, at high enough protein
concentrations, abrupt changes in the interprotein interactions that affect the solution stability can
occur concurrently with the intraprotein interactions that contribute to the conformational stability
and structural integrity of individual protein molecules [279].

5.2. Protein Amorphous Aggregation

In contrast to the processes described in the previous section that happen in supersaturated
solutions of ordered proteins (such as crystallization and companion to it liquid–liquid phase separation,
gelation, and aggregation), the process of amorphous aggregate formation represents one of the
consequences of protein misfolding. Importantly, this form of misfolded protein aggregation is rather
common, and can take place under particular conditions, even for amyloidogenic proteins when they
fail to form amyloid fibrils. Similar to fibrillation (see next section), amorphous aggregate formation
is driven by intermolecular interactions, and is linked to protein denaturation, since partially-folded
conformations with exposed hydrophobic surfaces exhibit a greater propensity to aggregate [282].
In fact, multiple studies have clearly indicated that amorphous and fibrillar aggregation arises from the
intermolecular association of partially-folded intermediates [282–290]. This requirement of the partial
unfolding of a protein molecule that precedes intermolecular interactions links amorphous aggregates
and amyloid fibril. Furthermore, being large, insoluble intermolecular ensembles, these misfolded
aggregates are characterized by high levels of structural stability.

However, these two forms of misfolded aggregates are quite different on many levels. For example,
fibrillar aggregates are highly ordered, β-sheeted ensembles, whereas in amorphous aggregation,
proteins aggregate/oligomerize without forming specific high-order structures. Furthermore, besides
the obvious morphological differences (fibrillar versus amorphous), amyloid fibrils and amorphous
aggregates differ from each other by the mechanisms of their formation [291]. A typical fibrillation
process is described by a sigmoidal curve characterized by the presence of a lag period that reflects
the existence of a high free energy barrier associated with the nucleation of ordered structures of
amyloid fibrils; this process can be accelerated by seeding (i.e., by the addition of the fragments of the
preformed fibrils). The lag grows and can become huge in the presence of secondary nucleation, that is,
the nucleation of branching or fragmentation of fibrils in addition to the primary nucleation of linear
protofibrils [292,293]. In other words, the fibrils are formed via a nucleation and growth mechanism,
where the overall reaction is rate-limited by the existence of a high free energy barrier associated with the
nucleation. On the other hand, the formation of amorphous aggregates represents and instantaneous
and spontaneous process that does not have a lag period and a high free energy barrier, and is not
accelerated by seeding [291]. Since protein crystals and amyloid fibrils are formed by a nucleation
and growth mechanism [294–296], and since crystallization and fibrillation can be accelerated by
seeding [297,298], amyloid fibrillation is considered to be similar to crystallization [291,294–296].
On the other hand, amorphous aggregation was proposed to be analogous to the glass transition [291],
with the glassy behavior of amorphous aggregates being reflected in the presence of heterogeneous
conformations that are fixed by strong attractive forces producing various sites of interaction [291,299].

Importantly, not all amorphous aggregates are formed from denatured protein species. In fact,
amorphous aggregation can also happen in the solutions of near-natively-folded proteins [300].
Examples of this phenomenon are given by the aggregation of the cataract-related P23T mutant
of γD-crystallin [301] and bovine pancreatic trypsin inhibitor (BPTI) variant, BPTI-22, containing
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22 alanines [302]. In the first case, an analysis of γD-crystallin aggregated under physiological
conditions by solid-state NMR revealed the presence of a well-ordered, native-like conformation [301].
In the second case, the presence of a native-like structure in aggregated BPTI-22 was evidenced by 15N
hetero single quantum correlation (HSQC) NMR spectra [302]. Since in many other cases, amorphous
aggregates were formed from partially-folded intermediates, it is unclear now how widespread such
near-natively-folded amorphous aggregates are.

Recently, it was pointed out that although amorphous aggregation and fibrillation—which
can happen for a given protein at similar solution conditions—are often considered as competing
processes, or amorphous aggregation is treated as an obligatory intermediate process within the
amyloid formation pathway, these two models can be integrated into a single paradigm [303,304].
Here, amorphous aggregation is treated as a liquid–liquid phase transition leading to the formation
of the amorphous aggregate that represents a second liquid phase whose liquid-like properties are
determined by the intra-phase monomer mobility, and where fibrillation takes place at the interfacial
boundary via the heterogeneous growth pathways including the nucleation, growth, and fragmentation
of amyloids [292,293,303,304].

5.3. Protein Fibrillation

The interest of researchers in protein misfolding and fibrillation is based upon the involvement
of these processes into the pathogenesis of various protein deposition diseases or proteinopathies,
such as amyloidoses, and different neurodegenerative disorders. Globally, the molecular mechanisms
underlining these different pathological states are the same, where first a transition of specific proteins
or protein fragments from a native soluble form into insoluble aggregate/fibrils takes place, with the
subsequent accumulation of aggregated material within a variety of organs and tissues [305–312].
Different proteinopathies are caused by unrelated proteins, which, prior to fibrillation, may be rich in
α-helices, β-structure, or have an α/β or α + β structure. Some of these amyloidogenic proteins are
globular proteins with unique 3D structures, whereas others are IDPs with different levels and degrees
of disorder. Despite these differences, the fibrils found in different pathologies have many common
features, such as similar morphologies, being twisted, rope-like structures, reflecting a filamentous
substructure, and the presence of a core cross-β-sheet structure with continuous β-sheets formed by
β-strands running perpendicular to the long axis of the fibrils [313]. Importantly, not all amyloids are
pathological, and living organisms quite often exploit the inherent ability of proteins to fibrillate in
order to generate functional amyloids with novel and diverse biological functionalities [314].

Since amyloid fibrils can be formed in vitro from both disease-associated and disease-unrelated
proteins and peptides, it is now believed that the ability to fibrillate represents a generic property of a
polypeptide chain, with all proteins being potentially able to form amyloid fibrils under the appropriate
conditions [307,315–319]. Therefore, contrarily to the globular proteins that can spontaneously fold
into unique 3D structures, which are critically dependent on the amino acid composition and sequence
of the polypeptide chain [6,7], amyloid fibrils represent a generic phase of any peptide chain stabilized
mostly via the main chain-main chain interactions, being therefore rather insensitive to the information
encoded in the side chains.

These observations seem to suggest the absence of a specific “aggregation code” defining the
formation of amyloid fibrils. However, not all proteins are equally prone to fibrillation; some are
prone to aggregate, and can do so (if their concentration is sufficient) even under the physiological or
near-physiological conditions, especially if the monomeric protein is deprived of its natural interacting
partners, whereas others require rather extreme environmental perturbations (like seeding by fragments
of preformed fibrils) to initiate the fibrillation process [307,311,316,320–322]. Furthermore, aggregation
can be disallowed by some negative-design features present in the folded state of a protein [323].
Therefore, a selective pressure optimizes the primary sequence to allow a protein to fold into a
stable soluble structure. This optimization is needed to prevent the functionally-competent fold from
converting to the amyloid phase. Taken together, these findings suggest that not all soluble proteins
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have structures that are optimized to the same degree in order to avoid fibrillation, and that the
susceptibility of a protein to conversion to the aggregated form is defined by the dependence of its
structure on binding partnerships or complexation.

It is important to emphasize here that the formation of amyloid-like fibrils does not embody the
only pathological feature of proteinopathies, and that pathological protein deposits can also be in
the form of amorphous aggregates, which are cloud-like inclusions without defined morphologies.
For many proteins, the aggregation process originating from protein misfolding can generate another
alternative final product, i.e., soluble oligomers. It seems that the precursor of soluble aggregates
is the most structured, whereas amyloid fibrils are formed from the least-ordered conformation via
binding-induced folding. The choice between three pathogenic aggregation pathways, i.e., fibrillation,
amorphous aggregation, and oligomerization, is determined by the peculiarities of the amino acid
sequence, the protein concentration, and the environment.

5.3.1. Conformational Prerequisites for Amyloidogenesis

The fibrillation of the majority of ordered proteins, which are not able to easily form amyloid fibrils
under physiological conditions, requires denaturing conditions [307,311,316,320–322], suggesting that
these proteins can fibrillate when their rigid native structure is destabilized and a partially-unfolded
conformation is formed [282,306–312,316,320,321,324–327]. Obviously, such a requirement for partial
unfolding is not applicable to IDPs with extended disorder, since they do not have stable and well-folded
3D structures in their native states. Instead, a primary step of the fibrillation of such proteins involves
partial folding, leading to the stabilization of a partially-folded conformation [317–319,328–330]. Therefore,
a general hypothesis of fibrillogenesis which is applicable to ordered proteins and IDPs suggests that
protein fibrillation is critically dependent on the structural transformation of a native protein (ordered
or intrinsically disordered) into a partially folded, aggregation-prone conformation, enabling the
assembly of misfolded aggregates via specific intermolecular interactions of different physico-chemical
nature, such as electrostatic attraction, hydrogen bonding, and hydrophobic interactions. Therefore,
amyloid fibril formation is promoted when relatively unfolded protein species are formed under
conditions whereby noncovalent interactions are still favorable.

5.3.2. Fibrillogenesis of Globular Proteins Depends on Partial Unfolding

Significant evidence supports the idea that the fibrillogenesis of globular proteins requires their
partial unfolding [282,306–312,316,320,321,324–327]. One should keep in mind that the unique 3D
structures of ordered globular proteins under physiological conditions are not completely immobile,
but have structural fluctuations of various degrees and timescales. Due to this conformational breathing,
the structure of a globular protein represents a dynamic conformational ensemble containing tightly-folded
species and multiple partially-unfolded conformations, with the former greatly predominating [331,332].
The native structures of globular proteins were shown to be destabilized by most mutations associated
with the accelerated protein fibrillation and proteinopathies. As a result, these mutations caused the
increase in the steady-state levels of partially-folded forms within the conformational ensemble of a
mutated protein [306,307,312,316,320,324,326,333–337]. Conversely, the stabilization of a native protein
structure via the specific binding of ligands or drugs can significantly reduce the amyloidogenicity
of a protein [338–346]. Furthermore, the rate of fibril formation can be significantly accelerated by
destabilizing the native structure of a globular protein by utilizing low or high pH, high temperatures,
low to moderate concentrations of strong denaturants, organic solvents, etc.

5.3.3. Fibrillogenesis of Extended IDPs Is Driven by Partial Folding

As mentioned, the functionalities of many proteins require a high degree of structural
disorder [17,19,20,33,34,54–56,58,59,88,210,234,347]. It seems that due to their lack of significant
conformational constraints and substantial conformational mobility, IDPs ought to be better suited to
amyloidogenesis than to tightly-packed globular proteins; however, this is not always the case, and many
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extended IDPs are rather resilient against aggregation and fibrillation. This is because the fibrillation of
such proteins requires their partial folding. Examples of such amyloidogenic extended IDPs undergoing
partial folding during their amyloidogenesis are Aβ [328], tau protein [348], α-synuclein [317],
β-synuclein [349], γ-synuclein [350], amylin [351], prothymosin α [352], and histones [319].

5.3.4. Premolten Globule as a Universal Amyloidogenic Intermediate

Based on the analysis of structural events at the early fibrillation stages, it has been concluded
that the substantially unfolded conformations of proteins and polypeptides typically serve as fibril
precursors [311]. Although any partially-folded species (including the molten globular and the
premolten globular species) may potentially play a role of such a crucial fibrillation-prone intermediate,
the accumulated evidence indicates that the amyloidogenic species is significantly unfolded, being
structurally closer to the premolten globule than to the molten globule state [311]. It seems that among
different partially-folded intermediates described for proteins, the most amyloidogenic species is
the premolten globule state, which is a relatively swollen conformation lacking a globular structure
and possessing a relatively low secondary structure content, i.e., that sums to ~50% or less of the
corresponding native value [17].

5.3.5. Sequential Mechanism of Fibril Formation and Morphological Heterogeneity of Amyloid Fibrils

In conclusion, proteins with different types of structures are equally subjected to aggregation [311,354],
which represents an extremely complex process consisting of at least three major steps. First, different
soluble proteins are transformed into the “sticky” aggregation-prone precursor or intermediate
with the premolten globule properties. Since such aggregation-prone intermediates would be
structurally different for different proteins, and since even the same protein can be converted into the
structurally-different, partially-folded species by different environmental conditions, the variations
in the amount of the ordered structure retained in the amyloidogenic precursor is believed to be
responsible for the formation of fibrils with distinct morphologies [355]. At the second step, which is
usually considered a nucleation step, or the lag period that precedes the formation of the insoluble
aggregates, different oligomeric species are formed [354]. The lag phase occurs because the association
of monomers is initially unfavorable, however, once a critical nucleus has been generated, and the
gain of enthalpy from incorporating additional monomers outweighs the increase in entropy from
dissociation. As a result, aggregation becomes energetically favorable and the reaction enters a growth
phase [354]. An idealized model of amyloid fibril formation and protein aggregation in general is
presented in Figure 7 (see bottom pathway), illustrating the directionality and sequential nature of the
aggregation process that includes a series of consecutive steps [353]. Importantly, not all oligomers
formed during the protein fibrillation process are productive, i.e., not all of them will eventually “grow”
into fibrils. In fact, some metastable oligomers can “crouch”, being able to compete with fibril formation
by decreasing the concentration of the fibril-forming free monomers [293]. This scenario is illustrated
by the presence of competing misfolded oligomers in the bottom panel of Figure 7. Depending on the
peculiarities of the environment, different aggregated forms (oligomers, amyloid fibrils, amorphous
aggregates) can be generated via the intermolecular self-assembly of the different partially-folded
species of a given protein (see upper pathways in Figure 7). In this model, different oligomers are
formed from the structurally-identical monomers. However, since aggregation can cause dramatic
structural reorganization of the aggregating protein, monomers at different aggregation stages are not
structurally identical [353]. Again, one can expect to find competing misfolded oligomers within all
the pathways shown in Figure 7.

Furthermore, the typical aggregation process only rarely results in the formation of a homogeneous
intermolecular ensemble, where only one type of aggregates species is present. More often, various
aggregated forms appear, giving rise to heterogeneous mixtures of differently-aggregated species
(see Figure 8). In addition, for each aggregated form, there is a multitude of different morphologies,
with monomers constituting such morphologically-distinctive aggregated forms being potentially
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structurally diverse (see Figure 7). All of this suggests that far from being a simple reaction, aggregation
represents a very complicated process with multiple related and unrelated pathways, which can be
connected or disjoined.
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Figure 7. Schematic, oversimplified depiction of the process of protein self-association. Multiple aggregation
pathways are generated via the formation of multiple association-prone monomeric forms. The aggregation
reaction generates at least three major products, which are amorphous aggregates (top pathway),
different soluble oligomers with diverse morphologies (second and third from the top pathways),
and morphologically-divirgent amyloid fibrils (two bottom pathways). Potential structural changes
in the monomers that might happen at each elementary step are shown by color changes. The real situation
is more complex, and more different species can be formed during and as a result of aggregation. Various
species within the different pathways can interconvert. Modified from [353].Biomolecules 2019, 9, x 22 of 42 
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6. Reincarnation of Liquid–Liquid and Liquid–Gel Phase Transitions: Drivers of the Biogenesis
of Membraneless Organelles

Although the phenomenon of liquid–liquid phase separation (LLPS) in supersaturated protein
solutions has been known in the field of protein crystallography for a long time, it was mostly unknown
for the outside world. The situation has changed recently, and we are now witnessing a dramatic
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increase in the level of interest in this intriguing phenomenon, not only from crystallographers,
but also among researchers working in various fields of protein science, cellular biology, biotechnology,
and biomedicine. This is because of the realization that LLPS can drive the cellular compartmentalization
and biogenesis of various membraneless organelles (also known as the proteinaceous membraneless
organelles (PMLOs), puncta, “biomolecular condensates”, foci, etc.). Curiously, although the existence
of such membraneless compartments within the cells has been known to the scientific community for
many years (e.g., nucleolus was described as early as in the 1830s [356,357]), the facts that PMLOs
are numerous, and that they may have important biological functions, were generally overlooked,
mostly due to the inability to isolate them for focused analyses which were in line with a scientific
reductionistic approach, i.e., if the functionality of a complex system is the sum of the functions of
its constituents, then to understand how such a complex system works, it needs to be taken apart,
and individual parts need to be studied separately to understand their structures and functionalities.
Although this linear scientific method was successfully utilized for the analysis of the functionality of
“traditional” membrane-encapsulated organelles, it obviously failed for PMLOs (no membrane equals
no luck with isolation). As a result, for a long time, this inability to be isolated, combined with their
transient existence, have placed PMLOs in the category of potential artifacts.

It is recognized now that PMLOs, these highly dynamic protein-based assemblages [358], are often
present in cytoplasms, nuclei, the mitochondria of various eukaryotic cells, in chloroplasts of plant
cells, as well as in bacterial cells, where they play a number of important roles in the organization of
various intracellular processes [358–364]. PMLOs are numerous and very diverse [359,361,365–372];
there are at least 40 different types found in eukaryotic and bacterial cells [373]. Figure 9 illustrates
the multiplicity of PMLOs by showing a horde of such phase-separated liquid droplets that can be
found in bacterial and eukaryotic cells. A detailed description of eukaryotic PMLOs with illustrative
examples is beyond the scopes of this article, and is presented elsewhere [374].
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This figure was used with permission from Zaslavsky, B.Y., and Uversky, V.N. (2018). In Aqua Veritas:
The Indispensable yet Mostly Ignored Role of Water in Phase Separation and Membraneless Organelles.
Biochemistry 57(17), 2437–2451. Copyright (2018) American Chemical Society.

The formation of PMLOs represents a natural way of compartmentalizing various biological
processes in different regions of the cell [360]. Since PMLOs are able to respond to, facilitate, regulate,
and control different biological functions and stimuli [361], they are now considered to be important
controllers of cellular life.

The liquid-like nature of PMLOs and phase-separated droplets can affect and modulate the
functions of their components, which remain dynamic and flexible within these droplets, despite
being amassed at high concentrations. In line with these considerations, it has been shown that
the low-density structure of PMLOs found within the Xenopus oocyte nuclei determines the access
from the nucleoplasm to the macromolecules within these PMLOs [375]. Due to their increased
concentrations of nucleic acids and proteins, PMLOs can accelerate cytoplasmic reactions, thereby
behaving as liquid-phase microreactors [376–378]. They can also represent a way recruiting and
concentrating specific proteins, as, for example, observed in Negri bodies (NBs), where viral RNAs
are synthesized [379]. Since some nuclear PMLOs concentrate specific sets of mRNAs and regulatory
proteins, they also can serve as dynamic sensors of localized signals and, thereby, play a dual role
in the translation of associated mRNAs, preventing mRNA translation at rest, and promoting local
protein synthesis upon activation [380].

There is no doubt that PMLOs are full of mystery. Since they do not have membranes, their
biogenesis and structural integrity rely exclusively on protein–protein and/or protein–nucleic acid
interactions [381,382], and their components can directly contact and exchange with the exterior
environment [383,384]. On the other hand, they have macroscopic dimensions and are detectable by
under a microscope. The dimensions of these highly mobile but stable assemblages are dependent on the
cell size [376]. PMLOs demonstrate the liquid-like behavior, being capable of dripping, the formation
of spherical structures upon fusion, and wetting [385–388].

These intracellular liquid droplets are formed via biological, liquid–liquid phase transitions (LLPTs),
also known as intracellular liquid–liquid demixing phase separation [376,389]. Such intracellular LLPTs
are concentration-dependent, since PMLO formation is initiated by the colocalization of the participating
molecules at high concentrations within a small cellular microdomain [383,384]. The biogenesis of
PMLOs is a highly controllable and reversible process, with the formation of PMLOs being initiated by
fluctuations in the concentrations of proteins undergoing LLPT, variations in the concentrations of
definite small molecules or salts, osmolarity changes, alterations in the solution pH and/or temperature,
by alternative splicing and various PTMs of the phase-forming proteins, via binding of these proteins
to some specific partners, or by alterations of other environmental conditions affecting protein–protein
or protein–nucleic acid interactions [376,389–392].

The fluidity of PMLOs originates from the multivalent interactions between IDPs or proteins
containing IDPRs that are not accompanied by noticeable alterations in the structure of proteins
undergoing LLPTs [372,393,394]. Therefore, PMLOs represent a special form of disorder-based
protein complexes [372,389,393,395], and can be considered as illustrations of the disorder-based
emergent behavior of proteins [210,213,396,397]. The lack of noticeable structural changes in IDPs
forming PMLOs is supported by the NMR analysis of several PMLOs or liquid droplets, such as
the Alzheimer-related protein tau [398,399], elastin-like polypeptides (ELPs) [400], low-complexity
domain of the RNA-binding protein fused in sarcoma (FUS) [401], and the heterogeneous nuclear
ribonucleoprotein A2 (hnRNPA2) [402], to name a few.

7. Conclusions

This review describes various intra- and inter- molecular phase transitions taking place in
protein solutions, thereby representing protein existence as an exciting story of life in phases, where
different phase transitions define the structure, function, interactability, aggregation, crystallization,
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and compartmentalization of proteins. Although many of these phase transitions are linked to the
general polymeric nature of proteins (e.g., intramolecular coil-globule transitions or intermolecular
liquid–liquid and liquid–gel phase separation), other phase transitions seems to be rather specific for
proteins, which are biological copolymers that were evolutionarily edited to have unique structures
and/or functions. This edited polymer nature is related to the ability of globular proteins to undergo
intramolecular, globule–globule transitions, giving rise to their unique 3D structures and their ability to
be crystallized, as well as being associated with the ability of intrinsically-disordered proteins to undergo
binding-induced intramolecular phase transitions originating from their interactions with specific
partners. Also, although it seems that amorphous aggregation can take place in supersaturated solutions
of various solutes of polymeric and nonpolymeric nature, ordered aggregations, i.e., the formation of
amyloid fibrils that requires a dramatic structural rearrangement of protein monomers, might represent
a special case of intermolecular phase transitions which is specific to polypeptides.
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